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SYNOPSIS 
 

 

Nature permits certain changes in different real life phenomenon such as social, 

economic, agricultural, medicinal, financial and even vital statistics related to life span of 

human being etc. with the change of time. To study these changes with the change of time, 

the different real life phenomenon need to be observed more than once since single time 

observation contains the subsisting situation of the study variable but not the change, over 

the time period. So observation need to be made at several occasions. Such a design of 

observations is known as Successive sampling or rotation sampling in statistical surveys 

which is considered a very strong statistical tool for analyzing change occurred in the 

phenomenon over a span of time. 

The work done focuses on searching effective rotation patterns for the estimation 

of different population parameters like population mean and population median on 

successive occasions in two occasion successive sampling. The entire work has been 

divided in six units, in each unit population parameter has been estimated under certain 

set of assumption, underlying the situations for survey has been conducted.  

The First unit has been devoted to the estimation of population median at current 

occasion in two occasion successive sampling. Various estimators have been proposed 

under different chapters and they have been compared to some of well-known estimators 

existing in the literature of successive sampling. 

In chapter-1, the work deals with the problem of estimation of population median at 

current occasion in two-occasion successive sampling. Best linear unbiased estimators 

have been proposed by utilizing additional auxiliary information which is stable in nature 

and readily available on both the occasions.  

Chapter-2 deals with the problem of estimation of finite population median at 

current occasion, in two occasion successive (rotation) sampling. A class of estimators 
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has been proposed for the estimation of population median at current occasion, which 

includes many existing estimators as a particular case.  

Chapter-3 is an attempt to explore the rotation patterns using exponential ratio type 

estimators for the estimation of finite population median at current occasion in two 

occasion rotation sampling.  

Chapter-4 makes an attempt to explore the analysis on longitudinal surveys in 

which same units are investigated on several occasions. Multivariate exponential ratio 

type estimator has been proposed for the estimation of finite population median at current 

occasion in two occasion longitudinal surveys. Information on several additional auxiliary 

variables which are stable over time and readily available on both the occasions has been 

utilized.  

In chapter-5, the problem of estimation of finite population median at current 

occasion in two occasion successive sampling has been considered using the additional 

auxiliary variate which is dynamic over time and is readily available at both the occasions.  

Looking at the effective gain in precision of the estimates and decreased cost of 

the survey by using the exponential ratio type estimators in two occasion successive 

sampling, Unit-II has been devoted to the estimation of population mean by utilizing the 

exponential ratio type estimators since these are least utilized estimators in two occasion 

successive sampling.  

Chapter-6 considers the problem of longitudinal analysis of population mean in 

two occasion successive sampling. The usefulness of exponential type estimators in 

enhancing the working efficiency of different ratio type estimators for population mean, 

when embedded with auxiliary information which is stable over time in two occasion 

successive sampling have been explored.  

Chapter-7 deals with the problem of estimation of the population mean in presence 

of multi auxiliary information in two occasion rotation sampling. A multivariate 

exponential ratio type estimator has been proposed to estimate population mean at current 

(second) occasion using information on p-additional auxiliary variates which are 

positively correlated to study variates and are stable in nature over successive occasion.  
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The key and fundamental purpose of sampling over successive waves lies in the 

varying nature of study character, it so may happen with ancillary information if the time 

lag between two successive waves is sufficiently large. Chapter-8 consumes the varying 

nature of auxiliary information and modern approaches have been proposed to estimate 

population mean over two successive waves. Four exponential ratio type estimators have 

been designed. Cost models have also been worked out to minimize the total cost of the 

survey design over two successive waves.  

Unit-III carry forward the idea of estimating population mean at current occasion 

in two occasion successive sampling but here one more aspect of surveys has been taken 

in to consideration that some-times in surveys, some units or the whole sample tends to 

be non-informative or non-responding due to any of the reason. The reason of non-

response may include the absence of sample unit at said place, refusal to response or lost 

information etc. In such a situation, analysis of real state of facts is troubled. Unit-III 

explores the exponential ratio type estimators in the presence of non-response in two 

occasion successive sampling with the application of technique of imputation to deal with 

non-response. 

Chapter-9 takes in consideration that while sample surveys are conducted, prompt 

chances of non-response of sample units leads to incompleteness of data and analyzing 

such data may result in false inference of facts. So utilizing the method of imputation with 

the aid of a completely known auxiliary character correlated to the study character and is 

stable in nature over the occasions, an affective estimation procedure has been suggested 

to deal with non-response for estimating population mean in two occasion successive 

sampling. A vast study has been done to elaborate the properties of the proposed estimator 

through theoretical and empirical entails considering that (i) non-response may arise on 

both occasions, (ii) it may occur only at first occasion or (iii) it may occur only at second 

occasion while comparing the proposed estimator with the same estimator having 

complete response for all sample units at each occasion.  

In chapter-10, it has been discussed that the occurrence of non-response is very 

much plebeian in surveys, which troubles the analysis and hence an inappropriate 

inference is left out. To counterbalance the sour effects of the incompleteness, fresh 
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imputation techniques have been proposed with the aid of multi-auxiliary variates for the 

estimation of population mean on successive waves.  

Chapter-11 considers that encountering non-response is quite prone in sample surveys 

however smart be the design, which sours the analysis and hence the results. An effort has 

been made to exploit the non-response by using a completely fresh approach of imputation 

technique to estimate the population mean in two occasion successive sampling, utilizing 

completely known auxiliary information which is dynamic in nature and pronto over the 

occasions.  

Unit-III provides a tool to negotiate with the non-response of sample units due to 

sensitivity of issue, although non-response may creep due to many reasons. What if non-

response is due to stigmatizing character of study variable? In such surveys there is a 

possibility that in place of non-response, respondent simply under or over response the 

real facts due to social desirability and inclination. If a certain privacy level is ensured to 

the respondents then they may respond truthfully. Such a technique known as scrambled 

response technique has been explored to estimate population mean of a sensitive character. 

The work done in chapter-12 is an attempt to use non-sensitive auxiliary character 

and scrambled response techniques to estimate population mean of a sensitive character. 

Various estimators using Scrambled Response Techniques (SRT) to estimate the 

population mean of a sensitive character have been proposed in sampling over two 

successive waves. Two models; Additive (ASRM) and Multiplicative (MSRM) scrambled 

response model have been used and the estimators have been discussed under both the 

models. Further pros and cons for two models in successive sampling have been 

illustrated. The model for optimum total cost of the survey has also been designed and 

discussed. 

 

Unit-V illustrates the findings of the work done in the previous four units and 

makes recommendations of the work done in previous chapters on basis of requirement of 

survey design. 
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It also illustrates the further scopes for present work to be explored in future through 

different other survey sampling techniques. 

 

Unit-VI show cases all the literature available in survey sampling which has been refereed 

to carry out the work done in this study. 
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Effective Rotation Patterns for Median 

Estimation in Successive Sampling 

 

1. Introduction 

 When the value of study character of a finite population is subject to change 

(dynamic) over time, a survey carried out on a single occasion will provide information 

about the characteristics of the surveyed population for the given occasion only and will 

not give any information on the nature of change of the characteristic over different 

occasions and the average value of the characteristic over all occasions or the most recent 

occasion. To meet these requirements, sampling is done on successive occasions that 

provide a strong tool for generating the reliable estimates at different occasions. The 

problem of sampling on two successive occasions was first considered by Jessen (1942), 

and latter this idea was extended by Patterson (1950), Narain (1953), Eckler (1955), 

Gordon (1983), Arnab and Okafor (1992), Feng and Zou (1997), Singh and Singh (2001), 

Singh and Priyanka (2008a), Singh et al.(2012), Bandyopadhyay and Singh(2014) and 

many others. 

All the above studies were concerned with the estimation of population mean or variance 

on two or more occasion.    

There are many problems of practical interest which involves variables with 

extreme values that strongly influence the value of mean. In such situations the study 

variable is having highly skewed distributions. For example, the study of environmental 

issues, the study of social evil such as abortions, the study of income, expenditure etc. In 

these situations, the mean may offer results which are not representative enough because 

it moves with the direction of the asymmetry. The median, on the other hand is unaffected 

by extreme values. 

 Most of the studies related to medians have been developed by assuming simple 

random sampling or its ramification in stratified random sampling (Gross (1980), 
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Sedransk and Meyer (1978), Smith and Sedransk (1983) and considering only the variable 

of interest without making explicit use of auxiliary variables. Some of the researchers 

namely Chambers and Dunstan(1986), Kuk and Mak (1989), Rao et al. (1990), Rueda et 

al.(1998), Allen et al. (2002), Singh and Solanki (2013) etc. make use of auxiliary 

variables to estimate the population median. 

 It is to be mentioned that a large number of estimators for estimating the population 

mean at current occasion have been proposed by various authors, however, only a few 

efforts (namely Martinez-Miranda et al. (2005), Singh et al. (2007) and Rueda et al. 

(2008)), Gupta et al. (2008) have been made to estimate the population median on the 

current occasion in two occasions successive sampling. It is well known that the use of 

auxiliary information at the estimation stage can typically increase the precision of 

estimates of a parameter. To the best of our knowledge, no effort has been made to use 

additional auxiliary information readily available on both the occasions to estimate 

population median at current occasion in two- occasion successive sampling. 

 Motivated with the above arguments and utilizing the information on an additional 

auxiliary variable, readily available on both the occasions, the best linear unbiased 

estimators for estimating the population median on current occasion in two-occasion 

successive sampling have been proposed. It has been assumed that the additional auxiliary 

variable is stable over the two-occasions. 

The work is spread over ten sections. Sample structure and notations have been 

discussed in section 2. In section 3 the proposed estimator has been formulated. Properties 

of proposed estimators including variances are derived under section 4. Minimum 

variance of the prosed estimator is derived in section 5. Practicability of the proposed 

estimator is also discussed. In section 6 optimum replacement policies are discussed. 

Section 7 contains comparison of proposed estimator with the natural sample median 

estimator, when there is no matching from the previous occasion and the estimator when 

no additional auxiliary information has been used. Practicability of the estimator   is 

also discussed. In section 8 simulation studies have been carried out to investigate the 

performance of the proposed estimators. The results obtained as a result of empirical and 
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simulation studies have been elaborated in section 9. Finally the conclusion of the entire 

work has been presented in section 10. 

2. Sample Structures and notations  

Let U = (U1, U2, - - -, UN) be the finite population of N units, which has been 

sampled over two occasions. It is assumed that the size of the population remains 

unchanged but values of unit change over two occasions. The character under study be 

denoted by x (y) on the first (second) occasions respectively. It is further assumed that 

information on an auxiliary variable z (with known population median) is available on 

both the occasions. A simple random sample (without replacement) of n units is taken on 

the first occasion. A random sub sample of m = n  units is retained (matched) for use on 

the second occasion. Now, at the current occasion a simple random sample (without 

replacement) of u= (n - m) = n units is drawn afresh from the remaining (N - n) units of 

the population so that the sample size on the second occasion is also n.  and , (+  =1) 

are the fractions of matched and fresh samples respectively at the second (current) 

occasion. The following notations are considered for the further use: 

x y zM , M , M : Population median of x, y and z respectively. 

             x n x m y m y u z n z m z u
ˆ ˆ ˆ ˆ ˆ ˆ ˆM , M , M , M , M , M , M : Sample median of the respective variables 

of the sample sizes shown in suffices. 

yx xz yzρ , ρ , ρ : The Correlation coefficient between the variables shown in suffices. 

3. Formulation of Estimator 

 To estimate the population median yM on the current (second) occasion, the 

minimum variance linear unbiased estimator of yM  under SRSWOR sampling scheme 

have been proposed and is given as 

                1 2 3 4 5 6 7 8 zy u y m x m x n z u z m z n
ˆ ˆ ˆ ˆ ˆ ˆ ˆT= α M +α M + α M +α M + α M +α M +α M +α M       (1) 
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where  iα i=1, 2, - - -, 8 are constants to be determined so that  

(i) The estimator T becomes unbiased for yM  and 

(ii) The variance of T attains a minimum 

For unbiasedness, the following conditions must hold 

 1 2α +α =1,  3 4α +α =0
 
and  5 6 7 8α + α + α + α =0 . 

Substituting  1 1 3 1 8 5 6 7α = φ , α =β  and α = - α + α + α in equation (1), the estimator T takes 

the following form 

              1 1 5 zy u y m x m x n z u
ˆ ˆ ˆ ˆ ˆT = φ M  + 1 - φ M  + β M  - M  + α M  - M  

          6 Z 7 Zz m z n
ˆ ˆ+ α M - M + α M - M  

              1 1 Z 1 2y u z u y m x m x n
ˆ ˆ ˆ ˆ ˆ  = φ M + k M - M  + 1 - φ M + k M - M  +

 

          3 Z 4 Zz m z n
ˆ ˆk M - M  + k M - M  

 1 1 1 2T  =φ T  + 1- φ  T                         (2) 

where
    1 1 Zy u z u

ˆ ˆT =M + k  M - M  is based on the sample of size u drawn afresh at current 

occasion and the estimator  

             2 2 3 Z 4 Zy m x m x n z m z n
ˆ ˆ ˆ ˆ ˆT = M + k M - M + k M - M + k M - M

 
is based on the sample 

of size m matched form previous  occasion . 

5
1

1

α
k =

φ
, 

1
2

1

β
k =

1-φ
, 

6
3

1

α
k =

1-φ
, 

7
4

1

α
k =

1-φ
 and 

1φ are the unknown constants to be determined 

so as to minimize the variance of estimator T. 

Remark 3.1: For estimating the median on each occasion, the estimator 
1T  is suitable, 

which implies that more belief on 
1T  could be shown by choosing 

1φ as 1 (or close to 1), 
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while for estimating the change from one occasion to the next, the estimator T2 could be 

more useful so 
1φ  be chosen as 0(or close to 0). For asserting both the problems 

simultaneously, the suitable (optimum) choice of 
1φ is required. 

4. Properties of the estimator T 

The properties of the proposed estimator T are derived under the following assumptions: 

(i) Population size is sufficiently large (i.e. N→∞), therefore finite population corrections 

are ignored. 

(ii) As N→∞, the distribution of bivariate variable (a, b) where a and b  x, y, z and a ≠ 

b approaches a continuous distribution with marginal densities  af   and  bf   for a and 

b respectively, see Kuk and Mak (1989). 

(iii) The marginal densities  xf  ,  yf   and  zf   are positive. 

(iv) The sample medians 
             x n x m y m y u z n z m z u

ˆ ˆ ˆ ˆ ˆ ˆ ˆM , M , M , M , M , M  and  M  are 

consistent and asymptotically normal (see Gross (1980)). 

(v) Following Kuk and Mak (1989), let abP be the proportion of elements in the population 

such that aa M and bb M where a and b  x, y, z and a ≠ b. 

(vi) Following large sample approximations are assumed: 

   y 0y u
M̂ =M 1+e ,

   y 1y m
M̂ =M 1+e , 

   x 2x m
M̂ =M 1+e , 

   x 3x n
M̂ =M 1+e , 

   z 4z u
M̂ =M 1+e , 

   z 5z m
M̂ =M 1+e  and 

   z 6z n
M̂ =M 1+e  such that ie < 1 i = 0, 1, 2, 

3, 4, 5, 6. 

The values of various related expectations can be seen in Allen et al. (2002) and 

Singh (2003). Under the above transformations, the estimator 
1 2T  and T  takes the 

following forms: 
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  1 y 0 1 z 4T =M 1+e + k M e                        (3) 

     2 y 1 2 x 2 3 z 3 5 4 6T =M 1+ e + k M e - e +M k e + k e                     (4) 

Thus we have the following theorems: 

Theorem 4.1: T is unbiased estimator of yM . 

Proof: Since 
1 2T  and T are difference and difference-type estimators, respectively so they 

are unbiased for yM . The combined estimator T is a convex linear combination of 

1 2T  and T , hence it is also an unbiased estimator of yM . 

Theorem 4.2: Ignoring the finite population corrections, the variance of T is 

        
22

1 1 1 2V T  = φ  V T  + 1 - φ V T                      (5) 

where  1 1

1
V T = ξ

u
                                    (6) 

and  2 2 3 4

1 1 1 1
V T = ξ + - ξ + ξ

m m n n

 
 
 

                                 (7) 

2

1 1 1 2 1 3ξ =A + k A + 2k A , 
2

2 1 3 2 3 3ξ =A + k A + 2k A ,  
2

3 2 4 2 5 2 3 6ξ =k A + 2k A + 2k k A ,

2

4 4 2 4 3 3 4 2ξ =k A + 2k A + 2k k A ,   
-2

1 y y

1
A = f M

4
,   

-2

2 z z

1
A = f M

4
,

       
-1 -1

3 yz y y z zA = P -0×25 f M f M ,   
-2

4 x x

1
A = f M

4
, 

       
-1 -1

5 yx y y x xA = P -0×25 f M f M  and        
-1 -1

6 xz x x z zA = P -0×25 f M f M . 

Proof: The variance of T is given by  

    
2

yV T =E T - M     
2

1 1 y 1 2 y=E φ T  - M  + 1- φ T - M 
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22

1 1 1 2 1 1 1 2=φ  V T  + 1 - φ V T  + φ 1 - φ  cov T ,T                                     (8) 

where    
2

1 1 yV T =E T  - M and    
2

2 2 yV T =E T - M . 

As 
1 2T  and T are based on two independent samples of sizes u and m respectively, hence

 1 2cov T , T =0 . 

Now, substituting the expressions of 
1 2T  and T  from equations (3) and (4) in equation (8), 

taking expectations and ignoring finite population corrections, we have the expression for 

variance of T as in equation (5). 

5. Minimum Variance of the Estimator T  

 Since, the variance of the estimator T in equation (5) is the function of unknown 

constants 1 2 3 4 1k , k , k , k  and  φ , therefore it is minimized with respect to 1 2 3 4k , k , k , k  

1 and  φ and subsequently the optimum values of 1 2 3 4 1k , k , k , k  and  φ  are obtained as 

* 3
1

2

-A
k =

A
                                    (9) 

 
* 3 4 6 2 4 5
2 2

4 2 4 6

A A A - A A A
k =

A A A - A
          (10) 

 
* 3 4 5 6
3 2

2 4 6

-A A + A A
k =

A A - A
           (11) 

 

2
* 3 6 2 5 6
4 2

2 2 4 6

A A - A A A
k =

A A A - A
                      (12) 

 

   
2

1opt×

1 2

V T
φ =

V T  + V T
          (13) 

Using the optimum values of  ik 's i=1, 2, 3, 4 in equation (6) and (7), we get the 

optimum variances of  
1 2T  and T  as  
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 1 7opt.

1
V T = A

u
                       (14) 

            2 8 9 10opt.

1 1 1 1
V T = A  +  - A  + A

m m n n

 
 
 

                              (15) 

where 
2* *

7 1 1 2 1 3A =A + k A + 2k A , 
2* *

8 1 3 2 3 3A =A + k A  + 2k A , 
2* * * *

9 2 4 2 5 2 3 6A =k A  + 2k A  + 2k k A
 

and 
2* * * *

10 4 2 4 3 3 4 2A =k A  + 2k A  + 2k k A . 

Further substituting the values of   1 opt.
V T  and  2 opt.

V T from equations (14) and (15) in 

equation (13), we get the optimum values of  1opt.φ  with respect to  *

ik 's i=1, 2, 3, 4  as 

 

   
2 opt.*

1opt.

1 2opt. opt.

V T
φ =

V T +  V T
          (16) 

Again substituting the value of  
*

1opt.φ  from equation (16) in equation (5), we get the 

optimum variance of T as 

  
   

   
1 2opt opt

opt
1 2opt opt

V T V T
V T

V T +  V T

 



 

                     (17) 

Further, substituting the value from (14) and (15) in equation   (16) and (17), we get the 

simplified values of 
*

1opt.φ  and    
opt.

V T  as 

 
 11 12*

1opt. 2 2

12 13 7

μ A + μA
φ =

μ A + μ A + A
          (18) 

  
 

 
7 11 12

opt. 2

12 13 7

A A + μA1
V T =

n μ A + μA + A
                    (19) 

where 11 8 10A =A + A , 12 9 10A =A - A , 13 11 7A =A - A  and μ
 
is the fraction of fresh sample at 

current occasion for the estimator T. 
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5.1 Estimator T in practice 

 The main difficulty in using the proposed estimator T defined in equation (2), is 

the availability of 
ik 's   i 1, 2, 3, 4  as the optimum values of 

ik 's    i 1 ,  2 ,  3 ,  4  

depends on the population parameters    yx yz xz y y x xP , P , P , f M , f M
 
and  z zf M . If these 

parameters are known, the proposed estimator can be easily implemented. Otherwise, 

which is the most often situation in practice, the unknown population parameters are 

replaced by their respective sample estimates. The population proportions 

yx yz xzP , P  and  P  are replaced by the sample estimates yx yz xz
ˆ ˆ ˆP , P  and  P  respectively and 

the marginal densities    y y x xf M , f M  z z and  f M  can be substituted by their kernel 

estimator or nearest neighbour density estimator or generalized nearest neighbour density 

estimator related to the kernel estimator (Silverman (1986)). Here, the marginal densities 

   y y x xf M ,  f M   z zand  f M  are replaced by         y x zy m x n z n
ˆ ˆ ˆˆ ˆ ˆf M , f M   and  f M

 

respectively, which are obtained by the method of generalized nearest neighbour density 

estimation related to the kernel estimator. 

Remark 5.1.1: To estimate  x xf M , by the generalized nearest neighbour density 

estimator related to the kernel estimator, following procedure has been adopted: 

Choose an integer 
1

2h n and define the distance  1 2d x , x  between two points on the 

line to be 1 2x -x . 

For 
 x n

M̂  define         1 2 nx n x n x n
ˆ ˆ ˆd M d M - - - d M    to be the distances, 

arranged in ascending order, from 
 x n

M̂ to the points of the sample. 

The generalized nearest neighbour density estimate is defined by 

   
  

 

  

n
ix n

x n
i=1h hx n x n

M̂ -x1ˆ ˆf M = K
ˆ ˆnd M d M

 
 
 
 

         (20) 
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where the kernel function K, satisfies the condition  K x  dx = 1





 . 

Here, the kernel function is chosen as Gaussian Kernel given by  
21

- x
21

K x = e
2π

 
 
  . 

Similarly, the estimate of    y y z zf M  and f M can be obtained. 

Remark 5.1.2: For estimating  y y yz yxf M , P  and P  we are having two independent 

samples of sizes u and m respectively at current occasion. So, either of the two can be 

used, but in general for good sampling design in successive sampling u m . So, in the 

present work  y y yz yxf M , P  and P are estimated from sample of size m, matched from first 

occasion. 

Therefore, under the above substitutions of the unknown population parameters by 

their respective sample estimates, the estimator T takes the following form: 

 * * *

1 1 1 2T  = ψ T + 1 - ψ  T                                                                   (21) 

where     * **

1 1 Zy u z u
ˆ ˆT = M +  k M - M                      (22)  

and              * ** ** **

2 2 3 Z 4 Zy m x m x n z m z n
ˆ ˆ ˆ ˆ ˆT = M + k M - M + k M - M + k M - M

                   
(23) 

 

* * * * * * *
** **3 3 4 6 2 4 5
1 2* 2* * * *

2
4 2 4 6

-A A A A  - A A A
k = , k = ,

A A A A  - A  

* * * *
** 3 4 5 6
3 2* * *

2 4 6

-A A  + A A
k = ,

A A  - A  

2* * * * *
** 3 6 2 5 6
4 2* * * *

2 2 4 6

A A - A A A
k = ,

A A A  - A

   
-2

*

1 y y m

1 ˆ ˆA =  f M
4

,  
   

-2
*

2 z z n

1 ˆ ˆA =  f M
4

,   

         
-1 -1

*

3 yz y zy m z n
ˆ ˆˆ ˆ ˆA =  P - 0.25  f M  f M ,           

   
-2

*

4 x x n

1 ˆ ˆA =  f M
4

,

         
-1 -1

*

5 yx y xy m x n
ˆ ˆˆ ˆ ˆA =  P - 0.25  f M  f M and 

         
-1 -1

*

6 xz x zx n z n
ˆ ˆˆ ˆ ˆA =  P - 0.25  f M  f M . 
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1ψ is an unknown constant  to be determined so as to minimize the mean square error of 

the estimator *T . 

Remark 5.1.3: The proposed estimator T is difference-type estimator so, after replacing 

the unknown population parameters by their respective sample estimates it becomes 

regression-type estimator. Hence, up to the first order of approximations the estimator *T

will be equally precise to that of the estimator T (see Singh and Priyanka (2008a)). 

Therefore, similar conclusions are applicable for *T as that of T. 

6. Optimum Replacement Policy     

 To determine the optimum value of  (fraction of sample to be taken afresh at 

second occasion) so that yM  may be estimated with maximum precision, we minimize

 
opt.

V T .in equation (19) with respect to  and hence we get the optimum value of  as  

 
*

2

2 2 1 3

0opt.
1

-S  ± S  - S S
μ = =μ

S  

(say)                    (24) 

where, 
2

1 12S =A , 
2 11 12S =A A  and 3 11 13 7 12S =A A  - A A . 

From equation (24), it is obvious that the real value of opt.μ  exists if 
2

2 1 3S  - S S 0 . For 

certain situation, there might be two values of opt.μ  satisfying the above condition, hence 

to choose a value of opt.μ , it should be remembered that opt.0 μ 1  . All other values of 

opt.μ  are inadmissible. In case if both the values of opt.μ  are admissible, we choose the 

minimum of these two as 0μ . Substituting the value of opt.μ  from equation (24) in (19) we 

have 

  
 

 
*

7 11 0 12

opt. 2

0 12 0 13 7

A A + μ A1
V T =

n μ A + μ A + A
                    (25) 

where   *opt.
V T  is the optimum value of T with respect μ. 
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7. Efficiency Comparison 

To study the performance of the estimator T, the percent relative efficiencies of T 

with respect to (i) 
 y n

M̂ , the natural estimator of yM , when there is no matching and  (ii) 

the estimator Δ, when no additional auxiliary information is used at any occasion,  have 

been computed for two natural population data. The estimator Δ is defined under the same 

circumstances as the estimator T, but in the absence of information on additional auxiliary 

variable z on both the occasions and is proposed as 

 
         1 2 3 4y u y m x m x n

ˆ ˆ ˆ ˆΔ= δ M  + δ M  + δ M  + δ M        (26) 

where  iδ i=1, 2, 3, 4 are constants to be determined so that  

(i) The estimator Δ becomes unbiased for yM  and 

(ii) The variance of Δ attains a minimum. 

For unbiasedness, the following conditions must hold 

 1 2δ + δ =1
 and  3 4δ + δ =0 . 

Substituting 1 2 3 2δ = φ  and δ = β  in equation (26), the estimator Δ takes the following 

form 

 
           2 2 2y u y m x m x n

ˆ ˆ ˆ ˆΔ= φ M  + 1 - φ M  + β M  - M  

            2 2 5y u y m x m x n
ˆ ˆ ˆ ˆ= φ M + 1 - φ M  + k M - M  

 2 1 2 2Δ = φ Δ + 1 - φ Δ                                  (27) 

where, the estimator 
 1 y u

ˆΔ = M is based on the fresh sample of size u and the estimator  

       2 5y m x m x n
ˆ ˆ ˆΔ = M + k M - M  is based on the matched sample of size m, 

 
2

5

2

β
k =

1- φ
 

and 
2φ are the unknown constants to be determined so as to minimize the variance of 
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estimator Δ. Following the methods discussed in Sections 4, 5 and 6, the optimum value 

of 5k , 1opt.μ (optimum value of fraction of fresh sample for the estimator Δ), variance of  

 y n
M̂ and optimum variance of Δ ignoring the finite population corrections are given by 

 
* 5
5

4

-A
k =

A
                                    (28)   

 
 

 *

1 1 1 14 *

1opt.
14

-A  ± A A + A
μ = = μ say

A
                   (29)   

 
   1y n

1ˆV M = A
n

                      (30)   

  
 

 
*

*

1 1 14

opt. 2*

14 1

A  A + μ A1
V Δ =

n  μ A + A
                               (31)   

where 
2

5
14

4

-A
A =

A
. 

The optimum values of  μ , 
1μ and percent relative efficiencies 

1 2E  and E  of the estimator 

T with respect to the estimator 
 y n

M̂ and Δ are computed for two natural populations and 

results are  shown in Tabe-2, where 

  
  *

y n

1

opt .

ˆV M
E = ×100

V T
 

and 
 

 

*

*

opt .

2

opt .

V Δ
E = ×100

V T
 

7.1 Estimator Δ in practice  

The main difficulty in using the proposed estimator Δ defined in equation (27), is 

the availability of 5k , as the optimum values of 5k  depends on the population  parameters  

   yx y y x xP , f M  and f M  . If these parameters are known, the estimator Δ can easily be 

implemented otherwise the unknown population parameters are replaced by their 
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respective sample estimates as discussed in subsection 5.1. Hence, in this scenario the 

estimator Δ takes the following form: 

 * *

2 1 2 2Δ =ψ Δ + 1 - ψ Δ                                  (32)   

where        * **

2 5y m x m x n
ˆ ˆ ˆΔ = M + k M - M

, 

*
** 5
5 *

4

-A
k =

A
and 

2ψ is the unknown constants to be 

determined so as to minimize the mean squared error of the estimator Δ . 

Remark 7.1.1: Since, Δ  is regression-type estimator corresponding to the difference-

type estimator Δ, hence up to the first order of approximations similar conclusions are 

applicable to *Δ as that of Δ (See Singh and Priyanka (2008a)). 

Remark 7.1.2:  For simulation study the proposed estimator *T  and *Δ  are considered 

instead of the proposed estimators T and Δ respectively. 

8. Monte Carlo Simulation  

 Empirical validation can be carried out by Monte Carlo Simulation. Real life 

situations of completely known two finite populations have been considered.  

Population Source: [Free access to the data by Statistical Abstracts of the United States] 

The first population comprise of N = 51 states of United States. Let 
iy represent the 

number of abortions during 2007 in the thi  state of U. S., 
ix be the number of abortions 

during 2005 in the thi  state of U. S. and 
iz denote the number of abortions during 2004 

in the thi state of  U. S. The data are presented in Figure 1. 

Similarly, the second population consists of N=41 corn producing states of United States. 

We assume 
iy  the production of corn (in million bushels) during 2009 in the thi state of 

U.S., 
ix be the production of corn (in million bushels) during 2008 in the thi  state of U. 

S. and 
iz denote the production of corn (in million bushels) during 2007 in the thi state of     

U. S. The data are represented by means of graph in Figure 2. 



   17 

 

2004

2005

2007

-20000

0

20000

40000

60000

80000

1E5

1.2E5

1.4E5

1.6E5

1.8E5

2E5

2.2E5

2.4E5

 

Figure 1: Number of abortions during 2004, 2005 and 2007 versus different states of US 
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Figure 2: Production of corn during 2007, 2008 and 2009 versus different states of US
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The graphs in Figure1 and Figure 2 show that the number of abortions and the production 

of corn in different states are skewed towards right. One reason of skewness for the 

population-I may be the distribution of population in different states, that is the states 

having larger population are expected to have larger number of abortion cases. Similarly 

for population-II, the states having larger area for farming are expected to have larger 

production of corn.  Thus skewness of data indicates that the use of median may be a good 

measure of central location than mean in these situations. 

For performing the Monte Carlo Simulation in the considered population-I, 5000 samples 

of n=20 states were selected using simple random sampling without replacement in the 

year 2005. The sample medians 
 x n k

M̂ and
 z n k

M̂ , k =1, 2, - - -,5000 were computed and 

the parameters  x xf M ,  z zf M and 
xzP  were estimated by the method given in Remark 

5.1.1. From each one of the selected samples, m=17 states were retained and new u=3 

states were selected out of N – n =51 – 20 = 31 states using simple random sampling 

without replacement in the year 2007. From the m units retained in the sample at the 

current occasion, the sample medians 
 x m k

M̂  , 
 y m k

M̂
 
and 

 z m k
M̂ , k  = 1, 2,- - -,5000  

were computed and the parameters  y yf M , yzP  and 
xzP were estimated. From the new 

unmatched units selected on the current occasion the sample medians
 y u k

M̂
 
and  

 z u k
M̂

, k  = 1, 2,- - -,5000 were computed. The parameters 
1 2ψ  and ψ are selected between 0.1 

and 0.9 with a step of 0.1. 

 The percent relative efficiencies of the proposed estimator *T  with respect to 

 y n
M̂  and * are respectively given by: 

 

5000 50002 2
*

y k yy n k
k=1 k=1

1sim 2sim5000 5000
2 2

* *

k y k y

k=1 k=1

M̂ - M Δ - M

E = ×100   and   E = ×100

T - M T - M

     

      

 

   

For better analysis, this simulation experiments were repeated for different choices of μ.  
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Similar steps are also followed for Population-II. The simulation results in Table 3, Table 

4 and Table 5 show the comparison of the proposed estimator *T with respect to the 

estimators 
 y n

M̂  and Δ respectively. For convenience the different choices of μ are 

considered as different sets for the considered Population-I and Population-II, which are 

shown below: 

 

Sets Population-I Population-II 

I n =20; μ = 0.15 (m =17, u =3) n=15; μ = 0.13 (m =13, u =2) 

II n =20; μ = 0.25 (m = 15, u =5) n=15; μ = 0.20  (m =12, u =3) 

III n =20; μ = 0.35 (m = 13, u =7) n=15; μ = 0.30 (m = 10, u =5) 

IV n =20; μ = 0.50 (m = 10, u =10) n=15; μ = 0.40 (m = 9, u =6) 

 

 

 

Table 1: Descriptive statistics for Population-I and Population-II 

 

 Population-I Population-II 

 

Abortions 

2004 

(z) 

Abortions 

2005 

(x) 

Abortions 

2007 

(y) 

Production of 

Corn in 2007 

(z) 

Production of 

Corn in 2008 

(x) 

Production  

of Corn in 

2009 

(y) 

Mean 

Median 

Standard 

Deviation 

Kurtosis 

Skewness 

Minimum 

Maximum 

Count 

23963.14 

11010.00 

38894.81 

12.02669 

3.275197 

80 

208180 

51 

23651.76 

10410.00 

38487.71 

12.39229 

3.310767 

70 

208430 

51 

23697.65 

9600.00 

39354.65 

14.42803 

3.527683 

90 

223180 

51 

317997 

83740 

565641.6 

6.838888 

2.638611 

2997 

2376900 

41 

294918.2 

66650 

530483.7 

6.492807 

2.595704 

2475 

2188800 

41 

319313.7 

79730 

563103.3 

6.036604 

2.499771 

2635 

2420600 

41 
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Table 2: Comparison of the proposed estimator T (at optimal conditions) with respect to      

               the estimators 
 y n

M̂ and Δ (at optimal conditions) 

 

 Population - I Population-II 

0μ  0.5411 0.6669 

*μ  0.6800 0.7642 

1E  1407.5 1401.3 

2E  1034.9 916.80 

 

 

Table 3: Monte Carlo Simulation results when the proposed estimator *T is compared to     

              
 y n

M̂  for population-I and population-II  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Population-I Population-II 

Set I II III IV I II III IV 

1ψ   1simE  1simE  1simE  1simE  1simE  1simE  1simE  1simE  

0.1 338.42 285.75 294.74 191.46 762.21 747.03 127.19 321.48 

0.2 330.71 291.82 320.22 238.4 860.29 644.25 140.93 364.51 

0.3 315.85 288.81 333.44 254.30 971.34 536.15 154.84 397.27 

0.4 282.71 288.70 326.08 276.75 1097.6 427.33 166.51 420.99 

0.5 248.64 268.90 322.70 295.47 1219.7 340.46 172.53 413.40 

0.6 210.41 249.90 299.55 301.46 1377.0 262.76 175.98 413.49 

0.7 178.81 220.94 269.87 304.12 1529.3 206.40 172.93 398.24 

0.8 152.05 194.11 245.61 297.46 1707.7 166.72 166.51 369.96 

0.9 127.19 168.82 216.58 289.94 1855.9 136.86 161.50 336.32 
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Table 4: Monte Carlo Simulation results for Population-I when the proposed estimator  

               *T  is compared to *Δ  

1ψ   2ψ   0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 2simE  

I 

II 

III 

IV 

329.1 

269.4 

285.6 

205.2 

470.4 

272.6 

233.2 

188.5 

707.2 

291.4 

273.0 

168.7 

1017.2 

424.8 

320.1 

168.4 

1590.3 

681.0 

430.9 

198.1 

2211.0 

752.7 

624.4 

230.3 

2869.2 

1023.3 

770.1 

318.0 

4255.0 

1511.8 

1126.7 

419.5 

5490.3 

1790.9 

1353.6 

559.2 

0.2 2simE  

I 

II 

III 

IV 

340.3 

285.8 

295.9 

242.3 

456.3 

282.7 

251.1 

199.2 

714.2 

312.6 

279.7 

177.2 

1078.2 

461.3 

344.3 

182.9 

1685.3 

678.1 

457.5 

222.9 

2268.1 

824.9 

636.8 

269.7 

3064.6 

1150.8 

831.4 

351.5 

4227.3 

1600.8 

1126.8 

483.4 

5437.1 

2034.9 

1428.8 

631.6 

0.3 2simE  

I 

II 

III 

IV 

325.9 

288.6 

298.7 

261.4 

440.9 

285.4 

264.8 

216.4 

688.6 

336.3 

287.5 

192.2 

1071.6 

475.3 

358.9 

198.1 

1547.1 

677.2 

456.2 

247.3 

2158.4 

839.5 

642.1 

294.9 

2979.3 

1187.6 

852.9 

391.5 

4060.1 

1643.4 

1159.3 

529.6 

5145.1 

1983.4 

1466.2 

681.6 

0.4 2simE  

I 

II 

III 

IV 

298.2 

284.9 

289.6 

279.6 

411.3 

282.3 

265.6 

231.6 

624.7 

329.8 

284.4 

204.9 

967.3 

454.1 

341.2 

212.9 

1430.2 

659.4 

460.3 

263.5 

1975.9 

842.4 

635.6 

314.2 

2648.7 

1152.1 

857.8 

419.5 

3594.8 

1600.3 

1142.6 

559.7 

4721.6 

1946.5 

1440.9 

739.3 

0.5 2simE  

I 

II 

III 

IV 

262.6 

266.7 

274.8 

296.9 

358.2 

263.7 

251.4 

246.8 

548.2 

312.7 

270.1 

219.2 

883.8 

430.3 

327.9 

222.8 

1247.1 

620.7 

442.0 

273.9 

1709.9 

789.8 

616.1 

331.8 

2238.4 

1072.8 

820.8 

440.8 

3128.2 

1468.6 

1111.1 

586.7 

4213.1 

1775.0 

1404.6 

765.7 

0.6 2simE  

I 

II 

III 

IV 

230.1 

248.8 

249.3 

303.9 

310.8 

244.8 

238.5 

256.0 

463.6 

283.3 

253.4 

226.1 

754.2 

403.9 

314.6 

231.7 

1078.0 

565.8 

412.2 

283.7 

1509.3 

730.9 

574.3 

343.1 

2016.2 

1004.8 

775.3 

456.8 

2669.3 

1336.5 

1016.9 

600.3 

3583.8 

1673.8 

1336.2 

783.1 

0.7 2simE  

I 

II 

III 

IV 

194.5 

226.0 

226.1 

305.8 

257.1 

216.7 

214.6 

258.3 

396.7 

252.9 

226.1 

227.1 

625.2 

352.7 

285.9 

235.5 

920.4 

512.4 

382.3 

284.2 

1275.6 

656.3 

532.1 

346.9 

1753.0 

907.6 

706.8 

459.8 

2249.7 

1182.0 

898.9 

599.8 

2955.3 

1473.9 

1208.2 

788.4 

0.8 2simE  

I 

II 

III 

IV 

159.8 

193.4 

201.6 

299.9 

221.7 

190.9 

194.7 

256.9 

341.1 

228.7 

205.2 

223.5 

523.4 

320.2 

265.1 

233.7 

757.4 

438.1 

347.7 

283.7 

1095.9 

580.6 

481.8 

341.6 

1515.0 

825.6 

628.9 

453.7 

1960.0 

1037.5 

800.2 

589.5 

2478.9 

1328.2 

1082.0 

772.5 

0.9 2simE  

I 

II 

III 

IV 

136.5 

172.9 

182.2 

293.8 

186.4 

165.9 

167.1 

245.8 

289.7 

202.6 

185.0 

216.8 

440.6 

288.7 

234.8 

225.3 

635.9 

373.1 

309.8 

272.8 

939.3 

514.3 

418.6 

329.7 

1269.8 

709.8 

552.9 

438.3 

1663.2 

894.3 

722.3 

574.2 

2125.0 

1160.4 

930.8 

742.7 
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Table 5: Monte Carlo Simulation results for population-II when the proposed estimator   

              *T  is compared to *Δ  

 

1ψ   2ψ   0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 2simE

 

I 

II 

III 

IV 

1126.40 

961.19 

274.83 

448.87 

2860.5 

1757.9 

264.72 

445.82 

5849.0 

3077.6 

298.76 

537.81 

9978.9 

5323.8 

362.76 

641.19 

14402.0 

7930.8 

515.77 

1000.5 

22607.0 

11637.0 

742.68 

1320.8 

30230.0 

14805.0 

1006.7 

1757.2 

40853.0 

20847.0 

1174.6 

2256.2 

46469.0 

26905.0 

1320.8 

3038.8 

0.2 2simE

 

I 

II 

III 

IV 

873.59 

831.99 

302.79 

495.59 

2198.3 

1472.2 

284.98 

481.24 

4489.6 

2545.2 

314.11 

567.79 

7729.9 

4305.6 

406.01 

708.65 

11800.0 

6678.7 

562.11 

1010.5 

17466.0 

9960.1 

821.52 

1426.0 

22954.0 

13156.0 

995.42 

1852.1 

31590.0 

17250.0 

1259.0 

2354.0 

3644.3 

23024.0 

1522.1 

3098.0 

0.3 2simE

 

I 

II 

III 

IV 

621.89 

682.77 

328.74 

528.81 

1594.20 

1169.0 

312.90 

521.64 

3184.1 

2044.1 

338.97 

667.01 

5627.4 

3405.3 

448.28 

761.28 

8573.0 

5386.4 

617.43 

1069.9 

12582.0 

7770.3 

89.51 

1502.1 

16513.0 

10373.0 

1079.6 

1953.7 

22385.0 

13378.0 

1333.3 

2645.4 

27277.0 

17978.0 

1719.8 

3251.4 

0.4 2simE

 

I 

II 

III 

IV 

441.33 

540.36 

349.27 

557.80 

1136.90 

905.32 

334.32 

535.90 

2342.9 

1585.1 

366.96 

625.09 

4039.8 

2637.0 

469.80 

792.63 

6230.6 

4066.8 

658.16 

1111.7 

8970.8 

5938.0 

909.27 

1534.2 

11971.0 

8098.8 

1131.5 

2022.3 

16010.0 

10354.0 

1455.1 

2703.7 

20221.0 

13708.0 

1817.1 

3360.2 

0.5 2simE

 

I 

II 

III 

IV 

325.32 

423.09 

358.42 

552.30 

829.35 

685.55 

347.77 

537.56 

1693.8 

1205.1 

382.11 

627.89 

2954.8 

2062.0 

498.04 

796.60 

4550.0 

3128.3 

683.40 

1104.7 

6503.2 

4491.7 

938.99 

1536.0 

8647.7 

6008.1 

1172.6 

2036.20 

11725.0 

7843.8 

1524.7 

2690.1 

14875.0 

10477.0 

1908.0 

3371.6 

0.6 2simE

 

I 

II 

III 

IV 

247.94 

326.45 

369.80 

545.08 

628.85 

531.46 

356.29 
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1282.4 

954.37 

390.36 

607.57 
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368.09 
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481.70 

421.16 

357.34 

448.94 
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391.04 

569.41 

1738.2 
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507.07 
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2659.8 
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692.18 

1020.9 

3832.4 
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943.99 
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0.8 2simE
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IV 

154.29 

206.36 

361.45 

488.89 

383.89 

335.56 

347.49 

463.14 

790.48 

604.62 

391.04 

526.20 

1385.5 

1004.1 

490.64 

689.27 

2112.4 

1507.5 

667.61 

941.81 

3041.20 

2283.7 

915.93 

1304.0 

4114.9 

3062.3 

1161.0 

1735.1 

5376.9 

3868.2 

1510.2 

2254.4 

6949.5 

5119.9 

1915.8 

2837.2 

0.9 2simE
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IV 

124.89 

169.07 

346.69 

445.87 

310.43 

271.88 

330.68 

413.45 

635.21 

498.12 

379.63 

477.73 

1100.2 

826.69 

469.72 

615.16 

1714.1 

1245.4 

629.28 

848.82 

2458.4 

1855.6 

869.77 

1179.9 

3302.5 

2493.5 

1114.2 

1569.1 

4362.3 

3169.4 

1438.0 

2032.7 

5601.2 

4211.6 

1843.1 

2622.9 
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Figure 3: PRE of the estimator *T with respect to 
 y n

M̂
 
 for Population-I 

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

1000

2000

3000

4000

5000

6000

7000

 

                    Figure 4: PRE of estimator *T with respect to *Δ  for set-I  for Population-I 

 

 

2ψ  1ψ  

2simE  

 
1sim

E

 1
ψ

 



   24 

 

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

 

                         Figure 5: PRE of estimator *T with respect to *Δ  for set-II  for Population-

I 
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                   Figure 6: PRE of estimator *T with respect to *Δ  for set-III  for Population-I 
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                Figure 7: PRE of estimator *T with respect to *Δ  for set-IV  for Population-I 

9. Analysis of Empirical and Simulation Results  

1. From table 2, it is visible that the optimum values of μ (fraction of fresh sample to be 

drawn at current occasion) exist and this value for the estimator T is less than that of the 

estimator Δ for both the considered populations. This indicates that the use of additional 

auxiliary information at both the occasion reduces the cost of the survey. 

2. Appreciable gain is observed in terms of precision indicating the proposed estimator T 

(at optimal condition) is preferable over the estimators 
 y n

M̂ and Δ (at optimal condition). 

This result justifies the use of additional auxiliary information at both the occasions in 

two-occasion successive sampling. 

3. The following conclusion may be observed from Table 3 and Figure 3: 

(i) For Set-I of Population-I, the value of 1simE decreases as the value of 1ψ  increases. This 

result is expected as for Set-I, the value of μ is very less, however for Set-I of Population-

II, 1simE  increases with the increasing value of 1ψ . 

(ii) For Set-II, III and IV, of the Population-I, the value of 1simE first increases and then 

start decreasing with the increasing value of 1ψ , however no specific pattern is observed 

for set II, III and IV of Population-II.  

2ψ  1ψ  

2simE

2simE  
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(iii) For all the considered combinations appreciable gain in precision is observed when 

the proposed estimator is compared with sample median estimator. Hence, the use of 

additional auxiliary information at both the occasions is highly justified. 

4. The following points may be noted from Table 4, Table 5 and Figures 4, 5, 6 and 7: 

(i) For fixed value of 1 2ψ  and ψ , the value of 2simE decreases with the increasing value of 

μ, except for few combinations of 1 2ψ  and ψ  for Population-I, however, no specific 

pattern is observed for Population-II.    

(ii) For fixed value of 1ψ  and μ and increasing value of 2ψ , the value of 2simE  also 

increases, except for few combinations. 

(iii) For fixed value of 2ψ ,  and lower value of μ, the value of 2simE decreases with 

increasing value of 1ψ however for higher value of μ, the value of 2simE increases   with 

the increasing value of 1ψ except for few combinations. 

(iv) Tremendous gain  in precision is obtained for all the considered cases. 

10. Conclusion 

From the analysis of empirical and simulation results it can be concluded that the 

proposed estimator T is favourable in terms of efficiency with  respect to the standard 

sample median estimator, where there is no matching from previous occasion. The 

estimator T also proves to be much better than the estimator Δ, when no additional 

auxiliary information is used at any occasion. Therefore, the use of additional auxiliary 

information at both the occasions in two occasion successive sampling for estimating 

population median at current occasion is highly rewarding in terms of precision and 

reducing the total cost of survey. Hence, the proposed estimators may be recommended 

for further use by survey practitioners. 
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A Class of Estimators for Population Median 

in Two Occasion Rotation Sampling 

 

1. Introduction 

When both, the characteristic and the composition of the population change over 

time, then the cross-sectional surveys at a particular point of time become important. The 

survey estimates are therefore time specific, a feature that is particularly important in some 

context. For example, the unemployment rate is a key economic indicator that varies over 

time, the rate may change from one month to the next because of a change in the economy 

(with business laying off or recruiting new employees). To deal with such kind of 

circumstances, sampling is done on successive occasions with partial replacement of the 

units. 

The problem of sampling on two successive occasions was first considered by 

Jessen (1942), and latter this idea was extended by Patterson (1950), Narain (1953), Eckler 

(1955), Gordon (1983), Arnab and Okafor (1992), Feng and Zou (1977), Singh and Singh 

(2001), Singh and Priyanka (2008a), Singh et al. (2012) and many others. All the above 

efforts were devoted to the estimation of population mean or variance on two or more 

occasion successive sampling. 

Often, there are many practical situations where variables involved, consists of 

extreme values and resulting strong influence on the value of mean. In such cases the 

study variable is having a highly skewed distribution. For example, the study of 

environmental issues, the study of income as well as expenditure, the study of social evils 

such as abortions etc…In these situations, the mean as a measure of central tendency may 

not be representative of the population because it moves with the direction of asymmetry 

leaving the median as a better measure since it is not affected by extreme values. 
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Most of the studies related to median have been developed by assuming simple 

random sampling or its ramification in stratified random sampling (Gross (1980), 

Sedransk and Meyer (1978), Smith and Sedransk (1983)). 

As noted earlier, a large number of estimators for estimating the population mean 

at current occasion have been proposed by various authors, but only a few efforts (namely 

Martinez-Miranda et al. (2005), Singh et al. (2007) and Rueda and Munoz (2008)) have 

been made to estimate the population median on current occasion in two occasion 

successive sampling. 

The present work develops a one-parameter class of estimators that estimate the 

population median on the current occasion in two-occasion successive sampling. The 

proposed class of estimators includes some of the estimators proposed by Singh et al. 

(2007) for second quantile as particular cases. 

 

Asymptotic expressions for bias and mean square error including the asymptotic 

convergence of the proposed class of estimators are derived. The optimum replacement 

strategies are discussed. The proposed class of estimators at optimum conditions is 

compared with sample median estimator when there is no matching from the previous 

occasion as well as with some of the estimators due to Singh et al. (2007) and few other 

members of its class. Theoretical results are justified by empirical interpretation with the 

help of some natural populations. 

2. Sample Structure and Notations 

Let  1 2 NU = U ,U , ... , U  be the finite population of N units, which has been sampled 

over two occasions. It is assumed that size of the population remains unchanged but values 

of units change over two occasions. The character under study be denoted by x (y) on the 

first (second) occasions respectively. Simple random sample (without replacement) of n 

units is taken on the first occasion. A random subsample of m = nλ units is retained for 

use on the second occasion. Now at the current occasion a simple random sample (without 

replacement) of u= (n-m) = nµ units is drawn afresh from the remaining (N-n) units of the 
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population so that the sample size on the second occasion is also n. μ and  λ, μ + λ=1  are 

the fractions of fresh and matched samples respectively at the second (current) occasion. 

The following notations are considered for the further use: 

x yM , M  : Population median of the variables x and y respectively. 

x x y y
ˆ ˆ ˆ ˆM (n),M (m), M (m), M (u) : Sample medians of the respective variables shown in  

                                                   suffices and  based on the sample sizes given in braces. 

   x x y yf M , f M  :  The marginal densities of variables x and y respectively. 

3. Proposed Class of Estimators 

To estimate the population median yM  on the current (second) occasion, two independent 

estimators are suggested. One is based on sample of the size u= nµ drawn afresh on the 

current (second) occasion and which is given by 

u y
ˆT = M (u)                         (1) 

Second estimator is a one-parameter class of estimators based on the sample of size 

m = nλ  common to the both occasions and is defined as  

   
     

     
x x

m y

x x

ˆ ˆA + C M n  + f B M mˆT d  = M m
ˆ ˆA + f B M n  + C M m

 
 
  

                    (2) 

         
n

A = d-1 d-2 ,  B = d-1 d-4 ,  C = d-2 d-3 d-4   and   f =
N

 

where d is a non-negative constant, identified to minimize the mean square error of the 

estimator  mT d . 

Now considering the convex linear combination of the estimators uT  and  mT d , a class 

of estimators for  yM  is proposed as 

   d u mT̂  = φ T  + 1- φ  T d                                   (3)                                                                    

where φ  is an unknown constant to be determined so as to minimise the mean squared 

error of the class of the estimators dT̂ . 
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Remark 3.1: For estimating the median on each occasion, the estimator uT  is suitable, 

which implies that more belief on uT could be shown by choosing φ as 1 (or close to 1), 

while for estimating the change from occasion to occasion, the estimator  mT d  could be 

more useful so φ  might be chosen 0 (or close to 0). For asserting both problems 

simultaneously, the suitable (optimum) choice of φ is desired. 

Remark 3.2: The following estimators can be identified as a particular case of the 

suggested class of estimators dT̂  to estimate population median on the current occasion in 

two occasion successive (rotation) sampling for different values of the unknown 

parameter ‘ d ’: 

       1 1 u 1 m
ˆi   T  = φ  T  + 1 - φ  T 1 ; Ratio type estimator  

       2 2 u 2 m
ˆii  T  = φ  T  + 1 - φ  T 2 ; Product type estimator

 

       3 3 u 3 m
ˆii   T  = φ  T  + 1 - φ  T 3 ; Dual to Ratio type estimator

 

where    
 

 
x

m y

x

M̂ nˆT 1  = M m ,
M̂ m

 
 
  

 

   
 

 
x

m y

x

M̂ mˆT 2  = M m   ,
M̂ n

 
 
  

  

   
   

   
x x

m y

x

ˆ ˆn M n  - m M mˆT 3  = M m
ˆn - m M n

 
 
    

and iφ  (i=1, 2, 3) are unknown constants to be determined so as to minimize the mean 

squared errors of the estimators iT̂ (i=1, 2, 3).   

Remark 3.3: The Ratio and Product type estimators, proposed by Singh et al. (2007) for 

second quantile become particular cases of the proposed family of the estimators dT̂  for 

d = 1 and 2  respectively. 
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 4. Properties of the Proposed Class of Estimators 

The properties of the proposed class of estimators dT̂  are derived under the following 

assumptions: 

(i) Population size is sufficiently large (i.e. N    ), therefore finite population     

corrections are ignored. 

(ii) As N    , the distribution of the bivariate variable (x, y) approaches a continuous      

distribution, which depend on population under consideration with marginal densities 

 xf .  and  yf .  respectively, (see Kuk and Mak(1989)). 

(iii) The marginal densities    x yf .  and f .  are positive. 

(iv)The sample medians        y y x x
ˆ ˆ ˆ ˆM u , M m , M m and M n  are consistent and 

asymptotically normal (see Gross (1980)). 

(v) Following Kuk and Mak (1989), yxP is assumed to be the proportion of elements in the 

population such that
x

ˆx M and y
ˆy M . 

(vi)The following large sample approximations are assumed: 

               y y 0 y y 1 x x 2 x x 3

i

ˆ ˆ ˆ ˆM u   =  M 1 + e ,  M m  =  M 1 + e ,  M m  =  M 1 + e , M n  =  M 1 + e  

such that |e | < 1  i = 0, 1, 2, and 3.

 

The values of various related expectations can be seen in Allen et al. (2002) and Singh 

(2003). Under the above transformations, the estimators uT  and  mT d  takes the 

following forms: 

  u y 0T  = M 1 + e                         (4)                                                      

 
 

   

2

m y 1 1 3 2 2 3 3 4 2 1 3 3 1 4 2 3 2 3 2 3

2 2 2 2 2

2 4 2 3 3 4 2 3 4 2 3 1 3 1 3 2 4 1 2

T d  = M [1 + e  + d e  + d e  - d e  - d e  - d d e  - d d e e  - d d e e

              - d d e  + d e  + d e  + 2d d e e  + d - d e e  + d - d e e ] 
     (5) 

1 2 3 4

A + C f B A + f B C
where   d  = , d  = , d  =  and d  =

A + f B + C A + f B + C A + f B + C A + f B + C
. 
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Thus we have the following theorems: 

Theorem 4.1: The bias of the estimator dT̂  to the first order of approximation is obtained 

as 

      d m
ˆB T  = 1 - φ  B T d                                   (6) 

 where     m 1 2

1 1
B T d  =  Q  +  Q

n m
                                 (7) 

 
  

  
     

-2

x x2

1 1 3 1 4 2 3 3 3 4 2

x

-1 -1

y y x x

1 3 yx

y x

f M
Q  = - d d  - d d  - d d  + d  + 2d d

4 M

f M f M
          +  d  - d P  - 0.25

M  M

 
  

  
     

-2

x x2

2 2 4 4 2

x

-1 -1

y y x x

2 4 yx

y x

f M
and       Q = - d d  + d  

4 M

f M f M
                    + d  - d P  - 0.25  .

M  M

 

Proof: The bias of the estimator dT̂ is given by 

   d d y
ˆ ˆB T  = E T  - M  

       u m= φ B T  + 1 - φ B T d                                                        (8) 

Since, the estimator uT  is unbiased for yM  and   mT d  is biased for yM , so the 

bias of the estimator  mT d is given by 

     m m yB T d  = E T d  - M   

Now, substituting the value of  mT d  from equation (5) in the above equation we get the 

expression for bias of  mT d  as in equation (7). 

Finally substituting the value of   mB T d  in equation (8), we get the expression for the 

 d
ˆB T as in equation (6). 
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Theorem 4.2: The mean square error of the estimator dT̂  is given by 

        
 22

d u m opt.

ˆM T  = φ  V T  + 1 - φ  M T d                                           (9) 

where  
  

-2

y y

u

f M1
V T  = 

u 4 
                                           (10)                

and          * 2 *

m 1 2 3opt.

1 1 1
M T d   =  A  +  - α A  + 2α A

m m n

 
 
 

                 (11) 

where 
     

- 2 - 2
2

y y x x y

1 2 2

x

f M f M M
A  = ,  A  =  

4 4 M

 
 
  

,  

       
- 1 - 1 y

3 yx y y x x

x

M
A  = P - 0.25 f M f M

M

 
 
 

  ,     

     
0

*

2 4 3 1 d = d

f B - C
α  = α ,   α = d  - d  = d  - d =

A + f B + C
and 0d  is the optimum 

value of d. 

Proof: The mean square error of the estimator dT̂  is given by  

 
 2

d d y
ˆ ˆM T  = E T - M 

        
 2

u y m y= E φ T  - M  + 1 - φ T d  - M 
   

          
22

u m u m= φ  V T  + 1 - φ M T d  + 2 φ 1 - φ  Cov T , T d                   (12) 

where  
 2

u u y V T   =  E T  - M                                                                               (13) 

and    
 2

m m yM T d  = E T d  - M                          (14) 

As uT  and  mT d  are based on two independent samples of sizes u and m respectively, 

hence   u mCov T , T d = 0 . Now, substituting the values of uT  and  mT d  from equations 

(4) and (5) in equation (13) and (14) respectively, taking expectations and ignoring finite 

population corrections we get the expression for  uV T as in equation (10) and mean 

square error of  mT d is obtained as  

   2

m 1 2 3

1 1 1
M T d  =  A  +  - α A  + 2 α A

m m n
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where
     

- 2 - 2
2

y y x x y

1 2 2

x

f M f M M
A  = ,    A  =  

4 4 M

 
 
  

 

       
- 1 - 1 y

3 yx y y x x

x

M
A  = P - 0.25 f M f M

M

 
 
 

 

and    2 4 3 1

f B - C
α = d  - d  = d  - d =

A + f B + C
 

The mean square error of the  mT d is a function of α , which in turns is a function of d, 

hence it can be minimized for d, and therefore we have 

  mM T d
 = 0

 d

   


 

This gives  3

2

- A
α = 

A
 ,   assuming 

α
0

d





which in turns yields a cubic equation in ‘d’ 

given by 

3 2

1 2 3 4z  d  + z  d  + z  d + z  = 0                                                                                               (15) 

where        3 3 3
1 2 3

2 2 2

A  A  A
z  =  - 1 , z  = f + 9  + f - 8 , z  = - 5 f - 26  + 23 - 5 f  

A A A

 
 
 

 

   3
4

2

 A
and z  = 4 f + 24  + 4 f - 22

A
. 

Now for given values of     x y x x y yM , M , f M  and f M  one will get the three optimum 

values of d for which  mM T d    attains the minimum value. The possibility of getting 

negative or imaginary roots cannot be ruled out. However, Singh and Shukla (1987) has 

pointed out that for any choice of    x y x x y yf, M , M , f M  and f M , there exists at least 

one positive real root of the equation (15) ensuring that  mM T d    attaints its minimum 

within the parameter space  0,  . Since, there may exist at most three optimum values 

of d, a criterion for suitable value of optimum d may be set as follows: “Out of all possible 

values of optimum d, choose 0d = d as an adequate choice, which makes  mB T d    

smallest”. 
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Hence, the minimum mean square error of  mT d  is given by 

  m 1 4opt.

1 1 1
M T d  =  A  +  -  A

m m n

 
    

 
                              (16) 

where 
  

 
0

 -2

y y 2* * *

1 4 2 3  d = d

f M
A  = ,         A  = α A  + 2α A ,    and       α  = α

4
 .       

Further, substituting the expression for   uV T  and  m opt.
M T d   in equation (12) we get 

the expression for  d
ˆM T  as in equation (9). 

Remark 4.1: The cubic equation (15) depends on the population parameters

   y x y y x xP , f M  and f M . If these parameters are known, the proposed estimator can be 

easily applied. Otherwise, which is the most often situation in practice, the unknown 

population parameters are replaced by their sample estimates. The population proportion 

y xP  can be replaced by the sample estimate y xP  and the marginal densities 

   y y x xf M  and f M  can be substituted by their kernel estimator or nearest neighbour 

density estimator or generalized nearest neighbour density estimator related to the kernel 

estimator (Silverman (1986)). Here, the marginal densities    y y x xf M  and f M are 

replaced by      y xy x
ˆ ˆf M m  and f M n  respectively, which are obtained by method of 

generalized nearest neighbour density estimation related to kernel estimator. 

To estimate    y y x xf M  and  f M , by generalized nearest neighbour density estimator 

related to the kernel estimator, following procedure has been adopted: 

Choose an integer 
1

2h n  and define the distance  1 2δ x , x  between two points on the 

line to be 1 2x  - x . 

  For   xM̂ n  , define         1 x 2 x n x
ˆ ˆ ˆδ M n δ M n - - - δ M n    to be the distances, 

arranged in ascending order, from  
xM̂ n  to the points of the sample. 

The generalized nearest neighbour density estimate is defined by  
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n
x i

x

i=1h x h x

M̂ n  - x1ˆf M n  =  K 
ˆ ˆn δ M n δ M n

 
 
 
 

  

where the kernel function K, satisfies the condition  K x  dx = 1





 . 

Here, the kernel function is chosen as Gaussian Kernel given by  
21

 -  x
21

K x  =  e
2π

 
 
  . 

The estimate of   y yf M  can be obtained by the above explained procedure in similar 

manner. 

Theorem 4.3:  The estimator dT̂ , its bias and mean square error are asymptotically 

convergent to the estimator
1T̂ , its bias and mean square error respectively for large d. 

Proof: Taking limit as d   in equation (3) we get 

    d u m
d d

ˆlimT  = φ T  + 1 - φ limT d
 

 

Since, d 0 , dividing numerator and denominator of the second term in R.H.S. of above 

equation by 3d and taking limit as d  , we have 

    d u m 1
d

ˆ ˆlimT  = φ T  + 1 - φ T 1  = T


 

This is the ratio type estimator to estimate population median in two occasion rotation 

sampling as given in Remark 3.2. Similarly, using the expressions of bias and mean square 

error of the estimator dT̂  , it is easy to see that 

   d 1
d

ˆ ˆlim B T  = B T
  

and 

   d 1
d

ˆ ˆlim M T  = M T


. 

Thus the proposed class of estimators converges to a well-defined estimator even if one 

chooses arbitrary, a larger value of the unknown parameter d. The bias and mean squared 

error also tends asymptotically to that of ratio type estimator to estimate finite population 

median. There is no need to bother about the existence of the estimator while choosing a 

larger value of d. 
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5. Minimum Mean Squared Error of the Proposed Class of Estimators �̂�𝐝 

Since, mean squared error of  dT̂  in equation (9) is function of unknown constant φ , 

therefore, it is minimized with respect to φ and subsequently the optimum value of φ  is 

obtained as 

  

    
m opt.

opt.

u m opt.

M T d
φ  = 

V T  + M T d
                               (17) 

and substituting the value of opt.φ from equation (17) in equation (9), we get the optimum 

mean square error of the estimator dT̂  as 

 
    

    
u m opt.

d
opt.

u m opt.

V T . M T d
ˆM T  = 

V T  + M T d
                                          (18)  

Further, by substituting the values from equation (10) and equation (11) in equation (18), 

we get the simplified value of  d
opt.

ˆM T  as 

 
 1 1 4

d 2opt.
1 4

A A  + μA
ˆM T  = 

n A  + μ A  

                     (19) 

where  μ = u/n  is the fraction of fresh sample drawn on the current (second) occasion. 

Again  d
opt.

ˆM T  derived in equation (19) is the function of μ . To estimate the population 

median on each occasion the better choice of  μ  is 1(case of no matching); however, to 

estimate the change in median from one occasion to the other, μ should be 0(case of 

complete matching). But intuition suggests that an optimum choice of μ  is desired to 

devise the amicable strategy for both the problems simultaneously.  

6. Optimum Replacement Policy 

The key design parameter affecting the estimates of change is the overlap between 

successive samples. Maintaining high overlap between repeats of a survey is operationally 

convenient, since many sampled units have been located and have some experience in the 
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survey. Hence to decide about the optimum value of μ  (fraction of sample to be drawn 

afresh on current occasion) so that yM  may be estimated with maximum precision, we 

minimize  d
opt.

ˆM T  in equation (19) with respect to μ  . 

The optimum value of μ  so obtained is one of the two roots given by 

 1 1 1 4

4

- A  ± A A +A
μ = 

A
                     (20) 

The real value of μ  exists, iff  1 1 4A A +A 0 . For any situation, which satisfies this 

condition, two  real values of  μ  may be possible , hence in choosing a value of μ , care 

should be taken to ensure that ˆ0 μ 1   , all other values of μ  are inadmissible. If both 

the real values of μ  are admissible, the lowest one will be the best choice as it reduces the 

total cost of the survey. Substituting the admissible value of μ  say 0μ  from equation (20) 

in equation (19), we get the optimum value of the mean square error of the estimator dT̂

with respect to φ and μ  both as 

 
 

*

1 1 0 4

d 2opt.
1 0 4

A A  + μ  A
ˆM T  = 

n A  + μ  A    

 

7. Efficiency Comparison 

To evaluate the performance of the estimator dT̂ , the estimator dT̂ at optimum conditions 

is compared with respect to the estimator  yM̂ n (the sample median), when there is no 

matching from previous occasion. Since,  yM̂ n  is unbiased for population median, its 

variance for large N is given by 

 
  

 - 2

y y

y

f M1ˆV M n  = 
n 4 

 
 

                               (21) 
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The percent relative efficiency of the estimator dT̂  (under optimal condition) with respect 

to   yM̂ n  is given by  

  
 

  *

y

d y

d
opt.

ˆV M n
ˆ ˆP.R.E. T , M n  =  × 100

ˆM T

 
                                (22) 

The estimator dT̂ (at optimal conditions) is also compared with respect to the estimators

1 2 3
ˆ ˆ ˆT , T  and T respectively. Hence for large N, the expressions for optimum mean squared 

errors of 1 2 3
ˆ ˆ ˆT , T  and T are given by 

 

 
 

 
 

* *

1 1 1 5 1 1 2 6

1 22 2opt. opt.
1 1 5 1 2 6

A A  + μ  A A A  + μ  A
ˆ ˆM T  = ,       M T  = 

n A  + μ A n A  + μ A   
   

 

and  
 

*

1 1 3 7

3 2opt.
1 3 7

A A  + μ  A
ˆM T  =        

n A  + μ A 
 

 

where

2 2

1 1 1 5 1 1 1 6

1 2

5 6

- A  ± A  + A  A - A  ± A  + A  A
μ  = ,         μ  =  

A A
  

 
  

 - 2
2

y y1 1 1 7

3 1

7

f M- A  ± A  + A  A
μ = ,           A = ,   

A 4 
 

2

5 2 3 6 2 3 7 2 3

f f
A = A  - 2 A ,    A = A + 2 A     and   A = A  + 2 A

1+ f 1 + f

   
   
   

. 

where
  

       
- 2

2
- 1 - 1x x y y

2 3 yx y y x x2

x x

f M M M
A  =  and A  = P - 0.25 f M f M .

4 M M

   
   
    

 

The percent relative efficiencies of dT̂  at optimum conditions with respect to the 

estimators iT̂  for i=1, 2 and 3 at optimum conditions are given by 

 
*

*

i
opt.

d i

d
opt.

ˆM T
ˆ ˆP.R.E. (T , T ) =  × 100

ˆM T

 
 

for i=1,2 and 3 
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8. Numerical Illustrations 

The various results obtained in previous sections are now illustrated using two natural 

populations. 

Population Source: [Free access to the data by Statistical Abstracts of the United States] 

In the first case, a real life situation consisting N=51 states of United States has been 

considered. Let iy represent the number of abortions during 2007 in the thi  state of U.S. 

and ix be the number of abortions during 2005 in the thi  state of U.S. The data are 

presented pictorially in Figure 8.1 as under: 
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Figure 8.1 Number of Abortions during 2005 and 2007 versus different states of U.S. 

 

Similarly in the second case, the study population consist of N=51 states of United States 

for year 2004. Let iy (study variable) be the percent of bachelor degree holders or more in 

the year 2004 in the thi  state of U.S. and ix be the percent of bachelor degree holders or 

more in the year 2000 in the thi state of U.S. The data are represented pictorially in Figure 

8.2 as under: 
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Figure 8.2 Percent of Bachelor Degree Holders or More during 2000 and 2004 versus Different 

States of U.S. 

 

 

The graph in Figure 8.1 shows that the distribution of number of abortions in different 

states is skewed towards right. Similar graph is obtained for population-II as indicated in 

Figure 8.2. One reason of skewness may be the distribution of population in different 

states, that is, the states having larger populations are expected to have larger number of 

abortion cases and the larger percent of bachelor degree holders or more for the second 

case as well. Thus skewness of the data indicates that the use of median may be a good 

measure of central location than mean in such a situation. 

Based on the above description, the descriptive statistics for both populations have been 

computed and are presented in Table 1. 
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Table 1 Descriptive Statistics for Population-I and Population-II 

 

 

For the two populations under consideration, the cubic equation (15) is solved for d for 

some choices of “f”. The optimum mean square errors of the proposed class of estimators 

are found to be same for all the three values of “d” obtained. So, using the criteria set in 

the proof of theorem 4.1, Table 2 shows the best choice of the optimum value of “d” for 

different choices of “f” for both, Population-I and Population-II. 

Table 2: Best choice of d for Population-I and Population-II, for different choices of f 

f 

Population-I Population-II 

d Bias  0d
 

d Bias  0d
 

0.9800 

10.0002 

2.4170 

1.4705 

3.6526 

0.3097 

4.1206 
2.4170 

22.8356 

2.3533 

1.2030 

0.1419 

0.1089 

0.1467 
2.3553 

0.1960 

10.7520 

2.6449 

1.3740 

1.8948 

1.2919 

2.1515 
2.6449 

2.5878 

25.5834 

1.1537 

1.3940 

0.0702 

0.0748 
25.5834 

0.2941 

11.5280 

2.8115 

1.3146 

1.3005 

1.5131 

1.4675 

11.5280 28.3715 

2.7621 

1.1244 

0.0486 

0.1526 

0.0504 

28.3715 

0.3922 

12.3230 

2.9414 

1.2729 

0.9984 

1.5271 

1.1168 

12.3230 31.1885 

2.8979 

1.1047 

0.0367 

0.1562 

0.0381 

31.1885 

0.4902 

13.1327 

3.0462 

1.2417 

0.8141 

1.4584 

0.9026 

13.1327 

 

34.0268 

3.0070 

1.0905 

0.0296 

0.1532 

0.0306 

34.0268 

 

 

 

Population-I Population-II 

Number of 

Abortions in 

2005 

Number of 

Abortions in 

2007 

% of Bachelor 

Degree Holders 

or more  in 2000 

% of Bachelor 

Degree Holder 

or more in 2004 

Mean 23651.76 23697.65 27.19 27.17 

Standard Error 5389.35 5510.75 0.65 0.75 

Median 10410.00 9600.00 24.60 25.50 

Standard 

Deviation 
38487.71 39354.65 4.66 5.40 

Kurtosis 12.39 14.42 0.29 1.67 

Skewness 3.31 3.52 0.40 0.89 

Minimum 70.00 90.00 15.30 15.30 

Maximum 208430.00 223180.00 30.30 45.70 
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Table 3: Optimum value of μ  and percent relative efficiencies of dT̂ at optimum conditions  

               With respect to  y i
ˆ ˆM n  and T  for i=1, 2 and 3 at optimum conditions 

 

 

 

 

9. Interpretation of Results and Conclusion 

(i) From Table 2, it can clearly be seen that the real optimum value of d always exists for 

both the considered populations. This justifies the feasibility of the proposed class of 

estimators dT̂ . 

 

(ii) From Table 3, it can be seen that the optimum value of μ  also exist for both the 

considered populations. Hence, it indicates that the proposed class of estimators dT̂ is quite 

feasible under optimal conditions. 

 

(iii) Table 3 indicates that the proposed class of estimators dT̂  at optimum conditions is 

highly preferable over sample median estimator  yM̂ n . It also performs better than the 

estimators 1 2
ˆ ˆT  and T  which are the estimators proposed by Singh et al. (2007) for second 

quantile. It also proves to be highly efficient than the estimator 3T̂  which is a Dual to Ratio 

type estimator, a member of its own class. 

 

 Population-I Population-II 

f 0.9800 0.9800 

0d
 

2.4170 2.3553 

0μ
 

0.6800 0.6271 

  d y
ˆ ˆP.R.E. T , M n  136.00 125.41 

d 1
ˆ ˆP.R.E. (T , T )  103.33 100.16 

d 2
ˆ ˆP.R.E. (T , T )  206.73 173.48 

d 3
ˆ ˆP.R.E. (T , T )  128.93 120.81 



   45 

 

Hence, it can be concluded that the estimation of median at current occasion is 

certainly feasible in two occasion successive sampling. The enchanting convergence 

property of proposed class of estimators dT̂ justifies the incorporation of unknown 

parameter in the structure of proposed class of estimators, since the optimum value of the 

parameter always exists. Hence the proposed class of estimators dT̂  can be recommended 

for its further use by survey practitioners. 
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Searching Effective Rotation Patterns for 

Population Median using Exponential Type 

Estimators in Two-Occasion Rotation 

Sampling 
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     1. Priyanka, K. and Mittal, R. (2016): Searching Effective Rotation Patterns for 

Population     

         Median using Exponential Type Estimators in Two-Occasion Rotation Sampling.     

         Communication in Statistics (Theory and Methods), DOI:  

         10.1080/03610926.2014.944661. 
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Searching Effective Rotation Patterns for 

Population Median using Exponential Type 

Estimators in Two-Occasion Rotation 

Sampling 

 

1. Introduction 

When both, the characteristic and the composition of the population change over time, 

then the cross-sectional surveys at a particular point of time become important. The survey 

estimates are therefore time specific, a feature that is particularly important in some 

context. For example, the unemployment rate is a key economic indicator that varies over 

time, the rate may change from one month to the next because of a change in the economy 

(with business laying off or recruiting new employees). To deal with such kind of 

circumstances, sampling is done on successive occasions with partial replacement of the 

units. 

 

The problem of sampling on two successive occasions was first considered by 

Jessen (1942), latter this idea was extended by Patterson (1950), Narain (1953), Singh 

and Priyanka (2008a), Singh et al. (2013a) and many others. 

 All the above efforts were devoted to the estimation of population mean or 

variance on two or more occasion successive sampling while there are many practical 

situations where variables involved, consists of extreme values and resulting strong 

influence on the value of mean. In such cases the study variable is having highly skewed 

distribution and mean may offer the result not enough to be representative because it 

moves with the direction of asymmetry. The median, on the other hand does not suffer 

from extreme values. 

Most of the studies related to median have been developed by assuming simple 

random sampling or its ramification in stratified random sampling (Gross (1980), 

Sedransk and Meyer (1978), Smith and Sedransk (1983)) considering only the variable of 
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interest without making explicit use of auxiliary variables. It is well known that the use of 

auxiliary information at the estimation stage can typically increase the precision of 

estimates of a parameter.   

Exponential type estimators also play a vital role in increasing the precision of the 

estimates. Bahl and Tuteja (1991) was the first to propose the exponential ratio and 

product type estimators for the estimation of finite population mean.  

Motivated with their work, the present work develops more effective and relevant 

estimators using exponential ratio type estimators for population median at current 

occasion in two occasion successive sampling. Properties of the proposed estimators are 

discussed. Optimum replacement strategies are elaborated for the proposed estimators.  

Proposed estimators at optimum conditions are compared with the sample median 

estimator when there is no matching from the previous occasion as well with the ratio type 

estimator proposed by Singh et al. (2007) for second quantile, when no additional 

auxiliary information was used at any occasion. The behaviours of the proposed estimator 

are justified by empirical interpretations and validated by the means of simulation study 

with the help of some natural populations. 

2. Sample Structure and Notations 

Let  1 2 NU = U ,U , ... , U  be the finite population of N units, which has been sampled over 

two occasions. It is assumed that size of the population remains unchanged but values of 

units change over two occasions. The character under study be denoted by x (y) on the 

first (second) occasions respectively. It is assumed that information on an auxiliary 

variable z, whose population median is known and stable over occasions is readily 

available on both the occasions and  highly correlated to x and y respectively. Simple 

random sample (without replacement) of n units is taken on the first occasion. A random 

subsample of m = nλ units is retained for use on the second occasion. Now at the current 

occasion a simple random sample (without replacement) of u= (n-m) = nµ units is drawn 

afresh from the remaining (N-n) units of the population so that the sample size on the 

second occasion is also n. μ and  λ μ + λ=1  are the fractions of fresh and matched samples 
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respectively at the second (current) occasion. The following notations are considered for 

the further use: 

x y zM , M , M  : Population median of the variables x, y and z respectively. 

 y z
ˆ ˆM (u), M u : Sample median of variables y and z based on the sample size u. 

 x y z
ˆ ˆ ˆM (m), M (m), M m : Sample median of variables x, y and z based on the sample size 

m. 

 x z
ˆ ˆM (n), M n : Sample medians of variables x and z based on the sample size n. 

     x x y y z zf M , f M , f M : The marginal densities of variables x, y and z respectively. 

3. Proposed Estimators 𝐓𝐢 𝐣 (i, j =1, 2) 

To estimate the population median yM on the current (second) occasion, two sets of 

estimators have been proposed utilizing the concept of exponential ratio type estimators. 

First set of estimators  1 u 2 uT , T  is based on sample of the size u= nµ drawn afresh on the 

current  

(second) occasion and the second set of estimators  1 m 2 mT , T  is based on sample size 

m = nλ  common to the both occasions. The two sets of the proposed estimators are given 

as 

 

 
y

1 u z

z

M̂ u
T  =  M

M̂ u

 
 
 
 

                        (1) 

 
 

 
z z

2 u y

z z

ˆM - M uˆT =  M u  exp
ˆM + M u

 
 
 
 

                                 (2) 

  
 

 

 

 
y z z

1 m x

x z z

ˆ ˆM m M - M mˆT =  M n  exp 
ˆ ˆM m M + M m

   
   

  
  

                                           (3) 

  
 

 

*

y*

2 m x *

x

M̂ m
ˆT =  M n

M̂ m

 
 
 
 

                                             (4) 

where    
 

 
z z*

y y

z z

ˆM - M mˆ ˆM m =  M m  exp
ˆM + M m

 
 
 
 

,    
 

 
z z*

x x

z z

ˆM - M mˆ ˆM m =  M m  exp
ˆM + M m
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and    
 

 
z z*

x x

z z

ˆM - M nˆ ˆM n =  M n  exp
ˆM + M n

 
 
 
 

. 

Considering the convex linear combination of the two sets of estimators  i uT i = 1, 2  and

 j mT j = 1, 2 , we have the final estimators of population median yM  on the current 

occasion as 

  i j i j i u i j j mT = φ T  + 1 - φ  T  ; (i, j = 1, 2)                                              (5) 

where  i jφ i, j = 1, 2  are the unknown constants to be determined so as to minimise the 

mean squared error of the estimators i jT (i, j=1, 2). 

Remark 3.1: For estimating the median on each occasion, the estimators  i uT i = 1, 2  

are suitable, which implies that more belief on i uT could be shown by choosing 

 i jφ i, j = 1, 2 as 1 (or close to 1), while for estimating the change from occasion to 

occasion, the estimators  j mT j=1, 2  could be more useful so i jφ  might be chosen as 0 (or 

close to 0). For asserting both problems simultaneously, the suitable (optimum) choices 

of i jφ  are desired. 

 

4. Properties of the Proposed Estimators 𝐓𝐢 𝐣 (i, j =1, 2) 

4.1. Assumptions 

The properties of the proposed estimators  i jT i, j =1, 2  are derived under the following 

assumptions: 

(i) Population size is sufficiently large (i.e. N    ), therefore finite population 

corrections are ignored. 

(ii) As N    , the distribution of the bivariate variable (a, b)  where  a and b x, y, z

and a  b  approaches a continuous distribution with marginal densities  af .  and  bf .  

respectively, (see Kuk and Mak (1989)). 

(iii) The marginal densities      x y zf . , f .  and  f .  are positive. 
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(iv) The sample medians              y y x x z z z
ˆ ˆ ˆ ˆ ˆ ˆ ˆM u , M m , M m , M n , M u , M m  and M n  

are consistent and asymptotically normal (see Gross (1980)). 

(v) Following Kuk and Mak (1989), let abP  be the proportion of elements in the population 

such that
a

ˆa M  and 
b

ˆb M  where  a and b x, y, z  and a  b . 

(vi) Following large sample approximations are assumed: 

               

           

y y 0 y y 1 x x 2 x x 3

z z 4 z z 5 z z 6 i

ˆ ˆ ˆ ˆM u   =  M 1 + e ,  M m  =  M 1 + e ,  M m  =  M 1 + e , M n  =  M 1 + e  

ˆ ˆ ˆM u   =  M 1 + e , M m   =  M 1 + e  and  M n   =  M 1 + e  such that |e | < 1

 i = 0, 1, 2, 3, 4, 5 and 6 .

The values of various related expectations can be seen in Allen et al. (2002) and Singh 

(2003). 

4.2. Bias and Mean Square Error of the Estimators 𝐓𝐢 𝐣 (i, j =1, 2) 

The estimators  i u j mT  and T i, j=1, 2  are ratio, exponential ratio, ratio to exponential ratio 

and chain type ratio to exponential ratio type in nature respectively. Hence they are biased 

for population median yM . Therefore, the final estimators  i jT i, j =1, 2 defined in equation 

(5) are also biased estimators of yM . Bias  B .  and mean square errors  M . of the 

proposed estimators  i jT i, j =1, 2 are obtained up to first order of approximations and thus 

we have following theorems: 

 

Theorem 4.2.1.Bias of the estimators  i jT i, j =1, 2  to the first order of approximations 

are obtained as 

 

       i j ij i u ij j mB T  = φ  B T  + 1 - φ  B T ; (i, j=1,2)                               (6) 

where   
       

 -1  -1 -2

y z y y z zz z y

1 u 2

z z

4 P  - 1 f M f Mf M M1
B T  =  - 

u 4 M 4 M

           
  
 

                  (7) 
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 -1  -1 -2

y z y y z zz z y

2 u 2

z z

4 P  - 1 f M f M3 f M M1
B T  =   - 

u 32 M 8 M

           
  
 

                  (8) 

 

 
         

           

 -1 -1 -2  -2

x y x x y yx x y z z y

1 m 2 2

x z x

 -1  -1  -1  -1

y z y y z z x z x x z z y

z x z

4 P  - 1 f M f Mf M M 3 f M M1
B T  =   + -  

m 4 M 32  M 4 M

4 P  - 1 f M f M 4 P  - 1 f M f M M
              -   + 

8 M 8 M  M

 

             



              



           

 

 -1 -1  -1  -1

x y x x y y x z x x z x y

x x z

 -2

x x y

2

x

4 P  - 1 f M f M 4 P - 1 f M f M M1
             +  - 

n 4 M 8 M  M

f M M
                -                                                             

4 M

              



   



                                      (9)

 

 
         

             

 -1 -1 -2  -2

x y x x y yx x y z z y

2 m 2 2

x x z

 -1  -1 -1  -2

x y x x y y y z y y z zx x y

2

 x x

4 P - 1 f M f Mf M  M 3 f M  M1 1
B T  =  -  + 

m 4 M 4 M n 32 M

4 P - 1 f M f M 4 P - 1 f M f Mf M  M
    +  - -

4 M 4 M

               
     

               
 -1

z

    (10) 
8 M






 

Proof: The bias of the estimators  i jT i, j =1, 2 are given by 

       i j i j y ij i u ij j mB T  = E T  - M  = φ  B T  + 1 - φ B T    

where    i u i u y j m j m yB T  = E T  - M  and  B T  = E T  - M        

Using large sample approximations assumed in Section 4.1 and retaining terms upto the 

first order of approximations, the expression for    i u j mB T  and  B T are obtained as in 

equations (7) - (10) and hence the expression for bias of the estimators  i jT i, j =1, 2  are 

obtained as in equation (6). 
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Theorem 4.2.2.Mean square errors of the estimators  i jT i, j =1, 2  to the first order of 

approximations are obtained as 

 

           
2

2

i j i j i u i j j m i j i j i u j mM T  = φ  M T  + 1 - φ M T + 2 φ 1 - φ Cov T , T ; (i, j=1,2)    (11) 

 

where   1 u 1

1
M T  =  A

u
                           (12) 

  2 u 2

1
M T  =  A

u
                      (13) 

  1 m 3 4

1 1
M T  =  A  +   A

m n                            
     (14) 

  2 m 5 6

1 1
M T  =  A  +   A

m n                          
(15) 

         
 -2  -1  -1 -2 2

y y yz y y z z yz z y

1 2

z z

f M 4 P  - 1 f M f M Mf M M
A =  +  - 

4 4 M 2 M

              
 
 
 

, 

         
 -2  -1  -1 -2 2

y y yz y y z z yz z y

2 2

z z

f M 4 P  - 1 f M f M Mf M M
A =  +  - 

4 16 M 4 M

              
 
 
 

, 

           

           

 -2  -1 -1 -2  -22 2
y y xy x x y y yx x y z z y

3 2 2

x z x

 -1  -1  -1  -1 2
yz y y z z y xz x x z z y

z x z

f M 4 P  - 1 f M f M Mf M M f M M
A =  +  +  - 

4 4 M 16 M 2 M

4 P  - 1 f M f M M 4 P  - 1 f M f M M
         -  +  

4 M 4 M  M

                




              ,




 

           

 

 -1 -1  -1  -1 2
xy x x y y y xz x x z z y

4

x x z

 -2 2

x x y

2

x

4 P  - 1 f M f M M 4 P  - 1 f M f M M
A =   -   

2 M 4 M  M

f M M
         -   ,

4 M
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 -2  -1 -1 -2 2

y y xy x x y y yx x y

5 2

x x

f M 4 P  - 1 f M f M Mf M M
A =  +  - 

4 4 M 2 M

             
 
 
 

 

 

and 

         

     

 -1 -1 -2  -22 2
xy x x y y yz z y x x y

6 2 2

z x x

 -1  -1

yz y y z z y

z

4 P  - 1 f M f M Mf M M f M M
A =  -  + 

16 M 4 M 2 M

4 P  - 1 f M f M M
         -  .

4 M

             



      




 

 

Proof: The mean square errors of the estimators i jT are given by  

 
 2

i j i j yM T  = E T - M       
2

ij i u y ij j m y= E φ  T  - M  + 1 - φ T  - M 
 

 

           
       

22

i j i u i j j m ij ij i u j m= φ  M T  + 1 - φ M T  + 2 φ  1 - φ  Cov T , T     

where  
 2

i u i u y M T   =  E T  -  M   and
 2

j m j m yM T  = E T  -  M       ;       (i, j=1, 2)  

The estimators i uT  and j mT  are based on two independent samples of sizes u and m 

respectively, hence  i u j mCov T , T  = 0;  (i, j = 1, 2) .Using large sample approximations 

assumed in section 4.1 and retaining terms upto the first order of approximations, the 

expression for    i u j mM T  and  M T are obtained as given in equations (12) - (15) and 

hence the expressions for mean square error of estimators  i jT i, j =1, 2  are obtained. 

Remark 4.2.1: The mean square errors of the estimators 
i jT (i, j=1, 2)  in equation (11) 

depend on the population parameters
 xyP ,  yz P ,  xzP ,  x x f M ,  y yf M  z z and f M . If these 

parameters are known, the properties of proposed estimators can be easily studied. 

Otherwise, which is the most often situation in practice, the unknown population 

parameters are replaced by their sample estimates. The population proportions xy yzP , P and 

xzP can be replaced by the sample estimate xy yz xzP , P  and P  and the marginal densities 
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     y y x x z zf M , f M  and f M can be substituted by their kernel estimator or nearest 

neighbour density estimator or generalized nearest neighbour density estimator related to 

the kernel estimator (Silverman (1986)). Here, the marginal densities    y y x xf M , f M and 

 z zf M
 
are replaced by   y y

ˆf M m ,   x x
ˆf M n   z z

ˆand f M n  respectively, which are 

obtained by method of generalized nearest neighbour density estimation related to kernel 

estimator. 

To estimate      y y x x z zf M , f M  and f M , by generalized nearest neighbour density 

estimator related to the kernel estimator, following procedure has been adopted: 

Choose an integer 
1

2h n  and define the distance  1 2d x , x  between two points on the 

line to be 1 2x  - x . 

  For   xM̂ n  , define         1 x 2 x n x
ˆ ˆ ˆd M n d M n - - - d M n    to be the distances, 

arranged in ascending order, from  
xM̂ n  to the points of the sample. 

The generalized nearest neighbour density estimate is defined by  

  
  

 

  

n
x i

x

i=1h x h x

M̂ n  - x1ˆf M n  =  K 
ˆ ˆn d M n d M n

 
 
 
 

  

where the kernel function K, satisfies the condition  K x  dx = 1





 . 

Here, the kernel function is chosen as Gaussian Kernel given by  
21

 -  x
21

K x  =  e
2π

 
 
  . 

The estimate of     y y z zf M  and f M  can be obtained by the above explained procedure 

in similar manner. 

 

5. Minimum Mean Square Errors of the Proposed Estimators 𝐓𝐢 𝐣 (i, j =1, 2) 

Since the mean square errors of the estimators  i jT i, j =1, 2 given in equation (11) are the 

functions of unknown constants  i jφ i, j = 1, 2 , therefore, they are minimized with respect 

to i jφ  and subsequently the optimum values of i jφ  are obtained as 
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   opt.

j m

i j

i u j m

M T
φ  = 

M T  + M T
; (i, j = 1, 2)                     (16) 

Now substituting the values of 
opt.i jφ in equation (11), we obtain the optimum mean square 

errors of the estimators  i jT i, j =1, 2  as 

  
   
   

 
i u j m

i j opt.
i u j m

M T  . M T
M T = ;  i, j = 1, 2

M T  + M T
                              (17) 

Further, substituting the values of the mean square error of the estimators defined in 

equation (12) to equation (15) in equation (16) and (17), the simplified values 
opt.i jφ and  

 i j opt.
M T  are obtained as 

 
 

 opt.

11 11 4 3 4

11 2

11 4 11 3 4 1 1

μ μ  A  - A + A
φ = 

μ  A  - μ A + A  - A  - A

  

  

                   (18) 

 
 

 opt.

12 12 6 5 6

12 2

12 6 12 5 6 1 1

μ μ  A  - A + A
φ = 

μ  A  - μ A + A  - A  - A

  

  

                   (19) 

 
 

 opt.

21 21 4 3 4

21 2

21 4 21 3 4 2 2

μ μ  A  - A + A
φ = 

μ  A  - μ A + A  - A  - A

  

  

                           (20) 

 

 opt.

22 22 6 5 6

22 2

22 6 22 5 6 2 2

μ μ  A  - A + A
φ = 

μ  A  - μ A + A  - A  - A

  

  

                   (21) 

 
 11 1 2

11 opt. 2

11 4 11 3 1

μ  C  - C1
M T = 

n μ  A  - μ  C  - A  

                                (22)    

 
 12 4 5

12 opt. 2

12 6 12 6 1

μ  C  - C1
M T =  

n μ  A  - μ  C  - A  

                   (23) 

 
 21 7 8

21 opt. 2

21 4 21 9 2

μ  C  - C1
M T = 

n μ  A  - μ  C  - A  

                                         (24) 
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 22 10 11

22 opt. 2

22 6 22 12 2

μ  C  - C1
M T = 

n μ  A  - μ  C  - A  

                              (25) 

where 

1 1 4 2 1 3 1 4 3 3 4 1 4 1 6 5 1 5 1 6C = A A ,     C = A A  + A A ,      C = A  + A  - A ,    C = A A ,   C = A A  + A A ,

6 5 6 1 7 2 4 8 2 3 2 4 9 3 4 2 10 2 6C = A  + A  - A ,    C = A A ,    C = A A  + A A ,    C = A  + A  - A ,    C = A A  

 11 2 5 2 6 12 5 6 2 i jC = A A  + A A  , C = A  + A  - A   and   μ i, j = 1, 2  are the fractions of the 

sample drawn afresh at the current(second) occasion. 

Remark 5.1:  i j opt.
M T derived in equation (22) - (25) are the functions of  i jμ i, j = 1, 2

. To estimate the population median on each occasion the better choices of   i jμ i, j = 1, 2  

are 1(case of no matching); however, to estimate the change in median from one occasion 

to other,  i jμ i, j = 1, 2  should be 0(case of complete matching). But intuition suggests 

that the optimum choices of  i jμ i, j = 1, 2  are desired to devise the amicable strategy for 

both the problems simultaneously. 

6. Optimum Replacement Strategies for the Estimators 𝐓𝐢 𝐣 (i, j =1, 2) 

The key design parameter affecting the estimates of change is the overlap between 

successive samples. Maintaining high overlap between repeats of a survey is operationally 

convenient, since many sampled units have been located and have some experience in the 

survey. Hence to decide about the optimum value of  i jμ i, j = 1, 2  (fractions of samples 

to be drawn afresh on current occasion) so that yM  may be estimated with maximum 

precision and minimum cost, we minimize the mean square errors    i j opt.
M T i, j = 1, 2  in 

equation (22) to (25) with respect to  i jμ i, j = 1, 2 respectively. 

The optimum value of  i jμ i, j = 1, 2  so obtained is one of the two roots given by 

2

2 2 1 3

11

1

D  ±  D  - D  D
μ  = 

D
                                (26) 
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2

5 5 4 6

12

4

D  ±  D  - D  D
μ  = 

D
                                (27) 

2

8 8 7 9

21

7

D  ±  D  - D  D
μ  = 

D
                     (28) 

2

11 11 10 12

22

10

D  ±  D  - D  D
μ  = 

D
                                           (29) 

 

where 

1 4 1 2 4 2 3 1 1 2 3 4 6 4 5 6 5 6 1 4 5 6D = A C ,  D = A C ,  D = A C + C C ,  D = A C ,  D = A C ,   D = A C + C C  

7 4 7 8 4 8 9 2 7 8 9 10 6 10 11 6 11 12 2 10 11 12D = A C ,  D = A C ,  D = A C + C C ,  D = A C ,  D = A C  and  D = A C + C C .

  

The real values of  i j
μ i, j = 1, 2  exist, iff 2

2 1 3D  - D  D 0,
2

5 4 6D  - D  D 0, 2

8 7 9D  - D  D 0,

and 2

11 10 12D  - D  D 0 . For any situation, which satisfies these conditions, two  real values 

of   i j
μ i, j = 1, 2  may be possible , hence to choose a value of  i j

μ i, j = 1, 2 , it should be 

taken care of that i j
0 μ 1   , all other values of  i j

μ i, j = 1, 2  are inadmissible. If both 

the real values of  i j
μ i, j = 1, 2  are admissible, the lowest one will be the best choice as 

it reduces the total cost of the survey. Substituting the admissible value of 
i j

μ  say  

 (0)

i jμ i, j = 1, 2  from equation (26) to (29)  in equation (22) to (25) respectively , we get 

the optimum values of the mean square errors of the estimators  i jT i, j = 1, 2  with respect 

to i jφ as well as  i jμ i, j = 1, 2 which are given as 

  
(0)

* 11 1 2

11 opt. (0) 2 (0)

11 4 11 3 1

μ  C  - C
M T = 

n μ  A  - μ  C  - A

  

  

                              (30) 

  
(0)

* 12 4 5

12 opt. (0) 2 (0)

12 6 12 6 1

μ  C  - C
M T = 

n μ  A  - μ  C  - A

  

  

                   (31) 
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(0)

* 21 7 8

21 opt. (0) 2 (0)

21 4 21 9 2

μ  C  - C
M T = 

n μ  A  - μ  C  - A

  

  

                   (32) 

  
(0)

* 22 10 11

22 opt. (0) 2 (0)

22 6 22 12 2

μ  C  - C
M T = 

n μ  A  - μ  C  - A

  

  

                       (33) 

 

7. Efficiency Comparison  

To evaluate the performance of the proposed estimators, the estimators  i jT i, j = 1, 2 at 

optimum conditions are compared with respect to (i) the sample median estimator  yM̂ n

, when there is no matching from previous occasion and (ii) the ratio type estimator Δ  

proposed by Singh et al.(2007) for second quantile, where no additional auxiliary 

information was used at any occasion and is given by 

     
 

 
y

y x

x

M̂ m
ˆ ˆΔ = ψ M u  + 1 - ψ M n

M̂ m

 
 
 
                     

(34) 

where ψ  is an unknown constant to be determined so as to minimise the mean square 

error of the estimator Δ . Since,  yM̂ n  is unbiased and Δ is biased for population 

median, so variance of  yM̂ n and mean square error of the estimator Δ  at optimum 

conditions are given as 

 
  

 - 2

y y

y

f M1ˆV M n  = 
n 4 

 
 

                     (35) 

and        
 * Δ 1 2

opt. 2

Δ 3 Δ 3 1

μ  J  - J
M Δ = 

n μ  I  - μ  J  - I  

                    (36) 

where  

 
2

2 2 1 3

Δ 1 1 3 2 2 3 3 1 1 2 3 1 1 3 2 1 2 3 3 2 3 1

1

H  ±  H  - H  H
μ = , H = J I , H = J I , H = I J + J J , J = I I , J = I I + I , J = I + I - I ,

H

 

           
 -2  -2  -1 -1 -2  2

y y y y xy x x y y yx x y

1 2  2

x x

f M f M 4 P - 1 f M f M Mf M  M
I = ,  I =  +  - 

4 4 4 M 2 M
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and 
       

 -1 -1  -2  2
xy x x y y y x x y

3  2

x x

4 P - 1 f M f M  M f M  M
I =  - 

2 M 4 M

          . 

The percent relative efficiencies (1) (2)

i j i jE  and E of the estimators  i jT i, j = 1, 2  (under their 

respective optimum conditions) with respect to  yM̂ n and Δ are respectively given by 

 

 

y(1)

i j *

i j opt.

ˆV M n
E  =  × 100

M T

 
      and  

 

 

*

opt.(2)

i j *

i j opt.

M Δ
E  =  × 100

M T

; (i, j=1, 2) .        (37)                

     

8. Empirical Illustrations and Monte Carlo Simulation 

Empirical validation can be carried out by Monte Carlo Simulation. Real life situations of 

two completely known finite populations have been considered.  

Population Source: [Free access to the data by Statistical Abstracts of the United States] 

The first population comprise of N = 51 states of United States. Let 
iy represent the 

number of abortions during 2007 in the thi  state of U. S., 
ix be the number of abortions 

during 2005 in the thi  state of U. S. and 
iz denote the number of abortions during 2004 in 

the thi state of  U. S. The data are presented in Figure 8.1. 

Similarly, the second population consists of N=41 corn producing states of United States. 

We assume 
iy the production of corn (in million bushels) during 2009 in the thi state of 

U. S., 
ix be the production of corn (in million bushels) during 2008 in the thi  state of U. 

S. and 
iz denote the production of corn (in million bushels) during 2007 in the thi state of 

U. S. The data are represented by means of graph in Figure 8.2. 
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Figure 8.1: Number of abortions during 2004, 2005 and 2007 versus different states 

of US 
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Figure 8.2: Production of corn during 2007, 2008 and 2009 versus different states of 

US 

 

The graphs in Figure 8.1 and Figure 8.2 show that the number of abortions and the 

production of corn in different states are skewed towards right. One reason of skewness 

for the population-I may be the distribution of population in different states, that is the 

states having larger population are expected to have larger number of abortion cases. 
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Similarly for population-II, the states having larger area for farming are expected to have 

larger production of corn.  Thus skewness of data indicates that the use of median may be 

a good measure of central location than mean in these situations. 

For both the considered population-I and population-II, the optimum values of i jμ

(i, j = 1, 2) defined in equation (26) to (29) and percent relative efficiencies (1)

i jE and (2)

i jE

defined in equation (37) of i jT (i, j =1, 2) (under their respective optimality conditions) 

with respect to  yM n  and Δ  have been computed and are presented in Table - 1. 

To validate the above empirical results, Monte Carlo simulation have also been 

performed for Population-I. 5000 samples of n=20 states were selected using simple 

random sampling without replacement in the year 2005. The sample medians  x|kM̂ n and

 z|kM̂ n , k =1, 2,- - -,5000 were computed. From each one of the selected samples, m=17 

states were retained and new u=3 states were selected out of N – n =51 – 20 = 31 states 

using simple random sampling without replacement in the year 2007. From the m units 

retained in the sample at the current occasion, the sample medians  x|kM̂ m  ,  y|kM̂ m and 

 z|kM̂ m , k  = 1, 2,- - -,5000  were computed. From the new unmatched units selected on 

the current occasion the sample medians  y|kM̂ u and  z|kM̂ u , k  = 1, 2,- - -,5000 were also 

calculated. The parameters φ  and  ψare selected between 0.1 and 0.9 with a step of 0.1. 

The percent relative efficiencies of the proposed estimators i jT  with respect to  yM n  and 

 are obtained as a result of above simulation and are respectively given as: 

 
 

5000 5000 2  2

y|k y k y

k=1 k=1
i j i j5000 5000

 2  2

i j k y i j k y

k=1 k=1

M̂ n - M Δ - M

E (1) =  × 100   and   E (2)=  × 100 ;  i, j=1, 2

T - M T - M

     

      

 

 
 

For better analysis, the above simulation experiments were repeated for different choices 

of μ.  

For convenience the different choices of μ are considered as different sets for the 

considered Population-I which is shown below. 

Set I: n=20, μ = 0.15 , (m =17, u = 3),    Set II: n=20, μ = 0.50 , (m = 10, u = 10). 
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The simulation results obtained are presented in Table-2 to Table-6. 

 

Table 1: Comparison of the proposed estimators i jT  (at optimum conditions) with respect  

               to the estimators  yM̂ n and Δ (at their respective optimum conditions) 

 Population-I Population-II 
(0)

11μ  * * 
(0)

12μ  * * 
(0)

21μ  0.4114 0.4838 
(0)

22μ  0.5120 0.6140 
(1)

11E  - - 
(1)

12E  - - 
(1)

21E  276.78 301.34 
(1)

22E  344.45 382.46 
(2)

11E  - - 
(2)

12E  - - 
(2)

21E  210.30 204.34 
(2)

22E  261.72 259.35 

 

Note:  ‘*’ indicates that  (0)

i jμ ; i, j = 1, 2  do not exist.   

Table 2: Monte Carlo Simulation results when the proposed estimator i jT is compared to     

              
 yM̂ n  for population-I  

 

φ  Set 11E (1)  
12E (1)  21E (1)  22E (1)  

0.1 
I 146.57 182.32 147.48 183.81 

II 152.15 277.81 158.07 290.87 

0.2 
I 157.43 202.46 157.47 202.78 

II 176.69 314.47 185.67 331.56 

0.3 
I 174.39 222.62 172.98 220.84 

II 194.98 340.08 205.89 357.25 

0.4 
I 196.19 249.36 192.56 244.13 

II 212.07 360.70 221.46 368.06 

0.5 
I 216.80 275.64 208.53 263.21 

II 227.82 371.52 232.33 362.74 

0.6 
I 273.65 301.04 222.86 278.43 

II 238.87 371.67 235.29 342.79 

0.7 
I 258.19 324.78 232.99 286.78 

II 246.92 364.42 229.20 310.11 

0.8 
I 279.56 348.26 241.00 291.20 

II 247.70 345.58 216.75 275.50 

0.9 
I 299.13 368.28 244.26 289.30 

II 239.84 316.58 197.88 238.58 
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Table 3: Monte Carlo Simulation results when the proposed estimator 
11T is compared  

              to the estimator Δ  

  
 

 

φ  

      
ψ  

 

SET 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 
I 275.77 739.50 1352.8 2741.3 3748.7 6016.6 1259.1 1627.7 2732.2 

II 122.06 ** ** ** 114.67 152.51 231.31 285.69 409.32 

0.2 
I 311.36 800.20 1550.8 2970.1 4415.9 6193.2 1301.5 1660.5 2696.9 

II 136.60 108.52 ** 110.30 130.21 177.99 249.99 319.31 445.29 

0.3 
I 336.01 869.20 1704.0 3157.5 4685.7 6430.9 1295.6 1713.7 2500.3 

II 150.41 121.14 109.03 121.10 147.42 199.15 271.42 355.96 480.84 

0.4 
I 341.73 922.40 1776.5 3149.9 4884.8 6744.8 1250.5 1660.5 2175.2 

II 165.02 131.26 120.39 132.37 160.10 218.71 295.47 384.84 522.78 

0.5 
I 349.01 934.0 1803.6 3196.6 4899.7 6821.9 1147.7 1517.8 1846.1 

II 178.11 143.36 128.95 142.49 171.74 234.26 317.05 415.93 561.37 

0.6 
I 346.37 910.2 1770.9 3149.9 4895.8 6740.3 1045.2 1370.2 1518.8 

II 186.39 148.9 135.35 150.51 183.80 248.66 332.14 439.36 591.39 

0.7 
I 344.45 877.40 1712.2 3043.8 4731.7 6643.1 876.79 1168.1 1250.3 

II 193.21 154.98 140.0 155.37 190.07 256.22 340.55 451.85 613.96 

0.8 
I 331.02 842.68 1641.7 2983.0 4589.9 6355.5 746.15 1021.1 1043.5 

II 191.43 155.42 140.31 157.36 189.59 255.43 343.47 452.69 612.08 

0.9 
I 304.36 787.20 1517.9 2829.0 4274.4 5960.8 642.61 888.44 827.20 

II 188.71 153.23 136.99 152.92 186.03 249.23 335.03 439.10 601.28 

           Note: “**” indicates no gain. 

 

Table 4: Monte Carlo Simulation results when the proposed estimator 
12T is compared  

               to the estimator Δ  

 
 

 

φ  

       
ψ  

 

SET 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 
I 382.79 977.38 1938.7 3615.9 5212.8 7650.9 1562.9 2071.2 604.32 

II 207.40 168.47 150.66 164.49 195.34 254.96 390.45 481.73 677.77 

0.2 
I 412.37 1044.8 2155.3 3865.4 5836.8 7910.1 1580.8 2058.2 694.83 

II 230.42 148.10 165.20 181.41 218.38 295.04 420.24 531.12 743.81 

0.3 
I 431.53 1116.1 2285.3 4034.5 6118.8 8107.3 1559.1 2091.9 788.21 

II 249.33 201.20 178.36 196.95 242.61 327.34 449.90 581.06 785.87 

0.4 
I 435.27 1162.7 2308.9 3957.7 6234.6 8373.5 1458.0 1981.8 882.83 

II 266.67 211.15 192.85 210.25 256.66 351.61 476.85 613.96 832.84 

0.5 
I 433.57 1152.5 2279.8 3914.5 6083.6 8240.9 1300.8 1750.7 982.72 

II 278.24 223.06 198.85 219.49 266.40 363.80 495.06 640.37 867.85 

0.6 
I 419.40 1093.1 2159.9 3752.4 5906.8 7933.0 1157.3 1533.3 1096.9 

II 277.30 221.06 199.88 221.69 273.84 370.25 496.44 648.57 872.83 

0.7 
I 406.49 1023.7 2030.3 3531.3 5536.4 7651.1 946.56 1268.9 1221.1 

II 274.81 220.32 197.97 218.46 269.83 364.06 483.84 634.79 868.93 

0.8 
I 380.53 960.60 1893.1 3386.1 5250.5 7155.5 788.85 1088.7 1353.2 

II 258.62 210.05 189.20 211.88 256.75 345.21 465.70 605.58 824.24 

0.9 
I 340.93 876.70 1705.9 3146.9 4777.4 6575.1 670.72 933.49 1483.8 

II 244.40 198.25 176.68 196.80 240.61 321.56 433.21 560.55 775.15 
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Table 5: Monte Carlo Simulation results when the proposed estimator 
21T is compared to  

              the estimator Δ  
 

 

φ  

      
ψ  

 

SET   

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 
I 221.37 583.99 1112.3 2154.2 3005.4 4778.5 1255.8 1635.1 452.25 

II 126.34 100.97 ** 100.74 118.81 158.55 240.05 297.65 424.27 

0.2 
I 188.97 477.50 953.30 1756.7 2630.2 3784.2 1277.9 1641.7 499.59 

II 143.05 114.12 104.22 115.63 136.20 187.11 261.74 335.76 467.23 

0.3 
I 146.01 369.10 748.0 1330.6 2014.4 2890.2 1228.8 1610.8 540.34 

II 157.92 127.07 115.03 127.71 154.32 210.52 285.71 373.76 505.36 

0.4 
I 111.99 280.0 572.80 1615.1 1541.8 2182.2 1124.0 1472.6 571.9 

II 170.85 136.89 125.02 138.10 166.62 227.65 308.78 400.97 543.70 

0.5 
I ** 215.50 440.60 776.0 1193.1 1679.2 987.70 1292.8 588.54 

II 180.13 144.24 131.19 145.11 174.93 238.57 322.73 421.57 570.46 

0.6 
I ** 169.20 344.70 604.30 928.50 1314.1 852.30 1114.4 596.70 

II 182.88 144.67 132.92 146.87 179.14 243.65 326.73 430.52 578.66 

0.7 
I      ** 134.20 278.20 477.50 728.30 1046.2 712.42 934.0 595.40 

II 178.82 142.23 130.10 143.33 175.35 237.99 318.48 421.67 568.63 

0.8 
I ** 109.17 222.80 383.80 529.23 843.70 591.94 795.30 584.30 

II 168.53 135.68 122.22 135.66 166.62 224.0 301.69 397.37 534.44 

0.9 
I ** ** 183.70 317.10 490.4 690.70 501.36 672.26 563.0 

II 154.47 124.30 111.88 123.98 152.43 204.79 276.71 364.81 490.16 

           

 Table 6: Monte Carlo Simulation results when the proposed estimator 
22T is compared to  

                 the estimator Δ  

 

 

φ  

       
ψ  

 

SET 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 
I 282.55 739.11 1493.6 2686.1 3936.3 5856.1 1563.1 2084.7 584.02 

II 216.27 176.93 157.94 171.11 204.79 266.78 407.01 505.99 710.33 

0.2 
I 223.58 565.10 1173.2 2068.3 3108.2 4426.1 1553.2 2031.1 645.12 

II 242.70 194.04 173.74 191.06 230.51 311.53 441.30 561.46 783.68 

0.3 
I 162.02 413.50 856.10 1484.5 2269.7 3233.5 1465.3 1938.9 692.13 

II 260.65 209.21 187.46 207.06 253.99 344.35 471.97 607.73 823.34 

0.4 
I 119.31 302.50 628.0 1098.8 1676.9 2360.8 1291.9 1723.7 721.17 

II 270.23 215.79 195.32 215.45 263.26 358.45 489.17 628.66 850.93 

0.5 
I ** 227.60 470.0 819.30 1268.8  1771.2 1100.9 1457.5 730.73 

II 269.61 214.41 194.81 214.42 261.90 356.15 484.27 625.35 848.60 

0.6 
I ** 176.10 360.50 628.0 969.30 1364.6 926.0 1220.3 726.10 

II 257.16 201.60 185.27 203.87 251.98 341.73 460.65 601.75 806.63 

0.7 
I     ** 138.10 287.50 491.10 750.50 1074.9 757.63 997.30 709.60 

II 235.97 186.87 170.83 187.14 231.13 313.82 421.27 553.21 747.28 

0.8 
I ** 111.49 228.30 391.50 605.50 860.60 618.86 835.80 681.10 

II 210.30 168.86 151.63 167.97 208.35 278.88 377.03 492.73 663.67 

0.9 
I ** ** 187.0 321.90 498.60 700.80 518.57 697.84 642.20 

II 184.01 147.63 132.59 146.75 181.48 243.25 329.65 432.17 581.38 

    Note: “**” indicates no gain.  
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9. Mutual Comparison of the Proposed Estimators 𝐓𝐢 𝐣 (i, j =1, 2) 

The performances of the proposed estimators 
i jT  (i, j =1, 2)  have been elaborated 

empirically as well as through simulation studies in above section 8 and the results 

obtained are presented in Table 2 to Table 6. In this section the mutual comparison of the 

four proposed estimators has been elaborated through different graphs given in Figure 9.1 

to Figure 9.4. 
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Figure 9.1: Mutual Comparison of Proposed Estimator 
i jT  (i, j =1, 2)when compared 

with the estimator 
yM̂
 
for set-II. 
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Figure 9.2: Mutual Comparison of Proposed Estimators 
i jT  (i, j =1, 2)when  

                    compared with the estimator   for ψ = 0.1 for set-II. 
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Figure 9.3: Mutual Comparison of Proposed Estimators 
i jT  (i, j =1, 2)when  

                   compared with the estimator   for  ψ = 0.5  for set-II. 
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Figure 9 .4: Mutual Comparison of Proposed Estimators i jT  (i, j =1, 2)when  

                    compared with the estimator  for  ψ = 0.9  for set-II. 

 

11. Interpretation of Results  

 

The following interpretation can be drawn from Tables 1 - 6 and Figure 9.1 - 9.4: 

(1) From Table-1, it is observed that  

(a) Optimum values
(0)

21μ  and 
(0)

22μ for the estimators T21 and T22 exist for both the 

considered Populations which justifies the applicability of the proposed estimatorsT21 

and T22 at optimum conditions. However, the optimum values
(0)

11μ and
(0)

12μ for the 

estimators T11 and T12 do not exist for both the considered populations. 

 

(b) Appreciable gain is observed in terms of precision indicating the proposed estimators   

      21T  and 
22T  (at their respective optimal conditions) are preferable over the estimators   

      
yM̂ (n)  and Δ (at optimal conditions). This result justifies the use of additional  

      auxiliary information at both occasions which is stable over time in two occasion  

      successive sampling.  
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(c) The values for (1) (1) (2) (2)

11 12 11 12E , E , E  and  E cannot be calculated as optimum values
(0)

11μ and 
(0)

12μ  

     do not exist but simulation study vindicated in Tables 2 - 6 magnify the applicability  

     of proposed estimators 
11 12T  and T  over sample median estimator yM̂ and the  

     estimator Δ . 

 

(2) From Table-2, it can be seen that, when i jT (i, j =1, 2) is compared with sample  

      median Estimator  yM̂ n . 

(a)The value of 
11E (1) increases as φ increases except for set I. 

(b)
12E (1) increases as φ  increases except for set II. 

(c) As φ  increases the value of 
21E (1)  and 

22E (1)  increases for set I but for set II, first it  

     increases as φ  increases and then it decreases. 

(3) From Table-3, when 
11T is compared with the estimator Δ , we infer that 

(a)
11E (2) first increases and then decreases as φ increases for all choices of ψ and for first   

      set. 

(b) For fixed choices of φ,as ψ increases the value of 
11E (2) first increases and then  

decreases. 

 

(4) From Table-4, when 
12T is compared with the estimator Δ , we observe that  

(a) For set I, 
12E (2) first increases and then decreases as φ increases for all value of ψ   

      except for few choices. 

 

 (b) For set II, 12E (2) first increases and then decreases as φ increases for all choices of  

        ψ . 

(5) From Table-5, when 
21T is compared with the estimator Δ  , it can be seen that  
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(a)
21E (2) decreases as φ increases for set I  as ψ  varies from 0.1 to 0.8 while for ψ =0.9 it       

      increases and then decreases as φ  increases except for some combinations of φ  and  

      ψ . 

(b) For set II, 
21E (2)  first increases as φ  increases and then decreases for all choices  of  

     ψ . 

(c)
21E (2)  increases as ψ  increases for all choices of φ  for set I  while for set II 

21E (2) first  

     decreases and then increases as ψ increases for all choices of φ . 

(6) From Table-6, it can be concluded that 

(a)
22E (2)  decreases as φ  increases for different choices of  ψ  for set I. 

(b) For set II 
22E (2) first increases and then decreases as φ  increases for all choices of ψ  

(c) For fixed φ , 
22E (2)  increases as ψ  increases except for ψ = 0.9  for set I while for  II,  

     
22E (2) first decreases and then increases as ψ increases for all choices of φ . 

(7) The mutual comparison of the four proposed estimator i j T ;(i, j = 1, 2)  in Figure 9.1 to  

Figure 9.4 show that the estimator 
22T  comes out to be the best estimator amongst all 

the four proposed estimators, since, it possess largest gain over other proposed 

estimators. Also the estimator  
22T  has a considerably consistent nature for all 

combinations of φ, ψ and μ.It has also been found that the percent relative efficiency 

of the estimator 
22T  increases as the fraction of sample drawn at current occasion 

decreases and vice versa which exactly justifies the basic principles of sampling on 

successive occasions. 
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12. Conclusion 

From the preceding interpretations, it may be concluded that the use of exponential ratio 

type estimators for the estimation of population median at current occasion in two 

occasion successive sampling is highly appreciable as vindicated through empirical and 

simulation results. The use of highly correlated auxiliary information which is stable over 

time is highly rewarding in terms of precision. The mutual comparison of the proposed 

estimators indicates that the estimators utilizing more exponential ratio type structures 

perform much better.   It has also been observed that the estimator 
22T in which maximum 

utilization of exponential ratio type structures have been considered turned out to be the 

most efficient among all the four proposed estimators. Hence, the proposed estimators 

especially the estimator 
22T may be recommended for their practical use by survey 

practitioners. 
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     1. Priyanka, K. and Mittal, R. (2016): Multivariate Analysis of Longitudinal Surveys  
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Multivariate Analysis of Longitudinal 

Surveys for Population Median 

 

1. Introduction 

In order to understand the dynamics of economic and social process which are 

changing over time, single time survey and their analysis do not serve the purpose. For 

these situations longitudinal surveys, in which the same units are investigated on several 

occasions, over extensive period of time becomes important. In such situations, the same 

population is sampled repeatedly and the same study variable is measured at each 

occasion, so that development over time can be followed. For example, in many countries, 

labour-force surveys are conducted monthly to estimate the number of employed and the 

rate of unemployment. Other examples are monthly surveys in which the data on price of 

goods are collected to determine a consumer price index, and political opinion surveys 

conducted at regular intervals to measure voter preferences. These longitudinal surveys in 

which the sampling is done on successive occasions (over years or seasons or months) 

according to a specified rule, with partial replacement of units, is called successive 

(rotation) sampling. Successive sampling provides a strong tool for generating the reliable 

estimates at different occasions. In this case the survey estimates are time specific, For 

example, the unemployment rate is a key economic indicator that varies over time, the 

rate may change from one month to the next because of a change in the economy (with 

business laying off or recruiting new employees). 

 

The problem of sampling on two successive occasions was first considered by 

Jessen (1942) and latter this idea was extended, see, for example, Patterson (1950), Narain 

(1953), Eckler (1955),  Gordon (1983), Arnab and Okafar (1992), Feng and Zou (1997), 

Singh and Singh (2001), Singh and Priyanka (2008a), Singh et al. (2013a), 

Bandhopadhyay and Singh (2014) and many others. All the above efforts were devoted to 

the estimation of population mean or variance on two or more occasion successive 

sampling. 
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When a distribution concerned with longitudinal survey is skewed, when end-

values are not known, or when one requires reduced importance to be attached to outliers 

because they may be measurement errors, median can be used as a measure of central 

location. Median is defined on ordered one-dimensional data, and is independent of any 

distance metric so it can be seen as a better indication of central tendency (less susceptible 

to the exceptionally large value in data) than the arithmetic mean.  

Very few researchers see, for example, Martinez et al. (2005), Singh et al. (2007) 

and Rueda et al. (2008) have proposed estimators for population median in successive 

sampling. Singh and Priyanka (2008b) have proposed estimator to estimate population 

median in two-occasion successive sampling assuming that a guess value of the population 

median is known. In all the above quoted papers, related to the study of median, they have 

assumed that the density functions appearing in the results are known. But, in general 

being a population parameter they are not known. Hence, using the information on 

additional stable auxiliary variable available on both the occasions, see Priyanka and 

Mittal (2014, 2016) proposed estimators for population median in successive sampling. In 

these papers they have also estimated the unknown density functions by using the method 

of generalized nearest neighbour density estimator related to kernel estimator. 

  Sometimes, information on several auxiliary variables may be readily available or 

may be made easily available by diverting a small amount of fund available for the survey. 

For example, to study the social evil such as number (or rate) of abortions, many factors 

like availability of medical facilities, income of households, level of education can be 

taken as additional auxiliary information. Likewise, suppose for Asian countries, one may 

be interested in estimating the military expenditure then the gross national product of the 

said countries, average export, average import etc. may be considered as additional 

auxiliary information. 

Following Olkin (1958), technique of weighted ratio-type estimator, the objective 

of the present study is to develop more effective and relevant estimator using exponential 

ratio type estimators for population median on current occasion in two occasion successive 

sampling embedding information on   p – additional auxiliary variates  (p ≥ 1), which are 
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stable over time. Properties of the proposed estimator are discussed. Optimum 

replacement strategies are elaborated. Proposed estimator is compared with the estimator 

when information on single auxiliary variable (p = 1) is available on both the occasions 

and also with the sample median estimator when there is no matching from the previous 

occasion. The dominance of the proposed estimator is justified by empirical 

interpretations. The results are validated by the means of simulation studies. 

2. Sample Structure and Notations 

Let  1 2 NU = U ,U , ... , U  be the finite population of N units, which has been 

sampled over two occasions. It is assumed that size of the population remains unchanged 

but values of units change over two occasions. The character under study be denoted by x 

(y) on the first (second) occasions respectively. It is assumed that information on p - 

additional auxiliary variables 1 2 pz , z , ..., z , whose population median is known and stable 

over occasions, are readily available on both the occasions and  positively correlated to x 

and y respectively. Simple random sample (without replacement) of n units is taken on 

the first occasion. A random subsample of m = nλ units is retained for use on the second 

occasion. Now at the current occasion a simple random sample (without replacement) of 

u= (n-m) = nµ units is drawn afresh from the remaining (N - n) units of the population so 

that the sample size on the second occasion is also n. Let the fractions of fresh and matched 

samples at the second (current) occasion be  μ  and  λ μ + λ=1  respectively, where

0  μ, λ 1   . The following notations are considered for the further use: 

iM  : Population median of the variable i;  1 2 pi x, y, z , z , ..., z . 

iM̂ (u) : Sample median of variable i;  1 2 pi y, z , z , ..., z based on the sample size u. 

 iM̂ m : Sample median of variable i;  1 2 pi x, y, z , z , ..., z based on the sample size m. 

iM̂ (n) : Sample medians of variable i;  1 2 pi x, z , z , ..., z based on the sample size n. 

 i if M : The marginal densities of variable i;  1 2 pi x, y, z , z , ..., z .                                                                                   
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3. Proposed Estimator T 

To estimate the population median yM on the current (second) occasion, utilizing 

p-additional auxiliary information which are stable over time and are readily available on 

both the occasions, a multivariate weighted estimator 
uT  based on sample of the size u= 

nµ drawn afresh on the current (second) occasion is proposed as  

 Tu = 𝐖𝐮
′  𝐓exp(u)                                                                                          (1) 

where Wu  is a column vector of p-weights given by 𝐖𝐮 = [wu1
wu2  . . . wup  ]′  

 and  𝐓exp(u) =

[
 
 
 
 
T(1, u)
T(2, u)

...
T(p, u)]

 
 
 
 

 , where i i

i i

z z

y

z z

ˆM - M (u)
ˆT(i, u)=M (u)exp

ˆM + M (u)

 
 
 
 

 for i  = 1, 2, 3, …, p 

such that 𝟏′𝐖𝐮 = 1, where  1  is a column vector of order p. 

The second estimator Tm  is also proposed as weighted multivariate chain type ratio to 

exponential ratio estimator based on sample size m = nλ  common to the both occasions 

and is given by 

 Tm = 𝐖𝐦
′  𝐓exp(m, n)                                                                              (2) 

where Wm  is a column vector of p-weights as 𝐖𝐦 = [wm1
wm2  . . . wmp  ]′ 

and 𝐓exp(m, n) =

[
 
 
 
 
T(1,m, n)
T(2,m, n)

...
T(p,m, n ]

 
 
 
 

, where 

*

y *

x*

x

M̂ (i, m)
ˆT(i, m, n) = M (i, n)

M̂ (i, m)

 
 
 
 

 

where i i

i i

z z*

y y

z z

ˆM - M (m)
ˆ ˆM (i, m) = M (m) exp

ˆM + M (m)

 
 
 
 

, i i

i i

z z*

x x

z z

ˆM - M (m)
ˆ ˆM (i, m) = M (m) exp

ˆM + M (m)

 
 
 
 

 

and i i

i i

z z*

x x

z z

ˆM - M (n)
ˆ ˆM (i, n) = M (n) exp

ˆM + M (n)

 
 
 
 

 for i=1, 2, 3, ..., p.  
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Such that 𝟏′𝐖𝐦 = 1, where  1  is a column vector of order p. 

The optimum weights 𝐖𝐮 and 𝐖𝐦  in 𝐓𝐮  and 𝐓𝐦 are chosen by minimizing their mean 

square errors respectively. 

Considering the convex linear combination of the two estimators
uT  and  mT , we have the 

final estimator of population median yM  on the current occasion as 

  u mT= φ T  + 1 - φ  T                                                                                                            (3) 

where φ  is an unknown constant to be determined so as to minimise the mean square 

error of the estimator T. 

Remark 3.1: For estimating the median on each occasion, the estimators 
uT  is suitable, 

which implies that more belief on uT could be shown by choosing φ as 1 (or close to 1), 

while for estimating the change from occasion to occasion, the estimators mT  could be 

more useful so φ  might be chosen as 0 (or close to 0). For asserting both problems 

simultaneously, the suitable (optimum) choices of φ  are desired. 

4. Properties of the Proposed Estimator T 

4.1. Assumptions 

The properties of the proposed estimators T  are derived under the following assumptions: 

(i) Population size is sufficiently large (i.e. N    ), therefore finite population 

corrections are ignored. 

(ii) As N    , the distribution of the bivariate variable (a, b) where 

 1 2 pa and b x, y, z ,z , ..., z and a  b  approaches a continuous distribution with 

marginal densities  af .  and  bf .  respectively, (see Kuk and Mak (1989)). 

(iii) The marginal densities          
1 2 px y z z zf . , f . , f . , f . , ..., f .  are positive. 
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(iv) The sample medians            
i iy y x x z z

ˆ ˆ ˆ ˆ ˆ ˆM u , M m , M m , M n , M u , M m  and 

 
izM̂ n for i = 1, 2, 3, …, p; are consistent and asymptotically normal (see Gross 

(1980)). 

(v) Following Kuk and Mak (1989), let abP  be the proportion of elements in the population 

such that a
ˆa M  and b

ˆb M  where  1 2 pa and b x, y, z ,z , ..., z  and a  b . 

(vi) The following large sample approximations are assumed: 

               

           
i i i i i i

y y 0 y y 1 x x 2 x x 3

z z 4 i z z 5 i z z 6 i

k k

ˆ ˆ ˆ ˆM u   =  M 1 + e ,  M m  =  M 1 + e ,  M m  =  M 1 + e , M n  =  M 1 + e  

ˆ ˆ ˆM u   =  M 1 + e , M m   =  M 1 + e  and  M n   =  M 1 + e

such that |e | < 1  k = 0, 1, 2, 3, 4, 5 and 6 and |e i | < 1   i = 1, 2, 3, ..., p.

The values of various related expectations can be seen in Allen et al. (2002) and Singh 

(2003).  

4.2. Bias and Mean Square Error of the Estimator T 

The estimators 
u mT  and T  are weighted multivariate exponential ratio and chain type ratio 

to exponential ratio type in nature respectively. Hence they are biased for population 

median yM . Therefore, the final estimator T defined in equation (3) is also biased 

estimator of yM . Bias  B .  and Mean square error  M . of the proposed estimator T

have been derived up to first order of approximations and thus we have following 

theorems: 

Theorem 4.2.1. Bias of the estimator T  to the first order of approximations is obtained 

as 

       u mB T  = φ B T  + 1 - φ  B T                                                                   (4) 

B(Tu) =
1

u
𝐖u

′   𝐁u                                                                                           (5) 

B(Tm) = 𝐖m
′  ( 

1

m
Bm1 +

1

n
𝐁m2)                                                      (6) 
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where  𝐖𝐮 = [wu1
wu2  . . . wup  ]′ , 𝐁u = (B1(u), B2(u), … , Bp(u))

′

 , 

       
i i i i i

i i

 -2  -1 -1

z z y y z y y z z

i 2

z z

3 f M M 4P - 1 f M f M
B (u) =  - for i =1, 2, 3, ..., p

32 M 8 M

    
    

, 

𝐖𝐦 = [wm1
wm2  . . . wmp  ]′, 

       
 - 1 - 1 - 2

x y x x y yx x y

m1 2

x x

4P - 1 f M f Mf M M
B  =  - 

4 M 4 M

         , 

𝐁m2 = (Bm21, Bm22, … , Bm2p)
′ 
   where

         

     

i i

i

i i i

i

 - 2 - 1 - 1  - 2

z z yx y x x y y x x y

2 i 2 2

x x z

 - 1 - 1

y z y y z z

z

3 f M M4P - 1 f M f M f M M
Bm  =  -  - 

4 M 4 M 32 M

4P - 1 f M f M
               -     for  i = 1, 2, 3, ..., p.

8 M

             



  
    





 

Proof:  The bias of the estimator T
 
is given by 

       y u mB T  = E T - M  = φ B T  + 1 - φ B T    

where  u u yB T  = E T  - M    and  m m y B T  = E T  - M    

Using large sample approximations assumed in Section 4.1 and retaining terms upto the 

first order of approximations, the expression for  uB T and  mB T  are obtained as in 

equations (5) and (6) and hence the expression for bias of the estimator T  is obtained as 

in equation (4). 

Theorem 4.2.2. Mean square error of the estimator T  to the first order of approximations 

is obtained as 

           
22

u m u mM T  = φ  M T  + 1 - φ M T + 2 φ 1 - φ Cov T , T                           (7) 

           M(Tu) = 𝐖u 
′ 𝐃u 𝐖u                                                                                                               (8) 



   80 

 

             M(Tm) = (B)𝐖m 
′ 𝐄 𝐖m + 𝐖m 

′ 𝐃m 𝐖m                                                                   (9) 

where 𝐖𝐮 = [wu1
wu2  . . . wup  ]′, 𝐖𝐦 = [wm1

wm2  . . . wmp  ]′, E  is a 

unit matrix of order p × p , 𝐃u = (
1

u
−

1

N
)𝐃u∗   ,   𝐃m = (

1

n
−

1

N
)𝐃m∗  where 

  𝐃u∗ =

11 12 1p

21 22 2p

p1 p2 pp p × p

du du . . . du

du du . . . du

. . . . . .

. . . . . .

. . . . . .

du du . . . du

 
 
 
 
 
 
 
 
  

        and      𝐃m∗ =

11 12 1p

21 22 2p

p1 p2 pp p × p

dm dm . . . dm

dm dm . . . dm

. . . . . .

. . . . . .

. . . . . .

dm dm . . . dm

 
 
 
 
 
 
 
 
  

                      

where    B = (
1

m
−

1

N
)B1,  

   
-2 -1-1-2 2

y y xy x x y y yx x y

1 2

x x

f (M ) (4P - 1) f (M ) f (M ) Mf (M ) M
B  =  +  - ,

4 4 M 2 M

      
 

i i i i i

i i

-2 -1-1-2 2

z z y y z y y z z yy y

ii 2

z z

f (M ) M (4P - 1) f (M ) f (M ) Mf (M )
du =  +  - 

4 16 M 4 M

            
,

j j ji i i

i j

i j i i j j

i j

-1-1-1-1-2

y z y y z z yy z y y z z yy y

ij

z z

-1-1
2

z  z z z z z y

z z

(4P - 1) f (M ) f (M ) M(4P - 1) f (M ) f (M ) Mf (M )
du =   -  - 

4 8 M 8 M

(4P - 1) f (M ) f (M ) M
         + ,

16 M M

             

     

   
i i

i

i i i

i

-2 -1-1-2 22
z z y xy x x y y yx x y

i i 2 2

x z x

-1-1

y z y y z z y

z

f (M ) M (4P - 1) f (M ) f (M ) Mf (M ) M
dm = -  +  + 

4 M 16 M 2 M

(4P - 1) f (M ) f (M ) M
          - 

4 M
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j j ji i i

i j

i j i i

-1-1-2 2
xy x x y y yx x y

i j 2

x x

-1-1-1-1

y z y y z z yyz y y z z y

z z

z z z z

(4P - 1) f (M ) f (M ) Mf (M ) M
dm = -  +  

4 M 2 M

(4P - 1) f (M ) f (M ) M(4P - 1) f (M ) f (M ) M
           -  - 

8 M 8 M

(4P - 1) f (M )
           +

  

           

 j j

i j

-1-1
2

z z y

z z

f (M ) M
for i=1, 2, 3,..., p.

16 M M

   

Proof: The mean square errors of the estimator T is given by  

 
 2

yM T  = E T- M       
2

u y m y= E φ T  - M  + 1 - φ T  - M 
   

             
         

22

u m u m= φ  M T  + 1 - φ M T  + 2 φ 1 - φ  Cov T , T   

where  
 2

u u y M T   =  E T  -  M   and  
 2

m m yM T  = E T  -  M   ;       

The estimators uT  and 
mT  are based on two independent samples of sizes u and m 

respectively, hence  u mCov T , T  = 0 .Using large sample approximations assumed in 

section 4.1 and retaining terms upto the first order of approximations, the expression for 

   u mM T  and  M T are obtained as given in equations (8) and (9) and hence the 

expressions for mean square error of estimator T is obtained. 

Remark 4.2.1: The mean square error of the estimator T  in equation (7) depends on the 

population parameters  xyP ,
i yz P ,

i xzP ,
i j z z P ,  x x f M ,  y yf M

 
 

i iz zand f M ; (for i=1, 2, 

3, .., p). If these parameters are known, the properties of proposed estimator can be easily 

studied. Otherwise, which is the most often situation in practice, the unknown population 

parameters are replaced by their sample estimates. The population proportions xyP ,
i yz P ,

i xzP and 
i j z zP can be replaced by the sample estimate 

i i i jxy yz xz z z
ˆ ˆ ˆ ˆP , P , P  and P  and the 

marginal densities      
í iy y x x z zf M , f M  and f M ; (i = 1, 2, 3, ..., p)can be substituted by 

their kernel estimator or nearest neighbour density estimator or generalized nearest 

neighbour density estimator related to the kernel estimator (see [4]). Here, the marginal 
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densities    y y x xf M , f M and  
i iz zf M are replaced by      y xy x

ˆ ˆf M m , f M n and 

  i
i

z z
ˆf M n ;  (i = 1, 2, 3, ..., p)  respectively, which are obtained by method of 

generalized nearest neighbour density estimation related to kernel estimator. 

To estimate      
í iy y x x z zf M , f M  and f M ; (i = 1, 2, 3, ..., p) , by generalized nearest 

neighbour density estimator related to the kernel estimator, following procedure has been 

adopted: 

Choose an integer 
1

2h n  and define the distance  1 2δ x , x  between two points on the 

line to be 1 2x  - x . 

 For  xM̂ n , define         1 x 2 x n x
ˆ ˆ ˆδ M n δ M n - - - δ M n    to be the distances, 

arranged in ascending order, from  
xM̂ n  to the points of the sample. 

The generalized nearest neighbour density estimate is defined by  

  
  

 

  

n
x g

x

g=1h x h x

M̂ n  - x1ˆf M n  =  K 
ˆ ˆn M n M n 

 
 
 
 

  

where the kernel function K, satisfies the condition  K x  dx = 1





 . 

Here, the kernel function is chosen as Gaussian Kernel given by

       2K x  = 1  2  exp - 1  2  x . 

The estimate of     
i iy y z zf M  and f M ; i = 1, 2, 3, ..., p  can be obtained by the above 

explained procedure in similar manner. 

 

 



   83 

 

5. Choice of Optimal Weights 

To find the optimum of the weight vector 𝐖u = [wu1
wu2  . . . wup  ]′, the 

mean square error 
uM(T )  given in equation (8) is minimized subject to the 

condition 𝟏′𝐖u = 1 using the method of Lagrange’s Multiplier explained as under: 

To find the extrema using Lagrange’s Multiplier Technique, we define 1Q  as 

    𝑄1 = 𝐖u 
′ 𝐃u 𝐖u − λu(𝟏

′𝐖u − 1),                            (10) 

where 1  is a unit column vector of order p and 
uλ is the Lagrangian multiplier. 

 Now, by differentiating equation (10) partially with respect to 𝐖u  and equating it to 

zero we have 

                      
∂Q1

∂𝐖u
= 

∂

∂𝐖u
[𝐖u 

′ 𝐃u 𝐖u − λu(𝟏
′𝐖u − 1)] = 0 

This implies that,  2 𝐃u𝐖u − λu𝟏 = 𝟎, which yields 

                          𝐖u =
λu

2
 𝐃𝐮

−𝟏 𝟏                                                                                    (11) 

 Now pre- multiplying equation (11) by 𝟏′, we get    

           
λu

2
=

1

𝟏′ 𝐃u
−1 𝟏

                                                                                      (12)     

Thus, using equation (12) in equation (11) , we obtain the optimal weight vector as   

           𝐖uopt.
=

𝐃u
−1

𝟏′𝐃u
−1𝟏

                                                                    (13) 

In similar manners, the optimal of the weight 𝐖m = [wm1
wm2  . . . wmp  ]′  is 

obtained by minimizing  mM T  subject to the constraint 𝟏′𝐖m = 1  using the method of 

Lagrange’s multiplier, for this we define  

    𝑄2 = (B)𝐖m 
′ 𝐄 𝐖m + 𝐖m 

′ 𝐃m 𝐖m − λm(𝟏′𝐖𝐦 − 1),  
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where 
mλ is the Lagrangian multiplier. 

Now, differentiating 2Q  with respect to 𝐖m and equating to 0, we get 

               𝐖mopt.
=

𝐃m
−1

𝟏′𝐃m
−1𝟏

                                                                           (14) 

Then substituting the optimum values of 𝐖u and 𝐖m in equations (8) and (9) respectively, 

the optimum mean square errors of the estimators are obtained as: 

                M(Tu)opt. = (
1

u
−

1

N
)

1

𝟏′ 𝐃u∗
−1 𝟏

                                                                (15)                                                                                     

                M(Tm)opt. = (
1

m
−

1

N
)B1  +   (

1

n
−

1

N
)

1

𝟏′ 𝐃m∗
−1  𝟏

                                (16)  

 

6. Minimum Mean Square Errors of the Proposed Estimator T 

Since the mean square error of the estimator T given in equation (7) is a function of 

unknown constants φ , therefore, it is minimized with respect to φ  and subsequently the 

optimum values of φ  is obtained as 

       opt. m u mopt. opt. opt.
φ  = M T   M T +  M T                                                      (17) 

Now substituting the values of opt.φ in equation (7), we obtain the optimum mean square 

error of the estimators T  as 

            * 

u m u mopt. opt. opt. opt. opt.
M T = M T  . M T M T  +  M T                 (18) 

Further, substituting the optimum values of the mean square errors of the estimators given 

in equations (15) and (16) in equation (17) and (18) respectively, the simplified values 

opt.φ and   
*

opt.
M T  are obtained as 
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    2

opt. 1 1φ = μ μ C - B  + C   μ  C - μ B  + C - A  - A     
                                  

(19) 

  
 * 1 2

opt. 2

3

μ D  - D1
M T = 

n μ  C - μ D  - A  

                                          (20) 

where 

A = 1 𝟏′ 𝐃u∗
−1 𝟏⁄ ,  C = 1 𝟏′ 𝐃m∗

−1  𝟏⁄   , 1 2 1 3 1D = A C,  D = A B  + A C,  D = B  + C - A  

     -2 -1-2 -12 2

1 y y x x y x xy x x y y y xB  = f (M ) 4 + f (M ) M 4 M  - (4P - 1) f (M ) f (M ) M 2 M ,      

and  μ is the fraction of the sample drawn afresh at the current (second) occasion. 

Remark 6.1:  
*

opt.
M T  derived in equation (20) is a function of μ . To estimate the 

population median on each occasion the better choice of  μ  is 1(case of no matching); 

however, to estimate the change in median from one occasion to other, μ  should be 0(case 

of complete matching). But intuition suggests that an optimum choice of μ  is desired to 

devise the amicable strategy for both the problems simultaneously. 

7. Optimum Replacement Strategy for the Estimator T 

The key design parameter affecting the estimates of change is the overlap between 

successive samples. Maintaining high overlap between repeats of a survey is operationally 

convenient, since many sampled units have been located and have some experience in the 

survey. Hence to decide about the optimum value of μ  (fractions of samples to be drawn 

afresh on current occasion) so that yM  may be estimated with maximum precision and 

minimum cost, we minimize the mean square error  
*

opt.
M T  in equation (20) with respect 

toμ . 

The optimum value of μ  so obtained is one of the two roots given by 

 
1

2 2

2 2 1 3 1μ = G  ± G  - G  G G
 
 
 

                              (21) 
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where 1 1 2 2 3 1 2 3G = C D ,  G = C D   and  G = A D  +  D  D . 

The real value of μ  exist, iff 
2

2 1 3G  - G  G 0 . For any situation, which satisfies this 

condition, two real values of  μ  may be possible, hence to choose a value of μ , it should 

be taken care that 0 μ 1   , all other values of μ  are inadmissible. If both the real values 

of μ  are admissible, the lowest one will be the best choice as it reduces the total cost of 

the survey. Substituting the admissible value of μ  say  
0μ  from (21) in to the equation 

(20), we get the optimum value of the mean square error of the estimator T  with respect 

to φ as well as μ which, is given as 

 
 * * 0 1 2

opt.  2

0 0 3

μ  D  -  D1
M T = 

n μ  C - μ  D  - A  

 .                                                                                                    (22) 

 

8. Efficiency with Increased Number of Auxiliary Variables 

As we know that increasing the number of auxiliary variables typically increases 

the precision of the estimates. In this section we verify this property for the proposed 

estimator as under: Let pT and qT be two proposed estimators based on p and q auxiliary 

variables respectively such that p < q , then    p qM T  M T , i.e. 

   p qM T  - M T   0                                                                                                         (23) 

     p p p p q q q q

2 2

p p p p q q q q

μ A C  - A  (B + C ) μ A C  - A  (B + C )1 1
 -   0

n nμ  C  - μ (B + C  + A ) - A μ  C  - μ (B + C  + A ) - A

       
      

 

On simplification, we get 

    
 

 
   2 p q p q

p q p q p q

p q

A A C - C
A - A μ - 1 μ C C +  - μ B C - C μ - 1  - B 0

A - A
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This reduces to the condition 

                                                   p qA - A   0                                                                  (24) 

So from section 6 above, we get 

1

𝟏′ 𝐃p
−1 𝟏

−
1

𝟏′ 𝐃q
−1 𝟏

 ≥ 0 

𝟏′ 𝐃q
−1 𝟏 ≥ 𝟏′ 𝐃p

−1 𝟏 

Following, see Rao (2006), the matrix qD can be partitioned and can be written as 

p

q  = 
 
  

D F
D

F G
  

where F , F  and G are matrices deduced from qD  such that their order never exceeds q-

p and always greater than or equal to 1.Then,                                                 

                                                            
-1

-1 p

q  = 
  

 
 

D HJH HJ
D

JH J
                                                 (25) 

where  
1

-1

p



 J G F D F and 
1

p

H D F . (See Rao (2006) and Olkin (1958)) 

Now rewriting 
1

q

1 D 1 by putting the value of 
-1

qD from equation (25), we get 

                      

 
-1

p1 p

q p q - p

q - p

  
        

   

1D HJH HJ
1 D 1 1 1

1JH J
 

                                 p-1

p p q - p p q - p

q - p

 -       -   +  
 

        
 

1
1 D HJH 1 JH 1 HJ 1 J

1
      

                               1

p p p q - p p p q - p q - p q - p  -   -     +         1 D HJH 1 1 JH 1 1 HJ 1 1 J 1
                 

   1 1

q p p p p p q - p p p q - p q - p q - p   -    =  -   -     +           1 D 1 1 D 1 1 HJH 1 1 JH 1 1 HJ 1 1 J 1  
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    p1 1

q p p p p q - p

q - p

- 
   -    =    

-

 
          

1HJH HJ
1 D 1 1 D 1 1 1

1JH J
 

                     
   1 1

q p p p   -       -    0 
-

   
    

 

H
1 D 1 1 D 1 1 J H I 1

I
 

Now latter follows since J is positive definite so that    0 R J R  for all R,  

where  -  R H I 1  . 

Hence from equation (23)  

                                              p qM T  - M T   0  

This leads to the result that utilizing more number of auxiliary variables provides more 

efficient estimates in terms of mean square error for the proposed estimator. 

 

9. Efficiency Comparison  

To evaluate the performance of the proposed estimator, the estimator T at optimum 

condition is compared with respect to the sample median estimator  yM̂ n , when there is 

no matching from previous occasion. For empirical investigations the proposed estimator 

have been considered for the cases p = 1 and p = 2.   

The variance of sample median estimator  yM̂ n  is given as  

   
 - 2

y y y
ˆV M n  = f M 4 n   

  
                               (26) 

The percent relative efficiencies T | p =1 T | p =2E  and  E of the estimator T  (under their 

respective optimum conditions) with respect to  yM̂ n are given by 
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y

T | p =1 * *

| p =1 opt.

ˆV M n
E  =  × 100

 M T

 
      and  

 

 

y

T | p =2 * *

| p =2 opt.

ˆV M n
E =   × 100

  M T

 
                   (27)    

 

10. Empirical Illustrations and Monte Carlo Simulation 

Empirical validation can be carried out by Monte Carlo Simulation. Real life situations of 

two completely known finite populations have been considered.  

Population Source: [Free access to the data by Statistical Abstracts of the United States] 

The first population comprise of N = 40 states of United States. Let 
iy represent 

the rate of abortions during 2008 in the thi  state of U. S., 
ix be the rate of abortions during 

2007 in the thi  state of U. S., 
1 iz denote the rate of abortions during 2005 in the thi state of  

U. S. and 2 iz  denote the rate of abortions during 2004 in the thi state of  U. S. The data 

are presented in Figure 1. 

Similarly, the second population consists of N=41 corn producing states of United 

States. We assume 
iy the production of corn (in million bushels) during 2009 in the thi

state of U. S., 
ix be the production of corn (in million bushels) during 2008 in the thi  state 

of U. S., 
1 iz denote the production of corn (in million bushels) during 2007 in the thi state 

of U. S. and 
2 iz denote the production of corn (in million bushels) during 2006 in the thi

state of U. S. The data are represented by means of a histogram in Figure 2.  

The graphs in Figure 1 and Figure 2 show that the rate of abortions and the 

production of corn in different states are almost skewed towards right. One reason of 

skewness for the population-I may be the distribution of population in different states, that 

is the states having larger population are expected to have larger rate of abortion cases. 

Similarly for population-II, the states having larger area for farming are expected to have 

larger production of corn.  Thus skewness of data indicates that the use of median may be 

a good measure of central location than mean in these situations. 
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Figure 1:  Rate of Abortion versus different states of U.S. during 2007 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Production of Corn (In Million Bushels) versus different states of U.S. 

during 2008  
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For the considered population-I and population-II, the optimum values of μ  

defined in (21) and percent relative efficiencies T | p =1E and T | p =2E (defined in (27)) of T

(for p=1 and p=2 under their optimal conditions) with respect to  yM̂ n  have been 

computed and are presented in Table-1. To validate the above empirical results, Monte 

Carlo simulation have also been performed for Population-I. 

Simulation Algorithm 

(i) Choose 5000 samples of size n=15 using simple random sampling without            

      replacement on first occasion for both the  study and auxiliary variables. 

(ii) Calculate sample median  x|kM̂ n ,  
1z |kM̂ n  and  

2z |kM̂ n  for k =1, 2, - - -, 5000. 

(iii) Retain m = 13 units out of each n = 15 sample units of the study and auxiliary  

       variables at the first occasion. 

(iv) Calculate sample median  x|kM̂ m ,  
1z |kM̂ m  and  

2z |kM̂ m for k= 1, 2, - - -, 5000. 

(v) Select u = 2 units using simple random sampling without replacement from N-n = 25  

     units of the population for study and auxiliary variables at second (current) occasion. 

(vi) Calculate sample medians  y|kM̂ u ,  
1z |kM̂ u ,  

2z |kM̂ u and  y|kM̂ m  for 

      k = 1, 2, - - -, 5000 . 

(vii) Iterate the parameter φ  from 0.1 to 0.9 with a step of 0.1. 

(viii) Calculate the percent relative efficiencies of the proposed estimator T with the case  

         p = 1 and p = 2 (i.e.  | p =1 | p =2T  and  T ) with respect to sample median estimator             

             yM̂ n  as 
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5000 5000 2  2

y|k y y|k y

k=1 k=1
1 25000 5000

 2  2

p=1| k y p=2 | k y

k=1 k=1

ˆ ˆM n - M M n - M

E (sim) =  × 100   and   E (sim) =  × 100 

T - M T - M

   
   

      

 

 

 

      for k= 1, 2, - - -, 5000. 

For better analysis, the above simulation experiments were repeated for different choices 

of μ . For convenience the different choices of μ are considered as different sets for the 

considered Population-I which is shown below: 

Set I: n=15, μ = 0.10 , (m = 13, u = 2), Set II: n=15, μ = 0.20 , (m = 12, u = 3) 

Set III: n=15, μ = 0.30 , (m = 10, u = 5), Set IV: n=15, μ = 0.40 , (m = 9, u = 6)  

The simulation results obtained are presented in Table-2. 

 

Table 1: Comparison of the proposed estimators | p =1 | p =2T  and  T  (at their respective  

                optimum conditions)  with respect to the estimator yM̂ (n)
 

 

 
Population-I Population-II 

T | p =1μ  0.5478 0.5418 

T | p =2μ  0.5229 0.4759 

T | p =1E  
171.16 136.74 

T | p =2E  
199.54 322.16 
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Table 2: Estimated values of population Median by using the proposed estimators  | p =1T  

and 
 

| p =2T  at their optimum conditions. 

     

         Actual 

 

 

Estimated 

Population-I Population-II 

yM =15.50 yM =57 

n=10 n=15 n=20 n=10 n=15 n=20 

| p =1T  14.83 15.10 16.16 55.74 50.97 50.21 

| p = 2T  15.01 15.47 15.98 56.31 60.69 58.72 

 

 

Table 3: Monte Carlo Simulation results when the proposed estimators | p =1 | p =2T  and  T  are  

               compared to  yM̂ n  for population-I  

 

             Set 
φ     

I 

 

II III IV 

0.1 
1E (sim)  307.79 536.79 316.69 422.16 

2E (sim)  528.09 750.31 503.03 572.87 

0.2 
1E (sim)  304.69 523.28 352.51 452.88 

2E (sim)  538.70 742.33 545.61 624.11 

0.3 
1E (sim)  294.64 505.08 370.03 460.89 

2E (sim)  521.40 727.42 556.61 621.96 

0.4 
1E (sim)  277.73 470.01 366.51 471.37 

2E (sim)  480.55 669.88 521.47 618.86 

0.5 
1E (sim)  260.27 426.75 355.05 459.98 

2E (sim)  431.18 588.43 479.63 582.28 

0.6 
1E (sim)  241.34 381.47 328.24 443.04 

2E (sim)  379.41 506.80 418.77 542.37 

0.7 
1E (sim)  222.24 339.33 301.81 413.75 

2E (sim)  329.89 433.81 366.84 488.27 

0.8 
1E (sim)  204.09 298.86 272.14 378.01 

2E (sim)  285.40 366.39 316.65 431.25 

0.9 
1E (sim)  184.42 263.30 239.41 337.58 

2E (sim)  243.33 312.30 268.82 373.59 
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11. Mutual Comparison of the Estimators | p =1 | p =2 and  T T  

The performances of the estimator | p =1 | p =2T  and  T  have been elaborated empirically as 

well as through simulation studies in above sections and the results obtained are presented 

in Table 1 and Table 3. The mutual comparison of the estimators for the cases when p=1   

and p = 2 has been elaborated graphically and is presented in Figure 3.  

 

Figure 3: Mutual Comparison of Proposed Estimator | p =1 | p =2T  and  T when 

compared with the estimator yM̂
 
for set-IV 
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12. Interpretation of Results   

(i) It is clear from Table 1 that optimum values of T | p =1μ  and T | p =2μ  exist for both the 

considered population and T | p =2 T | p =1μ  <  μ  . This indicates that less fraction of fresh 

sample is required when more number of auxiliary variables is used. Hence, total cost of 
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survey will also get reduced when more number of additional auxiliary variables will be 

considered. 

(ii) Table 1 also explains that the value of T | p =2 T | p =1E > E , this justifies the fact that 

efficiency is highly increased when more numbers of auxiliary variates are taken into 

consideration, which also resembles in accordance with the theory. 

(iii) In Table 2 we have also calculated the estimates of population median by using the 

proposed estimator T for p=1 and p=2 at their respective optimum conditions. We see that 

the estimates for population median are quite near to the original value of population 

median. 

(iv) From simulation study in Table 3 and Figure 3, we observe that the value of 
1E (sim)

and 
2E (sim)exists for all choices of φ and for all different sets. As φ increases the value 

of 
1E (sim) and 

2E (sim)  decreases for all sets which indicates that if more weight is given 

to the estimator defined on current occasion, the efficiency of the estimator T get reduced, 

which is in accordance with see [19] results. The big difference in two lines in Figure 3 

shows that the performance of estimator drastically enhances when more number of 

auxiliary variables is taken in to account. In real time exercise the estimates for population 

median are more near to the original value of population median when the numbers of 

auxiliary variables are increased. 

(v) From Table 3 we also observe that for set II, the estimators | p =1 | p =2T  and  T  prove to 

be extensively better than the sample median estimator. Although no fixed pattern is 

observed in the efficiencies of the proposed estimators, if the value of fraction of fresh 

sample to be drawn on current occasion increases. 
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12. Conclusion 

From the preceding interpretations, it may be concluded that the use of multivariate 

exponential ratio type estimators for the estimation of population median at current 

occasion in two occasion successive sampling is highly appreciable as vindicated through 

empirical and simulation results. The mutual comparison of the proposed estimators 

indicates that the estimators utilizing more auxiliary variables perform much better in 

terms of cost as well as precision. Hence, the proposed multivariate estimator T may be 

recommended for its practical use in longitudinal surveys for the estimation of population 

median by survey practitioners. 
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* Following is the publication based on the work of this chapter:-- 

     1. Priyanka, K. and Mittal, R. (2015): Estimation of Population Median in Two- 

          Occasion Rotation Sampling.  Journal of Statistics Applications & Probability  

          Letters, Vol. 2, No. 3, 205-219. 
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Estimation of Population Median in Two-

Occasion Rotation Sampling Two Occasion  

 

1. Introduction 

Survey often get repeated on many occasions for estimating same characteristics 

at different point of time technically called repetitive sampling or sampling over 

successive occasions. It has been given considerable attention by some survey 

statisticians, when a population is subject to change, a survey carried out on a single 

occasion will provide information about the characteristic of the surveyed population for 

the given occasion only, the survey estimates are therefore time specific. Generally, the 

main objective of successive surveys is to estimate the change with a view to study the 

effect of the forces acting upon the population as this scheme consists of selecting sample 

units on different occasions such that some units are common with sample drawn on 

previous occasions. This retention of a part of sample in periodic surveys provides 

efficient estimates as compared to other alternatives by eliminating some of the old 

elements from the sample and adding new elements to the sample each time. 

The problem of sampling on two successive occasions was first considered by 

Jessen (1942) and latter this idea was extended, see, for example, Patterson (1950), Narain 

(1953), Eckler (1955),  Gordon (1983), Arnab and Okafar (1992), Feng and Zou (1997), 

Singh and Singh (2001), Singh and Priyanka (2008a), Singh et al. (2013a), 

Bandhopadhyay and Singh (2014) and many others. All the above efforts were devoted to 

the estimation of population mean or variance on two or more occasion successive 

sampling. 

When a distribution is skewed, when end-values are not known, or when one 

requires reduced importance to be attached to outliers because they may be measurement 

errors, median can be used as a measure of central location. Median is defined on ordered 

one-dimensional data, and is independent of any distance metric so it can be seen as a 
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better indication of central tendency (less susceptible to the exceptionally large value in 

data) than the arithmetic mean.  

Most of the studies related to median have been developed by assuming simple 

random sampling or its ramification in stratified random sampling considering only the 

variable of interest without making explicit use of auxiliary variables (Sedranks and 

Meyer (1978), Gross (1980), Smith and Sedranks (1983)). Some of the researchers namely 

Chamber and Dunstan (1986), Kuk and Mak (1989), Rao et al. (1990), Rueda et al (1998) 

and Allen et al. (2002) etc. have utilized the auxiliary information for the estimation of 

population median.  

Very few researchers namely Martinez et al (2005) and Rueda and Munoz (2008) have 

proposed estimators for population median in successive sampling.  

The work done in Singh and Priyanka (2008b) have proposed estimator to estimate 

population median in two-occasion successive sampling assuming that a guess value of 

the population median is known. In all the above quoted papers, related to the study of 

median, they have assumed that the density functions appearing in the results are known. 

But, in general being a population parameter they are not known. Hence, using the 

additional stable auxiliary variable available on both the occasions, Priyanka and Mittal 

(2014, 2016) have proposed estimators for population median in successive sampling. In 

these papers they have also estimated the unknown density functions by using the method 

of generalized nearest neighbour density estimator related to kernel estimator. 

But in practice, one may find that if the gap between two successive occasions is 

large, the stability character of the auxiliary variate may not sustain. In addition to this, 

we may also find several other situations where auxiliary variate may not be stable over 

time, whatever is the duration between two surveys. In such situations the use of dynamic 

auxiliary variate (changing over time) which are readily available on different occasions, 

may be efficiently utilized for estimating the population median at current occasions. 

Hence, focusing on the above problems in this work we have proposed more 

effective and relevant estimators of population median at current occasion in two occasion 
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successive sampling using additional auxiliary information which is dynamic over time 

and is readily available at both the occasions. Properties of the proposed estimators are 

discussed. The density functions appearing in the results have been estimated by the 

method of generalized nearest neighbour density estimator related to kernel estimator. 

Optimum replacement strategies are elaborated for the proposed estimators. 

Proposed estimators at optimum conditions are compared with the sample median 

estimator when there is no matching from the previous occasion as well as with the ratio 

type estimator proposed by Singh et al. (2007) for second quantile, when no additional 

auxiliary information was used at any occasion. The behaviours of the proposed estimators 

are justified by empirical interpretations and validated by the means of simulation study 

with the help of some natural populations. 

2. Sample Structure and Notations 

Let  1 2 NU = U , U , ... , U  be the finite population of N units, which has been sampled 

over two occasions. It is assumed that size of the population remains unchanged but values 

of units change over two occasions. The character under study be denoted by x (y) on the 

first (second) occasions respectively. It is assumed that information on an auxiliary 

variable whose population medians are known and dynamic over occasions are readily 

available on both the occasions and positively correlated to x and y respectively. Let 1z

be the auxiliary variable on first occasion which changes to 2z  on second (current) 

occasions. Simple random sample (without replacement) of n units is taken on the first 

occasion. A random subsample of   m n units is retained for use on the second 

occasion. Now at the current occasion a simple random sample (without replacement) of 

u= (n-m) = nµ units is drawn afresh from the remaining (N-n) units of the population so 

that the sample size on the second occasion is also n. μ and  λ, μ + λ=1  are the fractions 

of fresh and matched samples respectively at the second (current) occasion. The following 

notations are considered for the further use: 

1 2x y z zM , M , M , M : Population median of the variables x, y, 1 2 and  z z  respectively. 
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1 2y z z

ˆ ˆ ˆM (u), M u , M u : Sample median of variables y, 1 2 and  z z based on the sample of 

size u. 

   
1 2x y z z

ˆ ˆ ˆ ˆM (m), M (m), M m , M m : Sample median of variables x, y, 1 2 and  z z  based on 

the sample of size m. 

 
1 2x z z

ˆ ˆ ˆM (n), M (n), M n : Sample medians of variables x, 1 2 and  z z  based on the sample 

of size n. 

       
1 1 2 2x x y y z z z zf M , f M , f M , f M : The marginal densities of variables x, y, 1 2z and z

respectively. 

3. Proposed Estimator 𝐓𝐢 𝐣 (i, j =1, 2) 

To estimate the population median yM on the current (second) occasion, two sets of 

estimators have been proposed utilizing the concept of exponential ratio type estimators. 

First set of estimators  1 u 2 uT , T  is based on sample of the size u = nμ  drawn afresh on 

the current (second) occasion and the second set of estimators  1 m 2 mT , T  is based on 

sample size m = nλ  common to the both occasions. The two sets of the proposed 

estimators are given as 

 

 2

2

y

1 u z

z

M̂ u
T  =  M

M̂ u

 
 
 
 

                                              (1) 

 
 

 
2 2

2 2

z z

2 u y

z z

ˆM - M u
ˆT =  M u  exp

ˆM +  M u

 
 
 
 

                                 (2)

 
 

 

 

 
2 2

2 2

z zy

1 m x

x z z

ˆˆ M - M mM m
ˆT =  M n   exp 

ˆ ˆM m M +  M m

  
  

   
   

                    (3) 

 
 

 

*

y*

2 m x *

x

M̂ m
ˆT =  M n

M̂ m

 
 
 
 

                       (4) 

where    
 

 
2 2

2 2

z z*

y y

z z

ˆM - M m
ˆ ˆM m =  M m  exp 

ˆM + M m

 
 
 
 

,    
 

 
1 1

1 1

z z*

x x

z z

ˆM - M m
ˆ ˆM m =  M m  exp

ˆM + M m
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and    
 

 
1 1

1 1

z z*

x x

z z

ˆM - M n
ˆ ˆM n =  M n  exp 

ˆM + M n

 
 
 
 

. 

Considering the convex linear combination of the two sets of estimators  i uT i = 1, 2  and 

 j mT j = 1, 2 , we have the final estimators of population median 
yM  on the current 

occasion as 

 i j i j i u i j j mT = φ T  + 1 - φ  T  ; (i, j = 1, 2)                        (5) 

where  i jφ i, j = 1, 2  are the unknown constants to be determined so as to minimise the 

mean square error of the estimators 
i jT (i, j=1, 2). 

Remark 3.1: For estimating the median on each occasion, the estimators  i uT i = 1, 2  are 

suitable, which implies that more belief on i uT could be shown by choosing  i jφ i, j = 1, 2

as 1 (or close to 1), while for estimating the change from occasion to occasion, the 

estimators  j mT j=1, 2  could be more useful so 
i jφ  might be chosen as 0 (or close to 0). 

For asserting both problems simultaneously, the suitable (optimum) choices of 
i jφ  are 

desired. 

4. Properties of the Proposed Estimators  𝐓𝐢 𝐣 (i, j =1, 2) 

4.1. Assumptions 

The properties of the proposed estimators  i jT i, j =1, 2  are derived under the following 

assumptions: 

(i) Population size is sufficiently large (i.e. N    ), therefore finite population 

corrections are ignored. 

(ii) As N    , the distribution of the bivariate variable (a, b) where  1 2a and b x, y, z , z

and a  b  approaches a continuous distribution with marginal densities  af .  and  bf .  

respectively, (see Kuk and Mak (1989)). 
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(iii) The marginal densities        
1 2x y z zf . , f . , f .  and  f .  are positive. 

(iv) The sample medians              
1 2 1y y x x z z z

ˆ ˆ ˆ ˆ ˆ ˆ ˆM u , M m , M m , M n , M u , M u , M m ,

     
2 1 2z z z

ˆ ˆ ˆM m , M n  and M n are consistent and asymptotically normal (see Gross (1980)). 

(v) Following Kuk and Mak (1989), let abP  be the proportion of elements in the population 

such that 
a

ˆa M  and 
b

ˆb M  where  1 2a and b x, y, z , z and a  b . 

(vi) Following large sample approximations are assumed: 

               

               
2 2 2 2 1 1 1 1

y y 0 y y 1 x x 2 x x 3

z z 4 z z 5 z z 6 z z 7

i

ˆ ˆ ˆ ˆM u = M 1 + e ,  M m = M 1 + e ,  M m = M 1 + e ,  M n = M 1 + e , 

ˆ ˆ ˆ ˆM u = M 1 + e , M m = M 1 + e , M m =M 1 + e  and M n =M 1 + e ,

such that |e | < 1  i = 0, 1, 2, 3, 4, 5, 6 and 7 .

 

The values of various related expectations can be seen in Allen et al. (2002) and Singh 

(2003). 

4.2. Bias and Mean Square Errors of the Estimators 𝐓𝐢 𝐣 (i, j =1, 2) 

The estimators  i u j mT  and T i, j=1, 2  are ratio, exponential ratio, ratio to exponential ratio 

and chain type ratio to exponential ratio type in nature respectively. Hence they are biased 

for population median
yM . Therefore, the final estimators  i jT i, j =1, 2 defined in equation 

(5) are also biased estimators of 
yM . Bias  B .  and mean square errors  M . of the 

proposed estimators  i jT i, j =1, 2 are obtained up to first order of approximations and 

thus we have following theorems: 

Theorem 4.2.1.Bias of the estimators  i jT i, j =1, 2  to the first order of approximations are 

obtained as 

                    i j ij i u ij j mB T  = φ  B T  + 1 - φ  B T ; (i, j=1,2)                        (6) 
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where  
       

2 2 2 2 2

2 2

 -2  -1 -1

z z y yz y y z z

1 u 2

z z

f M M 4 P  - 1 f M f M1
B T  =  - 

u 4 M 4 M

     
     
 
 
 

                           (7) 

 
       

2 2 2 2 2

2 2

 -2  -1 -1

z z y yz y y z z

2 u 2

z z

3 f M M 4 P  - 1 f M f M1
B T  =   - 

u 32 M 8 M

     
     
 
 
 

      (8) 

 

 
         

           

2 2

2

2 2 2 2 2 2

2 2

 -2 -1 -1 -2

z z yxy x x y yx x y

1 m 2 2

x x z

 -1  -1 -1 -1

xz x x z z y yz y y z z

x z z

3 f M M4P -1 f M f Mf M M1
B T  =   - +

m 4 M 4M 32  M

4 P  - 1 f M f M M 4 P  - 1 f M f M
               + -

8 M M 8M

    

            



           




           

 

2 2 2

2

 -1 -1  -1 -1

xz x x z z yxy x x y y

x x z

 -2

x x y

2

x

4 P - 1 f M f M M4 P - 1 f M f M1
           +  -

n 4 M 8 M  M

f M M
                -                                                                

4M

              




   



                                                       (9)   

 

 
         

           

2 2

2

1 1 1 2 2 2

1 2

-2  -1 -1 -2

z z y xy x x y yx x y

2 m 2 2

x z x

 -1  -1 -1  -1

xz x x z z y xz x x z z y

x z x z

3 f M M 4 P - 1 f M f Mf M  M1
B T  = + -

m 4 M 32M 4 M

4 P - 1 f M f M M 4 P - 1 f M f M M
                - +

8 M M 8 M M

       

             



            

           

       

1 1 1 2 2 2

1 2

1 2 1 1 2 2 1 1

1 2 1

 -1  -1 -1  -1

yz y y z z yz y y z z

z z

 -1  -1 -2

z z z z z z y z z y

2

z z z

4 P - 1 f M f M 4 P - 1 f M f M
         + -

8 M 8 M

4 P - 1 f M f M M f M M
                - -

16 M M 32M

4 P1
                + 

n

      
      

     
     




           

           

1 1 1

1

2 2 2 1 1 1

2. 1

 -1 -1  -1 -1

xz x x z z yxy x x y y

 x x z

 -1  -1 -1 -1

xz x x z z y yz y y z z

x z z

4 P - 1 f M f M M- 1 f M f M
+

4 M 8 M M

4 P - 1 f M f M M 4 P - 1 f M f M
                 - -

8 M M 8 M
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1 2 1 1 2 2 1 1

1 2. 1

 -1  -1  -2
 -2

z z z z z z y z z yx x y

2 2

z z x z

4 P - 1 f M f M M  f M  Mf M  M
+ - +      (10)

16 M M 4 M 32 M

              




 

Proof: The bias of the estimators  i jT i, j = 1, 2  are given by  

                   i j i j y ij i u ij j mB T  = E T  - M  = φ  B T  + 1 - φ B T  
 

where      i u i u y j m j m yB T  = E T  - M  and  B T  = E T  - M      
 

Using large sample approximations assumed in Section 4.1 and retaining terms upto the 

first order of approximations, the expression for    i u j mB T  and  B T are obtained as in 

equations (7) - (10) and hence the expression for bias of the estimators  i jT i, j =1, 2  are 

obtained as in equation (6). 

Theorem 4.2.2.Mean square errors of the estimators  i jT i, j =1, 2  to the first order of 

approximations are obtained as 

           
2

2

i j i j i u i j j m i j i j i u j mM T = φ  M T + 1- φ M T +2 φ 1- φ Cov T , T ;(i, j=1,2)       (11) 

Where  1 u 1

1
M T  =  A

u
                       (12) 

 2 u 4

1
M T  =  A

u
                                                              (13) 

 1 m 2 3

1 1
M T  =  A  +   A

m n
                     (14) 

 2 m 5 6

1 1
M T  =  A  +   A

m n
                     (15) 
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2 2 2 2 2

2 2
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2

z z y yz y y z z yy y

1 2

z z

f M M 4 P  - 1 f M f M Mf M
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2 2 2 2 2

2 2

 -2  -1 -1 -2
2

z z y yz y y z z yy y

4 2

z z

f M M 4 P  - 1 f M f M Mf M
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x z z

 -1 -1 -1 -1
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yz y y

f M M f M Mf M f M M
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4 P - 1 f M f M M4 P - 1 f M f M M
         - +
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1 1

1

1 1 1 1 1 1

1 1

 -2 -1 -1  -2 22
z z yxy x x y y y x x y

6 2 2

x x z

 -1  -1 -1  -1 2

yz y y z z y xz x x z z y

z x z

f M M4 P - 1 f M f M M f M M
A =   - -  

2 M 4 M 16 M

4 P - 1 f M f M M 4 P - 1 f M f M M
           - +   

4 M 4 M  M

        -

              




            

           
2 2 2 1 2 1 1 2 2

2 1 2

 -1  -1  -1 -1 2 2

xz x x z z y z z z z z z y

x z z z

4 P - 1 f M f M M 4 P - 1 f M f M M
+

4 M  M 8 M M

             




 

Proof: The mean square errors of the estimators 
i jT are given by  

 
 2

i j i j yM T  = E T - M       
2

ij i u y ij j m y= E φ  T  - M  + 1 - φ T  - M 
 

 

       
22

i j i u i j j m ij ij i u j m= φ  M T  + 1 - φ M T  + 2 φ  1 - φ  Cov T , T  
  

where  
 2

i u i u y M T   =  E T  -  M  
and

 2

j m j m yM T  = E T  -  M      
;       (i, j=1, 2)  

The estimators i uT  and 
j mT  are based on two independent samples of sizes u and m 

respectively, hence  i u j mCov T , T  =0;  (i, j = 1, 2) .Using large sample approximations 

assumed in section 4.1 and retaining terms upto the first order of approximations, the 

expression for    i u j mM T  and  M T are obtained as given in equations (12) - (15) and hence 

the expressions for mean square error of estimators  i jT i, j =1, 2  are obtained as in 

equation(11). 

Remark 4.2.1: The mean square errors of the estimators 
i jT (i, j=1, 2)  in equation (11) 

depend on the population parameters
 xyP ,

1 2yz yzP , P ,
1 2 1 2 xz  xz  z zP , P , P ,  x x f M ,  y yf M ,

   
1 1 2 2z z z z f M  and f M . If these parameters are known, the properties of proposed estimators 

can be easily studied. Otherwise, which is the most often situation in practice, the 

unknown population parameters are replaced by their sample estimates. The population 

proportions
xyP ,

1 2yz yzP , P ,
1 2 1 2 xz  xz  z zP , P  and  P can be replaced by the sample estimate 

1 2 1 2 1 2xy xz xz yz yz z z
ˆ ˆ ˆ ˆ ˆ ˆP , P , P , P , P  and  P and the marginal densities    y y x xf , M , f M ,  

1 1z zf M and 
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2 2z zf M can be substituted by their kernel estimator or nearest neighbour density estimator 

or generalized nearest neighbour density estimator related to the kernel estimator 

Silverman (1986). Here, the marginal densities        
1 1 2 2y y x x z z z zf M , f M , f M  and f M are 

replaced by   y y
ˆ ˆf M m ,   x x

ˆ ˆf M n ,    
1 1z z

ˆ ˆf M n   
2 2z z

ˆ ˆand f M n  respectively, which are 

obtained by method of generalized nearest neighbour density estimator related to kernel 

estimator. 

To estimate        
1 1 2 2y y x x z z z zf M , f M , f M  and f M , by generalized nearest neighbour density 

estimator related to the kernel estimator, following procedure has been adopted: 

Choose an integer 
1

2h n  and define the distance  1 2δ x , x  between two points on the 

line to be 1 2x  - x . 

  For   xM̂ n  , define         1 x 2 x n x
ˆ ˆ ˆδ M n δ M n - - - δ M n    to be the distances, 

arranged in ascending order, from  
xM̂ n  to the points of the sample. 

The generalized nearest neighbour density estimate is defined by  

  
  

 

  

n
x i

x

i=1h x h x

M̂ n  - x1ˆ ˆf M n  =  K 
ˆ ˆn δ M n δ M n

 
 
 
 

  

 

where the kernel function K, satisfies the condition  K x  dx = 1





 . 

Here, the kernel function is chosen as Gaussian Kernel given by  
21

 -  x
21

K x  =  e
2π

 
 
  . 

The estimate of       
1 1 2 2y y z z z zf M , f M  and f M  can be obtained by the above explained 

procedure in similar manner. 
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5. Minimum Mean Square Errors of the Proposed Estimators  𝐓𝐢 𝐣 (i, j =1, 2) 

Since the mean square errors of the estimators  i jT i, j =1, 2 given in equation (11) are the 

functions of unknown constants  i jφ i, j = 1, 2 , therefore, they are minimized with respect 

to 
i jφ  and subsequently the optimum values of 

i jφ  are obtained as 

 
   opt.

j m

i j

i u j m

M T
φ  = 

M T  + M T
; (i, j = 1, 2)                               (16) 

Now substituting the values of 
opt.i jφ in equation (11), we obtain the optimum mean square 

errors of the estimators  i jT i, j =1, 2  as 

 
   
   

 
i u j m

i j opt.
i u j m

M T  . M T
M T = ;  i, j = 1, 2

M T  + M T
                   (17) 

Further, substituting the values of the mean square error of the estimators defined in 

equation (12) to equation (15) in equation (16) and (17), the simplified values 
opt.i jφ and  

 i j opt.
M T  are obtained as 

 

 opt.

11 11 3 2 3

11 2

11 3 11 2 3 1 1

μ μ  A  - A + A
φ = 

μ  A  - μ A + A  - A  - A

  

  

                   (18)     

 

 opt.

12 12 6 5 6

12 2

12 6 12 5 6 1 1

μ μ  A  - A + A
φ = 

μ  A  - μ A + A  - A  - A

  

  

                   (19) 

 

 opt.

21 21 3 2 3

21 2

21 3 21 2 3 4 4

μ μ  A  - A + A
φ = 

μ  A  - μ A + A  - A  - A

  

  

                   (20) 

 

 opt.

22 22 6 5 6

22 2

22 6 22 5 6 4 4

μ μ  A  - A + A
φ = 

μ  A  - μ A + A  - A  - A

  

  

                   (21) 

 
 11 1 2

11 opt. 2

11 3 11 3 1

μ  C  - C1
M T = 

n μ  A  - μ  C  - A  

                                                                (22)    
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 12 4 5

12 opt. 2

12 6 12 6 1

μ  C  - C1
M T =  

n μ  A  - μ  C  - A  

                                                                                  (23) 

 
 21 7 8

21 opt. 2

21 3 21 9 4

μ  C  - C1
M T = 

n μ  A  - μ  C  - A  

                                                                               (24) 

 
 22 10 11

22 opt. 2

22 6 22 12 4

μ  C  - C1
M T = 

n μ  A  - μ  C  - A  

                                                                                (25) 

where 

1 1 3 2 1 2 1 3 3 2 3 1 4 1 6 5 1 5 1 6C = A A ,  C = A A  + A A ,  C = A  + A  - A ,  C = A A ,  C = A A  + A A ,

6 5 6 1 7 3 4 8 2 4 3 4 9 2 3 4 10 4 6C = A  + A  - A ,  C = A A ,  C = A A  + A A ,  C = A  + A  - A ,  C = A A

 11 4 5 4 6 12 5 6 4 i jC = A A  + A A  , C = A  + A  - A  and   μ i, j = 1, 2 are the fractions of the sample 

drawn afresh at the current(second) occasion. 

Remark 5.1:  i j opt.
M T  derived in equation (22) - (25) are the functions of  i jμ i, j = 1, 2 . 

To estimate the population median on each occasion the better choices of   i jμ i, j = 1, 2  

are 1(case of no matching); however, to estimate the change in median from one occasion 

to other,  i jμ i, j = 1, 2  should be 0(case of complete matching). But intuition suggests that 

an optimum choices of  i jμ i, j = 1, 2  are desired to devise the amicable strategy for both 

the problems simultaneously. 

6. Optimum Replacement Strategies for the Estimators 𝐓𝐢 𝐣 (i, j =1, 2) 

The key design parameter affecting the estimates of change is the overlap between 

successive samples. Maintaining high overlap between repeats of a survey is operationally 

convenient, since many sampled units have been located and have some experience in the 

survey. Hence to decide about the optimum value of  i jμ i, j = 1, 2  (fractions of samples 

to be drawn afresh on current occasion) so that 
yM  may be estimated with maximum 
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precision and minimum cost, we minimize the mean square errors    i j opt.
M T i, j = 1, 2  in 

equation (22) to (25) with respect to  i jμ i, j=1, 2 respectively. 

The optimum value of  i jμ i, j=1, 2  so obtained is one of the two roots given by 

2

2 2 1 3

11

1

D  ±  D  - D  D
μ̂ =

D
                                (26) 

  
2

5 5 4 6

12

4

D  ±  D  - D  D
μ̂  =

D
                                           (27) 

2

8 8 7 9

21

7

D  ±  D  - D  D
μ̂ =

D
                                (28) 

2

11 11 10 12

22

10

D  ±  D  - D  D
μ̂ =

D
                     (29) 

where 1 3 1 2 3 2 3 1 1 2 3 4 6 4 5 6 5 6 1 4 5 6D = A C ,  D = A C ,  D = A C + C C ,  D = A C ,  D = A C ,   D = A C + C C

7 3 7 8 3 8 9 4 7 8 9 10 6 10 11 6 11 12 4 10 11 12D = A C ,  D = A C ,  D = A C + C C ,  D = A C ,  D = A C  and  D = A C + C C .  

The real values of  i jμ̂ i, j=1, 2  exist, iff 2

2 1 3D  - D  D 0,
2

5 4 6D  - D  D 0, 2

8 7 9D  - D  D 0, and

2

11 10 12D  - D  D 0 . For any situation, which satisfies these conditions, two  real values of  

 i jμ̂ i, j = 1, 2  may be possible , hence to choose a value of  i jμ̂ i, j = 1, 2 , it should be taken 

care of that  i jμ̂ 0,  1 , all other values of  i jμ̂ i, j = 1, 2  are inadmissible. If both the real 

values of  i jμ̂ i, j=1, 2  are admissible, the lowest one will be the best choice as it reduces 

the total cost of the survey. Substituting the admissible value of i jμ̂  say   (0)

i jμ i, j=1, 2  

from equation (26) to (29)  in equation (22) to (25) respectively , we get the optimum 

values of the mean square errors of the estimators  i jT i, j=1, 2  with respect to 
i jφ as well 

as  i jμ i, j=1, 2 which are given as 
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(0)

* 11 1 2

11 opt. (0) 2 (0)

11 3 11 3 1

μ  C  - C
M T = 

n μ  A  - μ  C  - A

  

  

                                         (30) 

 
(0)

* 12 4 5

12 opt. (0) 2 (0)

12 6 12 6 1

μ  C  - C
M T = 

n μ  A  - μ  C  - A

  

  

                   (31) 

 
(0)

* 21 7 8

21 opt. (0) 2 (0)

21 3 21 9 4

μ  C  - C
M T = 

n μ  A  - μ  C  - A

  

  

                   (32) 

 
(0)

* 22 10 11

22 opt. (0) 2 (0)

22 6 22 12 4

μ  C  - C
M T = 

n μ  A  - μ  C  - A

  

  

                   (33) 

 

7. Efficiency Comparison  

To evaluate the performance of the proposed estimators, the estimators  i jT i, j = 1, 2 at 

optimum conditions are compared with respect to (i) the sample median estimator  yM̂ n

, when there is no matching from previous occasion and (ii) the ratio type estimator   

proposed by Singh et al. (2007) for second quantile, where no additional auxiliary 

information was used at any occasion and is given by 

     
 

 
y

y x

x

M̂ m
ˆ ˆΔ = ψ M u  + 1 - ψ M n

M̂ m

 
 
 
 

                   (34) 

where ψ  is an unknown constant to be determined so as to minimise the mean square error 

of the estimator  . Since,  yM̂ n  is unbiased and  is biased for population median, so 

variance of   yM̂ n and mean square error of the estimator   at optimum conditions are 

given as 

  
 

 - 2

y y

y

f M1ˆV M n  = 
n 4 

 
                                  (35) 
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and      
 * Δ 1 2

opt. 2

Δ 3 Δ 3 1

μ  J  - J
M Δ = 

n μ  I  - μ  J  - I  

                    (36) 

where  
2

2 2 1 3

Δ 1 1 3 2 2 3 3 1 1 2 3 1 1 3 2 1 2 3

1

H ±  H -H  H
μ = , H =J I , H =J I , H =I J +J J , J =I I , J =I I +I ,

H
 

           
 -2  -2  -1 -1 -2  2

y y y y xy x x y y yx x y

3 2 3 1 1 2  2

x x

f M f M 4 P -1 f M f M Mf M  M
 J =I +I -I , I = , I = + -

4 4 4 M 2 M

                  

and 
       

 -1 -1  -2  2
xy x x y y y x x y

3  2

x x

4 P - 1 f M f M  M f M  M
I = -

2 M 4 M

          . 

The percent relative efficiencies (1) (2)

i j i jE  and E of the estimators  i jT i, j = 1, 2  (under their 

respective optimum conditions) with respect to  yM̂ n and  are respectively given by 

  
 

y(1)

i j *

i j opt.

ˆV M n
E  =  × 100

M T

        and 
 

 

*

opt.(2)

i j *

i j opt.

M Δ
E  =  × 100

M T

; (i, j=1, 2)    (37)                

  

8. Empirical Illustrations and Monte Carlo Simulation 

Empirical validation can be carried out by Monte Carlo Simulation. Real life situation of 

completely known finite population has been considered.  

Population Source: [Free access to the data by Statistical Abstracts of the United States] 

The population comprise of N = 51 states of United States. Let
ix be the Percentage of 

Advanced Degree Holders or More during 1990 in the thi  state of U. S.,
iy represent the 

Percentage of Advanced Degree Holders or More during 2009 in the thi  state of U. S.,
i1z  

denote Percentage of  Bachelor  Degree Holders or More during 1990 in the thi state of  U. 

S. and 
i2z denote the Percentage of  Bachelor Degree Holders or More during 2009 in the 

thi state of  U. S and The data are presented in Figure 1. 
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Figure 1: Percentage Advanced Degree Holders or More during 1990 and 2009 

versus different states of United States. 

 

For the considered population, the optimum values of 
i jμ (i, j = 1, 2) defined in 

equation (26) to (29) and percent relative efficiencies (1)

i jE and (2)

i jE defined in equation (37) 

of 
i jT (i, j =1, 2) (under their respective optimality conditions) with respect to  yM̂ n  and 

  have been computed and are presented in Table-2. 

To validate the empirical results quoted in Table 2, Monte Carlo simulation have 

also been performed.5000 samples of size n=20 states are selected using simple random 

sampling without replacement in the year 1990. The sample medians  x|kM̂ n and  
1z |kM̂ n , k 

=1, 2, - - -,5000 are computed. From each one of the selected samples, m=17 states are 

retained and new u=3 states are selected out of N – n =51 – 20 = 31 states of U.S. using 

simple random sampling without replacement in the year 2009. From the m units retained 

in the sample at the current occasion, the sample medians  x|kM̂ m ,  y|kM̂ m ,

   
1 2z |k z |k

ˆ ˆM m  and  M m , k  = 1, 2,- - -,5000  are computed. From the new unmatched units 
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selected on the current occasion the sample medians  y|kM̂ u  
2z |k

ˆand M u , k = 1, 2,- - -

,5000 are also calculated. The parameters φ  and  ψare selected between 0.1 and 0.9 with 

a step of 0.1. 

The percent relative efficiencies of the proposed estimators i jT  with respect to  yM̂ n  and 

  are obtained as a result of above simulation and are respectively given as: 

 
 

5000 5000 2  2

y|k y k y

k=1 k=1
i j i j5000 5000

 2  2

i j k y i j k y

k=1 k=1

M̂ n - M Δ - M

E (1) =  × 100   and   E (2)=  × 100 ;  i, j=1, 2

T - M T - M

     

      

 

 
 

For better analysis, the above simulation experiments were repeated for different choices 

of μ. For convenience the different choices of μ are considered as different sets for the 

considered Population which is shown below: 

Sets Population 

I n=20, μ = 0.15 , (m =17, u = 3) 

II n=20, μ = 0.20 , (m = 16, u = 4) 

III n=20, μ = 0.35 , (m = 13, u = 7) 

IV n=20, μ = 0.50 , (m = 10, u = 10) 

 

The simulation results obtained are presented in Table-3 to Table-7. 

Table 1: Descriptive statistics for the population considered  

 
% of Advanced 

Degree Holders or 

More(1990) 

(x) 

% of Advanced 

Degree Holders or 

More(2009) 

(y) 

% of Bachelor’s 

Degree or More 

(1990) 

( 1z ) 

% of Bachelor’s 

Degree or 

More(2009) 

( 2z ) 

Mean 5.7 10.00 20.00 27.40 

Median 6.40 7.90 19.30 26.30 

Standard deviation 4.70 11.23 16.98 30.46 

Kurtosis 8.43 11.04 0.79 2.70 

Skewness 2.34 2.69 0.70 1.09 

Minimum 5.7 6.30 12.30 17.1 

Maximum 17.2 26.7 33.37 48.2 

Count 51 51 51 51 
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Table 2: Comparison of the proposed estimators
i jT  (at optimum conditions) with 

respect to the estimators  yM̂ n and Δ (at their respective optimum conditions) 

 

 (0)

 11μ  * 

 (0)

 12μ  0.8389 

 (0)

 21μ  0.5278 

 (0)

 22μ  0.5603 

(1)

11E  - 

(1)

12E  200.75 

(1)

21E  155.52 

(1)

22E  165.02 

(2)

11E  - 

(2)

12E  171.79 

(2)

21E  133.08 

(2)

22E  141.21 

 

Note: ‘*’ indicates that  (0)

i jμ ; i, j = 1, 2  do not exist.  
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Table 3: Monte Carlo Simulation results when the proposed estimator 
i jT is  

               compared to  yM̂ n . 

                  SET 
φ  

I II III IV 

0.1 

 

 

 

11E (1)  157.64 136.42 139.61 104.70 

12E (1)  139.56 135.09 144.90 148.55 

21E (1)  155.56 137.23 142.14 106.44 

22E (1)  137.61 135.68 146.87 151.28 

0.2 

11E (1)  161.27 145.61 148.14 119.39 

12E (1)  147.08 144.78 153.24 167.79 

21E (1)  161.27 144.25 148.66 121.37 

22E (1)  142.42 143.43 152.85 170.72 

0.3 

11E (1)  171.41 152.14 152.99 133.24 

12E (1)  152.23 151.62 157.13 185.83 

21E (1)  161.68 146.36 147.98 134.36 

22E (1)  143.81 145.93 150.68 187.01 

0.4 

11E (1)  172.75 151.39 153.37 146.51 

12E (1)  153.29 151.85 157.52 202.15 

21E (1)  157.17 138.96 141.53 145.79 

22E (1)  140.00 139.43 143.68 199.08 

0.5 

11E (1)  169.68 148.53 148.19 159.08 

12E (1)  151.22 148.99 151.80 215.89 

21E (1)  148.70 129.43 127.97 154.54 

22E (1)  133.39 129.74 129.45 205.79 

0.6 

11E (1)  162.03 140.99 138.28 171.10 

12E (1)  145.87 141.54 141.20 227.47 

21E (1)  136.36 115.71 112.57 160.04 

22E (1)  123.84 116.09 113.30 206.50 

0.7 

11E (1)  154.69 131.88 124.56 179.50 

12E (1)  140.61 132.26 126.70 232.64 

21E (1)  125.89 103.21 ** 160.75 

22E (1)  115.62 103.44 ** 200.20 

0.8 

11E (1)  144.46 119.52 112.15 182.42 

12E (1)  132.79 119.77 113.77 229.90 

21E (1)  113.79 ** ** 156.07 

22E (1)  105.73 ** ** 187.95 

0.9 

11E (1)  133.55 107.93 ** 180.42 

12E (1)  124.30 108.12 ** 220.39 

21E (1)  102.91 ** ** 147.02 

22E (1)  ** ** ** 171.21 

Note: “**” indicates no gain. 
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Table 4: Monte Carlo Simulation results when the proposed estimator 11T is   

              compared to the estimator   

   

 

 
φ  

     ψ  

 

SET 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 

 

 

 

I 166.50 164.58 172.38 188.62 228.93 277.81 333.46 422.99 479.54 

II 140.62 135.80 149.73 184.74 244.06 347.10 391.73 556.52 731.76 

III 134.98 126.52 138.99 197.52 258.06 362.92 511.86 668.66 895.18 

IV 116.54 100.35 ** ** ** ** 123.84 160.06 211.31 

0.2 

I 174.84 170.32 179.46 198.15 246.31 293.62 336.28 414.78 507.51 

II 147.81 141.46 157.48 196.01 256.57 350.54 433.21 581.35 756.12 

III 144.43 134.92 152.62 210.36 281.48 393.28 540.90 716.93 913.98 

IV 131.84 104.09 ** ** ** 107.11 134.64 183.01 233.14 

0.3 

I 178.86 174.28 183.33 202.86 246.40 300.03 354.10 434.50 518.11 

II 152.95 145.17 161.03 200.44 263.20 355.79 454.44 603.50 776.33 

III 151.01 140.19 159.32 218.27 293.69 408.04 566.13 715.27 942.02 

IV 148.55 116.42 ** ** 100.93 118.78 154.26 199.88 259.18 

0.4 

I 179.43 175.46 183.29 202.99 248.29 299.47 353.28 432.78 515.88 

II 152.22 145.54 160.58 200.91 265.35 357.71 460.92 610.86 760.58 

III 151.43 139.34 158.79 216.11 295.25 409.66 564.60 742.28 941.09 

IV 163.16 129.19 107.79 100.14 110.62 131.32 170.91  220.06 282.55 

0.5 

I 175.36 172.12 179.58 199.54 242.51 291.57 345.79 420.66 515.67 

II 149.34 142.89 157.15 197.21 261.35 352.07 452.17 607.09 749.93 

III 145.63 133.76 153.37 206.83 284.12 393.77 537.64 713.06 907.43 

IV 177.53 139.85 116.86 108.35 120.59 143.48 187.29 239.67 310.80 

0.6 

I 167.19 164.42 172.61 191.70 232.03 278.84 333.16 405.10 492.13 

II 141.98 136.24 149.74 187.96 246.67 333.07 429.17 569.91 709.42 

III 136.23 124.27 143.46 192.75 265.70 368.16 501.30 661.34 848.74 

IV 190.07 149.10 124.74 116.23 128.75 152.66 199.81 257.62 332.90 

0.7 

I 159.37 155.34 162.37 181.70 219.28 263.40 313.41 387.07 462.57 

II 132.92 125.95 138.83 174.34 229.98 308.49 397.17 528.32 661.19 

III 123.11 112.21 129.17 173.54 240.65 337.10 453.64 604.41 775.34 

IV 199.78 155.47 130.26 121.68 134.63 160.18 209.69 270.21 346.17 

0.8 

I 148.49 144.04 151.56 169.90 204.19 245.76 292.35 357.20 431.24 

II 120.56 114.86 126.15 160.31 210.25 284.17 360.20 477.84 601.11 

III 110.85 100.36 115.34 154.33 214.13 300.74 403.23 540.34 688.10 

IV 203.38 157.98 132.34 124.54 137.06 162.68 212.57 275.04 352.95 

0.9 

I 137.22 132.63 139.82 155.98 188.41 224.81 268.21 327.37 397.74 

II 108.66 104.07 114.83 145.37 189.19 255.82 325.72 431.0 544.49 

III ** ** 101.74 13525 187.25 265.51 353.08 470.35 600.77 

IV 201.06 157.02 131.81 123.53 135.94 161.63 211.07 272.07 346.66 

  Note: “**” indicates no gain. 
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Table 5: Monte Carlo Simulation results when the proposed estimator 12T is  

               compared to the estimator   

 

 
φ  

   ψ  

 

SET 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 

 

 

 

I 147.41 145.42 152.84 167.96 205.15 245.85 287.97 379.09 429.76 

II 139.26 130.52 147.81 182.62 247.25 348.99 396.14 552.83 737.42 

III 140.10 125.66 142.88 200.32 266.60 371.37 520.99 675.04 907.49 

IV 165.36 131.09 111.73 105.05 110.30 135.83 168.97 217.91 293.82 

0.2 

I 154.34 150.08 158.57 176.72 218.11 257.30 298.15 368.28 453.74 

II 146.96 138.61 155.49 196.26 260.63 353.46 438.36 579.23 761.42 

III 149.40 134.87 155.77 213.36 289.19 404.90 556.13 728.97 923.68 

IV 185.30 146.82 124.64 116.52 124.85 149.48 189.38 248.68 324.44 

0.3 

I 158.85 153.55 162.09 180.36 217.48 263.04 313.32 385.31 458.56 

II 152.43 143.57 159.98 201.01 266.61 357.11 456.77 602.15 780.56 

III 155.10 141.28 162.21 220.98 301.04 420.15 579.05 770.08 952.36 

IV 207.19 163.58 137.49 128.45 139.17 164.48 214.91 273.60 359.43 

0.4 

I 159.22 154.82 162.16 180.33 219.78 262.40 314.13 348.73 456.35 

II 152.68 144.84 159.77 201.72 267.74 359.65 462.40 608.93 764.93 

III 155.53 140.76 161.10 218.47 302.35 419.97 576.67 759.17 956.37 

IV 225.13 180.10 149.75 139.74 151.07 179.92 235.54 298.40 388.24 

0.5 

I 156.28 153.07 160.21 178.21 215.58 257.46 308.89 374.79 460.02 

II 149.80 142.50 156.87 198.03 262.93 354.07 452.77 604.91 755.09 

III 149.17 135.50 155.26 209.19 289.74 401.92 548.37 726.64 921.76 

IV 240.93 191.53 159.71 149.10 162.46 193.60 253.76 320.98 420.27 

0.6 

I 150.51 147.50 155.47 172.77 208.13 248.55 299.85 363.74 442.23 

II 142.53 135.85 149.68 188.86 247.72 335.34 429.69 568.05 713.58 

III 139.11 125.74 144.98 194.42 269.92 374.53 511.26 672.23 861.67 

IV 252.69 200.10 166.61 156.52 170.26 201.90 264.86 338.34 441.53 

0.7 

I 144.87 140.89 147.95 165.22 198.88 263.40 284.91 350.90 419.95 

II 133.32 125.80 138.93 175.14 230.76 310.13 398.21 527.50 665.34 

III 125.23 113.28 130.46 174.93 244.27 342.04 460.79 612.47 785.09 

IV 258.92 202.87 169.77 159.50 173.88 206.66 271.39 346.66 448.02 

0.8 

I 136.50 132.28 139.52 156.15 187.55 245.76 268.76 327.92 396.09 

II 120.82 114.81 127.12 160.96 210.85 285.41 360.90 477.31 604.09 

III 112.45 101.14 116.26 155.42 216.76 304.15 408.39 546.84 695.73 

IV 256.31 200.14 167.41 158.42 172.14 204.04 267.17 343.12 444.21 

0.9 

I 127.70 123.33 130.28 145.20 175.21 208.21 249.65 304.26 369.99 

II 108.85 104.07 114.96 145.06 189.64 255.82 326.32 430.68 546.88 

III ** ** 102.40 136.05 189.25 267.93 357.08 474.84 605.96 

IV 245.56 192.90 161.89 152.22 165.80 196.86 258.07 329.86 423.49 

 

   Note: “**” indicates no gain. 
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Table 6: Monte Carlo Simulation results when the proposed estimator 21T is   

               compared to the estimator   

 

 
φ  

     ψ  

 

SET 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 

 

 

 

I 164.30 162.04 170.17 186.41 225.19 273.63 318.27 416.48 473.41 

II 141.30 137.16 151.29 185.73 247.77 351.46 396.87 563.10 741.51 

III 137.43 128.55 141.92 200.86 263.88 369.83 522.15 679.07 910.72 

IV 118.48 105.56 ** ** ** ** 125.42 162.57 214.0 

0.2 

I 169.22 164.43 173.74 191.94 237.26 283.01 325.54 401.66 492.17 

II 146.42 140.67 157.02 194.23 256.77 349.22 431.44 580.83 757.19 

III 144.94 134.99 153.20 210.47 282.25 393.85 543.97 717.48 920.49 

IV 134.04 117.32 ** ** ** 108.93 136.67 185.99 236.66 

0.3 

I 168.71 163.74 172.99 191.54 232.10 281.87 333.45 407.94 489.82 

II 147.14 139.76 155.67 192.73 254.65 343.14 437.95 581.08 749.47 

III 146.06 134.74 154.03 209.81 233.18 396.35 547.58 718.77 917.21 

IV 149.80 128.47 100.11 ** 101.37 120.47 155.25 201.64 261.26 

0.4 

I 163.25 159.18 167.59 183.77 224.98 271.79 321.96 393.64 473.0 

II 139.73 133.36 148.84 185.01 244.59 328.50 424.73 561.31 707.64 

III 139.74 127.01 145.41 197.85 270.95 376.30 518.17 675.94 871.26 

IV 162.36 135.92 107.72 100.04 109.68 131.46 169.16 218.55 281.58 

0.5 

I 153.68 151.0 158.66 175.83 211.75 255.99 304.54 370.36 452.13 

II 130.14 125.18 137.85 171.75 227.73 304.54 395.12 526.53 658.63 

III 125.76 114.80 131.95 178.34 246.39 341.66 465.45 612.26 789.09 

IV 172.46 140.33 114.30 105.17 116.65 140.05 180.77 232.54 301.70 

0.6 

I 140.70 138.80 146.75 162.06 195.09 236.45 282.72 343.0 417.54 

II 116.53 113.59 123.84 154.90 204.93 273.57 356.37 472.16 591.84 

III 110.90 100.53 115.38 157.30 215.80 300.35 408.67 537.16  688.69 

IV 177.79 139.94 117.65 109.17 120.37 144.22 186.37 240.64 311.57 

0.7 

I 129.70 126.10 132.55 149.58 177.75 215.08 257.43 314.25 380.18 

II 104.03 100.14 109.0 137.33 180.63 240.87 312.68 415.49 523.70 

III ** ** ** 133.60 185.24 258.53 351.47 464.06 595.42 

IV 178.91 135.46 117.81 109.46 120.76 144.66 186.96 241.53 311.63 

0.8 

I 116.88 113.24 119.85 135.13 159.69 193.70 232.06 282.62 342.43 

II ** ** ** 119.77 158.24 212.80 273.82 361.75 454.69 

III ** ** ** 113.23 156.67 219.80 298.48 397.24 506.82 

IV 174.0 140.86 113.71 106.67 117.35 140.40 181.37 234.29 302.86 

0.9 

I 105.73 101.54 107.40 120.34 143.32 173.41 207.59 253.34 306.09 

II ** ** ** 103.73 137.32 182.59 237.85 312.02 391.95 

III ** ** ** ** 132.98 187.26 250.32 336.43 430.48 

IV 163.85 128.33 107.93 100.65 110.64 132.25 171.50 221.13 285.08 
 Note: “**” indicates no gain.  
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Table 7: Monte Carlo Simulation results when the proposed estimator 22T  is    

               compared to the estimator   

 

 

 
φ  

ψ  

 

SET 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 

 

I 145.34 142.91 150.34 165.76 201.25 241.72 283.71 372.27 422.76 

II 139.86 131.72 149.28 183.75 251.11 353.73 401.21 560.08 747.12 

III 142.01 126.68 145.84 202.37 271.64 376.86 528.24 684.40 918.32 

IV 168.40 133.02 113.61 106.71 112.35 138.09 171.15 222.02 279.44 

0.2 

I 149.44 144.84 152.99 170.90 209.80 247.94 288.51 355.91 438.58 

II 145.59 137.80 155.01 194.71 260.76 352.53 436.69 579.70 761.35 

III 149.03 133.54 155.58 211.23 288.36 402.60 553.84 723.93 922.12 

IV 188.53 148.72 126.73 118.13 126.62 152.41 192.27 253.35 328.86 

0.3 

I 150.07 144.53 152.80 170.30 204.83 247.52 295.52 361.88 432.91 

II 146.71 138.09 154.92 193.58 257.84 344.89 441.02 580.43 754.38 

III 148.73 134.21 155.45 209.84 287.19 404.09 555.0 727.42 918.78 

IV 208.51 164.05 138.74 128.89 139.03 166.56 25.66 275.54 359.87 

0.4 

I 145.42 141.02 148.49 165.50 199.88 239.20 287.11 350.73 418.86 

II 140.20 132.59 148.35 185.95 246.69 330.71 426.58 559.47 711.77 

III 141.86 126.81 146.01 197.66 273.69 381.30 523.37 683.22 875.16 

IV 221.71 177.43 148.03 137.60 148.13 178.21 231.03 293.93 381.61 

0.5 

I 137.85 135.10 142.12 157.92 189.45 227.59 273.41 331.58 405.16 

II 130.45 124.88 137.89 172.41 229.23 307.19 396.44 524.90 662.82 

III 127.21 114.85 132.21 177.97 248.29 344.66 468.77 615.55 792.22 

IV 229.67 182.27 153.0 142.04 154.08 185.10 240.28 305.89 398.49 

0.6 

I 127.78 125.60 133.10 147.23 176.64 212.63 256.40 310.51 377.76 

II 116.90 113.38 124.03 155.66 205.91 275.77 357.22 470.98 594.70 

III 111.62 100.0 115.44 156.69 216.72 302.02 411.56 539.55 691.10 

IV 229.39 182.55 152.29 142.69 154.53 185.09 240.15 307.21 399.19 

0.7 

I 119.13 115.58 121.87 137.22 163.02 196.13 236.15 287.92 348.08 

II 104.27 ** 109.23 137.97 181.22 242.29 313.73 414.96 526.11 

III ** ** ** 133.30 185.96 259.46 353.0 465.10 596.38 

IV 222.81 175.30 147.60 137.83 150.17 179.11 232.76 298.37 386.84 

0.8 

I 108.68 105.16 111.41 125.46 148.49 179.11 215.52 262.33 317.59 

II ** ** ** 120.23 158.65 212.99 274.54 361.38 456.32 

III ** ** ** 113.03 157.10 220.20 299.43 398.12 507.52 

IV 209.54 163.69 137.32 129.39 141.03 168.18 217.93 279.63 363.49 

0.9 

I 100.05 101.54 101.09 113.19 134.89 162.45 195.18 237.99 287.66 

II ** ** ** 104.06 137.61 183.21 238.41 311.82 393.15 

III ** ** ** 109.51 133.25 187.47 250.79 337.01 430.48 

IV 190.81 150.13 126.23 100.65 128.73 153.38 199.50 255.99 331.80 
Note: “**” indicates no gain.  
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9. Mutual Comparison of the Proposed Estimators 𝐓𝐢 𝐣 (i, j =1, 2) 

The performances of the proposed estimators i jT  (i, j =1, 2)  have been elaborated 

empirically as well as through simulation studies in above Section 8 and the results 

obtained are presented in Table 2 to Table 7. In this section the mutual comparison of the 

four proposed estimators have been elaborated though different graphs given in Figure 2 

to Figure 5. 
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Figure 2: Mutual Comparison of Proposed Estimator i jT  (i, j =1, 2)when compared 

with the estimator yM̂ (n) for set-IV. 
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Figure 3: Mutual Comparison of Proposed Estimators i jT  (i, j =1, 2)when compared 

with the estimator   for ψ = 0.1 for set-II. 
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Figure 4: Mutual Comparison of Proposed Estimators   ( ,   1,  2)i jT i j  when 

compared with the estimator    for ψ = 0.5 for set-II. 
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Figure 5: Mutual Comparison of Proposed Estimators i jT  (i, j =1, 2)when compared 

with the estimator   for ψ = 0.9 for set-II. 

 

10. Interpretation of Results 

The following interpretation can be drawn from Tables 2-7 and Figure 2-5: 

(1)From Table- 2, it is observed that  

(a) Optimum values
(0)

12μ , (0)

21μ  and 
(0)

22μ for the estimators  12 21 22T , T  and  T  respectively 

exist for the considered population which justifies the applicability of the proposed 

estimators 12 21 22T , T  and  T at optimum conditions. However, the optimum value
(0)

11μ for 

the estimator 11T  does not exist for the considered population. 

(b) Appreciable gain is observed in terms of precision indicating the proposed estimators 

12 21 22T , T , T  (at their respective optimal conditions) are preferable over the estimator 

yM̂ (n) and Δ (at optimal conditions). This result justifies the use of additional auxiliary 

information at both occasions which is dynamic over time in two occasion successive 

sampling.  
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(c) The values for 
(1) (2)

11 11E  and  E cannot be calculated as optimum value 
(0)

11μ does not exist 

but simulation study vindicated in Tables 3-7 magnify the applicability of proposed 

estimator 11T  over sample median estimator  yM̂ n and the estimator Δ . 

(2) From Table-3, it can be seen that, when i jT (i, j =1, 2) is compared with sample median 

estimator  yM̂ n  

(a)
11 12 21 22E (1), E (1), E (1), E (1) first increase and then decrease as φ  increases for  all sets. 

(b) For fixed value of φ,
11E (1)  and 

21E (1) show no fixed behaviour as the value of μ  is 

increased. 

(c) 
12 22E (1) and E (1)  increase as μ increases. 

(3) From Table-4, when 11T is compared with the estimator Δ , we see that 

(a)  
11E (2) increases as φ  increases for all choices of ψ . 

(b) For fixed choices of φ  as ψ  increases the value of 
11E (2) increases. 

(c) As μ is increased 
11E (2) decreases. 

(4) From Table-5, when 12T  is compared with the estimator Δ , we observe that  

(a) 
12E (2)  increases for all the sets as φ increases for all choices of ψ . 

(b) As ψ  increases 
12E (2)also increases for all sets except for some of the combinations 

of φ and ψ . 

(c) No fixed pattern is observed for 
12E (2) as μ  is increased. 

(5) From Table-6, when 21T  is compared with the estimator Δ  , it can be seen that  

(a) For all choices of ψ  the value of 
21E (2) first increases and then decreases as φ  increases 

for all sets except for set IV. 
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(b) For different choices of φ  as ψ  increases, the value of 21E (2) also increases for set I, 

II and III. 

(c) For set IV, 
21E (2)  first decreases as ψ  increases and then increases for all choices of

φ . 

(d) As for all choices of φ and ψ  as μ  increases, the value of 21E (2)  decreases.  

(6) From Table-7, it can be concluded that 

(a) 22E (2) first increases as φ  increases and then decreases for different choices of ψ  for 

all the four sets. 

(b) As ψ  increases 22E (2) also increases for all sets and for all choices of φ . 

(c) For set IV 22E (2) first decreases and then increases as ψ  increases for all choices of φ

. 

(d) No fixed behaviour is observed for 22E (2) as portion of sample drawn afresh at current 

occasion increases. 

(7) The mutual comparison of the four proposed estimators i j T (i, j=1, 2)  in Figure 2 to 

Figure 5, show that the estimator 22T  comes out to be the best estimator amongst all the 

four proposed estimators when they are compared with sample median estimator yM̂ (n) , 

since it is the most consistent and having greater precision but when i j T (i, j =1, 2)are 

compared with estimator Δ , 12T  comes out be the best as it possess largest gain over other 

proposed estimators and considerably consistent in nature for all combinations of 

φ, ψ and μ.It has also been found that the percent relative efficiency of the estimator 12T  

increases as the fraction of sample drawn at current occasion decreases and vice versa 

which exactly justifies the basic principles of sampling over successive occasions. 
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10. Conclusion 

From the preceding interpretations, it may be concluded that the use of exponential ratio 

type estimators for the estimation of population median at current occasion in two 

occasion successive sampling is quite feasible as vindicated through empirical and 

simulation results. The use of highly correlated auxiliary information which is dynamic 

over time is highly rewarding in terms of precision. The mutual comparison of the 

proposed estimators indicates that the estimators utilizing more exponential ratio type 

structures perform better.   It has also been observed that the estimator 22T in which 

maximum utilization of exponential ratio type structures have been considered, has turned 

out to be the most efficient among all the four proposed estimators when comparison is 

made with sample median estimator and 12T is most suitable amongst all when they are 

compared with the estimator Δ . Hence, when a highly positively correlated auxiliary 

information which is dynamic over time is used, the proposed estimators may be 

recommended for their practical use by survey practitioners.  
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Longitudinal Analysis of Population Mean 

on Successive Occasions 

 

1. Introduction 

Single time survey and their analysis do not serve the purpose in understanding the 

dynamics of economic and social process which are changing over time. For these 

situations longitudinal surveys, in which the same units are investigated on several 

occasions, over extensive period of time becomes important. In recent years, longitudinal 

surveys are now being used increasingly for longitudinal analysis and in many cases; 

longitudinal surveys are carefully designed to permit the derivation of sophisticated 

analysis of the long dynamics of social and economic processes. In this case, the same 

population is sampled repeatedly and the same study variable is measured at each 

occasion, so that development over time can be followed. For example, in many countries, 

labour-force surveys are conducted monthly to estimate the number of employed and the 

rate of unemployment. Other examples are monthly surveys in which the data on price of 

goods are collected to determine a consumer price index, and political opinion surveys 

conducted at regular intervals to measure voter preferences. These longitudinal surveys in 

which the sampling is done on successive occasions (over years or seasons or months) 

according to a specified rule, with partial replacement of units, is called successive 

(rotation) sampling. Successive sampling provides a strong tool for generating the reliable 

estimates at different occasions. In this case the survey estimates are time specific, For 

example, the unemployment rate is a key economic indicator that varies over time, the 

rate may change from one month to the next because of a change in the economy (with 

business laying off or recruiting new employees). 

 

To cite one may refer the papers by Jesson (1942), Patterson (1950), Rao and 

Graham (1964), Gupta (1979), Das (1982) and Chaturvedi and Tripathi (1983) etc. 
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Sometimes, the information on auxiliary variables, which are correlated to the 

study variable, is available so that their population means are known. The question arises 

that whether it is possible to utilize the information on the auxiliary variables, which are 

available on both the occasions, to increase the precision for estimating the population 

mean on current occasion. For example in agriculture surveys, the crop infestation due to 

pest or disease during a week, in a particular area, may be associated with infestation and 

ancillary factors such as rainfall, temperature and humidity during the preceding week. 

Similarly, the yield of crop during a season in a farm is known to depend to a great extent 

on the climate factors, prevailing during the previous season. In biological populations we 

may be interested to estimate the kill of birds during season by hunter in locality, which 

is known to be related to the hunter’s kill and his disposable income during the previous 

season. Utilizing the auxiliary information on both the occasions Sen (1971), Singh et al. 

(1991), Feng and Zou (1997), Biradar and Singh (2001), Singh and Singh (2001), Singh 

(2005) have successfully given some of the very literature in the field of sample surveys. 

Singh and Priyanka (2006, 2007a, 2008a), Singh and Karna (2009), Singh and Prasad 

(2010) have proposed a variety of estimators for estimating the population mean on 

current (second) occasion in two occasions successive sampling.  

 

It has been theoretically established that, in general, the linear regression estimator 

is more efficient than the ratio estimator except when the regression line y on x passes 

through the neighbourhood of the origin; in this case the efficiencies of these estimators 

are almost equal. Also in many practical situations where the regression line does not pass 

through the neighbourhood of the origin, in such cases the ratio estimator does not perform 

as good as the linear regression estimator. Motivated with this argument the present work 

attempts to develop more efficient estimators to estimate population mean using the 

concept of exponential type estimators in two occasion successive sampling. Here we have 

also tried to amalgamate the auxiliary variate with different type of exponential type of 

estimators at different occasions to increase the efficiency of the proposed estimators. The 

amalgamation of auxiliary variable has been fruitfully justified when the proposed 

estimators are compared with sample mean estimator and general successive sampling 

estimator due to Jessen (1942). The proposed estimators are also compared mutually. The 
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reasonability of using the new proposed estimators has been shown through empirical 

results and validated by means of Monte Carlo simulation based on some natural 

population.  

 

2. Sample Structure and Notations 

 

Let  1 2 NU = U ,U , ... , U  be the finite population of N units, which has been 

sampled over two occasions. It is assumed that size of the population remains unchanged 

but values of units change over two occasions. The character under study be denoted by x 

(y) on the first (second) occasions respectively. It is assumed that information on an 

auxiliary variable z, whose population mean  Z  is completely known and stable over 

occasions is readily available on both the occasions and positively correlated to x and y 

respectively. Simple random sample (without replacement) of n units is taken on the first 

occasion. A random subsample of m = nλ units is retained for use on the second occasion. 

Now at the current occasion a simple random sample (without replacement) of u= (n-m) 

= nµ units is drawn afresh from the remaining (N-n) units of the population so that the 

sample size on the second occasion is also n. Let μ  and  λ μ + λ=1  are the fractions of 

fresh and matched samples respectively at the second (current) occasion. The following 

notations are considered for the further use: 

 

X, Y, Z  : Population means of the variables x, y and z respectively. 

u u m m m n ny , z , x , y , z , x , z  : Sample means of respective variates based on the sample sizes 

shown  in suffice. 

yx xz yzρ , ρ , ρ : Correlation coefficient between the variables shown in suffices. 

2 2 2

x y zS , S , S : Population mean square of variables x, y and z respectively. 
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3. Proposed Estimators 𝐓𝐢 𝐣 (i, j =1, 2) 

 

To estimate the population mean Y on the current (second) occasion, two sets of 

estimators have been proposed utilizing the concept of exponential ratio type estimators. 

First set of estimators  1 u 2 uT , T  is based on sample of the size u= nµ drawn afresh on the 

current (second) occasion and the second set of estimators  1 m 2 mT , T  is based on sample 

size m = nλ  common to the both occasions. The two sets of the proposed estimators are 

given as 

u
1 u

u

y
T  =  Z

z

 
 
 

                                    (1) 

u
2 u u

u

Z - z
T =  y  exp

Z + z

 
 
 

                                                        (2) 

 m m
1 m n

m m

y Z - z
T =  x  exp 

x Z + z

   
   
   

                                             (3) 

 
*

* m
2 m n *

m

y
T =  x

x

 
 
 

                                   (4) 

where  
* m
m m

m

Z - z
y = y  exp

Z + z

 
 
 

,  
* m
m m

m

Z - z
x = x  exp

Z + z

 
 
 

   

and  
* n
n n

n

Z - z
x = x  exp

Z + z

 
 
 

. 

Considering the convex linear combination of the two sets of estimators  i uT i = 1, 2  and 

 j mT j = 1, 2 , we have the final estimators of population mean Y  on the current occasion 

as 

  i j i j i u i j j mT = φ T  + 1 - φ  T  ; (i, j = 1, 2)                        (5) 

where  i j i jφ 0 φ 1;  i, j = 1, 2   are the unknown constants to be determined so as to 

minimise the mean square error of the estimators i jT (i, j=1, 2). 

Therefore, following four estimators are possible namely 

     11 11 1u 11 1m 12 12 1u 12 2m 21 21 2u 21 1m(i) T = φ  T + 1- φ T ,  (ii)  T = φ  T + 1- φ T ,  (iii)  T = φ  T + 1- φ T

 and   22 22 2u 22 2m(iv)  T = φ  T + 1- φ T . 
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Remark 3.1: For estimating the mean on each occasion, the estimators  i uT i = 1, 2  are 

suitable, which implies that more belief on i uT could be shown by choosing  i jφ i, j = 1, 2

as 1 (or close to 1), while for estimating the change from occasion to occasion, the 

estimators  j mT j=1, 2  could be more useful so i jφ  might be chosen as 0 (or close to 0). 

For asserting both problems simultaneously, the suitable (optimum) choices of i jφ  are 

desired. 

 

4. Properties of the Proposed Estimators 𝐓𝐢 𝐣 (i, j =1, 2) 

The properties of the proposed estimators  i jT i, j =1, 2  are derived under the following 

large sample approximations 

         

   

u 0 m 1 m 2 n 3 u 4

m 5 n 6 i

y = Y 1 + e ,  y = Y 1 + e ,  x = X 1 + e , x = X 1 + e , z = Z 1 + e ,

z = Z 1 + e and z =  Z 1 + e  such that |e |  1  i = 0, 1, 2, 3, 4, 5 and 6 . 
 

Remark 4.1: The expansion of  1
n

x  for negative values of n is feasible only when 

|x|<1 . The properties of proposed work have been studied under large sample 

approximations and we need to use Binomial expansion as well since error is very small. 

Hence to validate both we have considered magnitude of error, i.e. i|e |<1.  

4.1. Bias and Mean Squared Error of the Estimators 𝐓𝐢 𝐣 (i, j =1, 2) 

The estimators  i u j mT  and T i, j=1, 2  are ratio, exponential ratio, ratio to exponential 

ratio and chain type ratio to exponential ratio type in nature respectively. Hence they are 

biased for population mean Y . Therefore, the final estimators  i jT i, j =1, 2 defined in 

equation (5) are also biased estimators of Y . The bias  B .  and mean squared errors  M .

of the proposed estimators  i jT i, j =1, 2 are obtained up to first order of approximations 

and thus we have following theorems: 

Theorem 4.1.1.Bias of the estimators  i jT i, j =1, 2  to the first order of approximations 

are obtained as 
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       i j ij i u ij j mB T  = φ  B T  + 1 - φ  B T ; (i, j=1, 2),                    (6) 

where    002 011
1 u 2

C C1
B T  = Y  - 

u Z Y Z

 
 
 

,                                                                   (7) 

 

  002 011
2 u 2

C C1 3 1
B T  = Y  - 

u 8 Z 2 Y Z

 
 
 

,                                                  (8) 

            

  200 002 110 011 101 110 200 101

1 m 2 2 2

1 C 3 C C 1 C 1 C 1 C C 1 C
B T  = Y  +  -  -  + +  -  - 

m X 8 Z XY 2 YZ 2 XZ n XY X 2 XZ

    
    
    

,   (9) 

and   200 110 002 110 011 200
2m 2 2 2

C C C C C C1 1 3 1
B T = Y  - + +  -  - 

m X XY n 8 Z XY 2 YZ X

    
    
    

                  (10) 

where       
r s t

rst i i iC = E x - X y  - Y z  - Z 
 

;  r, s, t 0 . 

Proof: The bias of the estimators  i jT i, j =1, 2 are given by 

       i j i j ij i u ij j mB T  = E T  - Y  = φ  B T  + 1 - φ B T    

where     i u i u j m j mB T  = E T  - Y  and  B T  = E T  - Y        

Using large sample approximations and retaining terms up-to the first order of 

approximations, the expression for    i u j mB T  and  B T are obtained as in equations (7) - 

(10) and hence the expression for bias of the estimators  i jT i, j =1, 2  are obtained as in 

equation (6). 

Theorem 4.1.2.Mean squared errors of the estimators  i jT i, j =1, 2  to the first order of 

approximations are obtained as 

 

           
2

2

i j i j i u i j j m i j i j i u j mM T  = φ  M T  + 1 - φ M T + 2 φ 1 - φ Cov T , T ; (i, j=1, 2)    (11) 
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where     2

1 u 1 y

1
M T  =  A  S

u
                                   (12) 

   2

2 u 2 y

1
M T  =  A  S

u
                      (13) 

   2

1 m 3 4 y

1 1
M T  =  A  +   A  S

m n

 
 
           

(14) 

   2

2 m 5 6 y

1 1
M T  =  A  +   A  S

m n

 
 
                      

(15) 

 1 yzA = 2 1 - ρ ,
2 yz

5
A =  - ρ

4
,   

3 yx yz xz

9
A =  - 2ρ  - ρ  + ρ ,

4
4 yx xzA = 2ρ - ρ - 1 ,

 5 yxA = 2 1 - ρ  and 6 yx yz

3
A = 2ρ  - ρ  -  .

4
 

Proof: The mean squared errors of the estimators i jT
 
are given by  

 
 2

i j i jM T  = E T - Y       
2

ij i u ij j m= E φ  T  - Y  + 1 - φ T  - Y 
   

          
       

22

i j i u i j j m ij ij i u j m= φ  M T  + 1 - φ M T  + 2 φ  1 - φ  Cov T , T     

where  
 2

i u i u M T   =  E T  -  Y   and
 2

j m j mM T  = E T  -  Y       ;   (i, j=1, 2)  

Since x and y denote the same study character over two occasions and z being completely 

known auxiliary variate positively correlated to x and y, therefore, looking at the stability 

nature (see Reddy (1978)) of the coefficient of variation and following Cochran (1977) 

and Feng and Zou (1997), the coefficient of variation of x, y and z are considered to be 

approximately same which is given by 
y

y

S
C =

Y
. 

The estimators
i u

T  and 
j m

T  are based on two independent samples of sizes u and m 

respectively, hence  i u j mCov T , T  = 0;  (i, j = 1, 2) . Considering population size is 

sufficiently large (i.e. N    ), therefore finite population corrections are ignored and 

using large sample approximations and retaining terms upto the first order of 

approximations, the expression for    i u j mM T  and  M T are obtained as given in 

equations (12) - (15) and hence the expressions for mean squared errors of estimators 

 i jT i, j =1, 2  are obtained as in equation (11). 
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5. Minimum Mean Squared Errors of the Proposed Estimators 𝐓𝐢 𝐣 (i, j =1, 2) 

Since the mean squared errors of the estimators  i jT i, j =1, 2
 
given in equation (11) are 

the functions of unknown constants  i jφ i, j = 1, 2 , therefore, they are minimized with 

respect to i jφ  and subsequently the optimum values of i jφ  are obtained as 

 
 

   opt.

j m

i j

i u j m

M T
φ  = 

M T  + M T
; (i, j = 1, 2)                              (16) 

Now substituting the values of 
opt.i jφ in equation (11), we obtain the optimum mean squared 

errors of the estimators  i jT i, j =1, 2  as 

  
   
   

 
i u j m

i j opt.
i u j m

M T  . M T
M T = ;  i, j = 1, 2

M T  + M T
                  (17) 

Further, substituting the values of the mean squared error of the estimators defined in 

equations (12) to (15) in equation (16) and (17), the simplified values of 
opt.i jφ and  

 i j opt.
M T  are obtained as 

 
 

 opt.

11 11 4 3 4

11 2

11 4 11 3 4 1 1

μ μ  A  - A + A
φ = 

μ  A  - μ A + A  - A  - A

  

  

        (18) 

 
 

 opt.

12 12 6 5 6

12 2

12 6 12 5 6 1 1

μ μ  A  - A + A
φ = 

μ  A  - μ A + A  - A  - A

  

  

                   (19) 

 
 

 opt.

21 21 4 3 4

21 2

21 4 21 3 4 2 2

μ μ  A  - A + A
φ = 

μ  A  - μ A + A  - A  - A

  

  

                   (20) 

 

 opt.

22 22 6 5 6

22 2

22 6 22 5 6 2 2

μ μ  A  - A + A
φ = 

μ  A  - μ A + A  - A  - A

  

  

                              (21) 
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  2

11 1 2 y

11 opt. 2

11 4 11 3 1

μ  B  - B  S1
M T = 

n μ  A  - μ  B  - A  

                               (22)    

 
  2

12 4 5 y

12 opt. 2

12 6 12 6 1

μ  B  - B S1
M T =  

n μ  A  - μ  B  - A  

                   (23) 

 
  2

21 7 8 y

21 opt. 2

21 4 21 9 2

μ  B  - B S1
M T = 

n μ  A  - μ  B  - A  

                   (24) 

 
  2

22 10 11 y

22 opt. 2

22 6 22 12 2

μ  B  - B S1
M T = 

n μ  A  - μ  B  - A  

                   (25) 

where 

1 1 4 2 1 3 1 4 3 3 4 1 4 1 6 5 1 5 1 6B = A A ,     B = A A  + A A ,      B = A  + A  - A ,    B = A A ,   B = A A  + A A ,

6 5 6 1 7 2 4 8 2 3 2 4 9 3 4 2 10 2 6B = A  + A  - A ,    B = A A ,    B = A A  + A A ,    B = A  + A  - A ,    B = A A  

 11 2 5 2 6 12 5 6 2 i jB = A A  + A A  , B = A  + A  - A   and   μ i, j = 1, 2  are the fractions of the 

sample drawn afresh at the current(second) occasion. 

Remark 5.1:  i j opt.
M T derived in equation (22) - (25) are the functions of  i jμ i, j = 1, 2

. To estimate the population mean on each occasion the better choices of   i jμ i, j = 1, 2  

are 1(case of no matching); however, to estimate the change in mean from one occasion 

to other,  i jμ i, j = 1, 2  should be 0(case of complete matching). But intuition suggests 

that the optimum choices of  i jμ i, j = 1, 2  are desired to devise the amicable strategy for 

both the problems simultaneously. 

 

6. Optimum Replacement Strategies for the Estimators 𝐓𝐢 𝐣 (i, j =1, 2) 

 

The key design parameter affecting the estimates of change is the overlap between 

successive samples. Maintaining high overlap between repeats of a survey is operationally 
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convenient, since many sampled units have been located and have some experience in the 

survey. Hence to decide about the optimum value of  i jμ i, j = 1, 2  (fractions of samples 

to be drawn afresh on current occasion) so that Y  may be estimated with maximum 

precision and minimum cost, we minimize the mean square errors    i j opt.
M T i, j = 1, 2  

in equation (22) to (25) with respect to  i jμ i, j = 1, 2 respectively. 

The optimum value of  i jμ i, j = 1, 2  so obtained is one of the two roots given by 

2

2 2 1 3

11

1

C  ±  C  - C  C
μ̂  = 

C
                                           (26) 

2

5 5 4 6

12

4

C  ±  C  - C  C
μ̂  = 

C
                                                      (27) 

2

8 8 7 9

21

7

C  ±  C  - C  C
μ̂  = 

C
                                                      (28) 

2

11 11 10 12

22

10

C  ±  C  - C  C
μ̂  = 

C
                     (29) 

where  

1 4 1 2 4 2 3 1 1 2 3 4 6 4 5 6 5 6 1 4 5 6C = A B ,  C = A B ,  C = A B + B B ,  C = A B ,  C = A B ,   C = A B + B B
        

7 4 7 8 4 8 9 2 7 8 9 10 6 10 11 6 11 12 2 10 11 12C = A B ,  C = A B ,  C = A B + B B ,  C = A B ,  C = A B  and  C = A B + B B .

  

The real values of  i jμ̂ i, j = 1, 2  exist, iff 2

2 1 3C  - C  C 0, 2

5 4 6C  - C  C 0,

2

8 7 9C  - C  C 0, and 2

11 10 12C  - C  C 0
 
respectively. For any situation, which satisfies these 

conditions, two  real values of   i jμ̂ i, j = 1, 2  may be possible , hence to choose a value 

of  i jμ̂ i, j = 1, 2 , it should be taken care of that i j
ˆ0 μ 1   , all other values of 

 i jμ̂ i, j = 1, 2  are inadmissible. If both the real values of  i jμ̂ i, j = 1, 2  are admissible, 

the lowest one will be the best choice as it reduces the total cost of the survey. Substituting 

the admissible value of i jμ̂  say   (0)

i jμ̂ i, j = 1, 2  from equation (26) to (29)  in equation 
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(22) to (25) respectively , we get the optimum values of the mean square errors of the 

estimators  i jT i, j = 1, 2  with respect to i jφ as well as  i jμ i, j = 1, 2 which are given as 

 

  
(0) 2

* 11 1 2 y

11 opt. (0) 2 (0)

11 4 11 3 1

μ  B  - B S
M T = 

n μ  A  - μ  B  - A

  

  

                              (30) 

  
(0) 2

* 12 4 5 y

12 opt. (0) 2 (0)

12 6 12 6 1

μ  B  - B S
M T = 

n μ  A  - μ  B  - A

  

  

                   (31) 

  
(0) 2

* 21 7 8 y

21 opt. (0) 2 (0)

21 4 21 9 2

μ  B  - B S
M T = 

n μ  A  - μ  B  - A

  

  

                   (32) 

  
(0) 2

* 22 10 11 y

22 opt. (0) 2 (0)

22 6 22 12 2

μ  B  - B S
M T = 

n μ  A  - μ  B  - A

  

  

                   (33) 

 

7. Efficiency Comparison 

 

To evaluate the performance of the proposed estimators, the estimators  i jT i, j = 1, 2 at 

optimum conditions are compared with (i) the sample mean estimator
ny , when there is 

no matching from previous occasion and (ii) the general successive sampling estimator 

Ŷ  due to Jessen (1942) 

 u mŶ = ψ y + 1 - ψ y  ,                                                                                              

                

(34) 

where   m m y x n my =y + β x - x , y xβ  is the population regression coefficient of y on x and 

ψ  is an unknown constant to be determined so as to minimise the mean squared error of 

the estimator Ŷ . Here both 
ny  and Ŷ are unbiased for population mean, so variance of 

the estimator ny and Ŷ  at optimum conditions are given as 

  2

n y

1
V y  = S

n
,                                                       (35) 
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2*
y2

y x
opt.

S1ˆV Y = 1 + 1 - ρ
2 n

 
 
 

,                                                                       (36) 

and the fraction of sample to be drawn afresh provided by the estimators due Jessen (1942) 

is  given by 

J
2

yx

1
μ =

1 +  1- ρ
                                                                                                                            (37) 

The percent relative efficiencies i j i jE (M) and  E (JS)
 
of the estimator i jT  (under optimum 

conditions) with respect to 
ny and Ŷ are respectively given by 

 
 

 
n

i j *

i j opt.

V y
E (M)=  × 100

    M T
     

and   
 
 

*

opt.

i j *

i j opt.

ˆV Y

E (JS) =  × 100
M T

(i, j=1, 2).      (38)   

 

                   

8. Empirical Illustrations and Monte Carlo Simulation 

Empirical validation can be carried out by Monte Carlo Simulation. Real life situation of 

completely known finite population has been considered.  

Population Source: [Free access to the data by Statistical Abstracts of the United States] 

The population comprise of N = 51 states of United States. Let 
iy be the total energy 

consumption during 2008 in the thi  state of U. S., 
ix be the total energy consumption 

during 2003 in the thi  state of U. S. and 
iz denote the total energy consumption during 

2001 in the thi state of  U. S.  

For the considered population, the values of 
(0)

i jμ defined in equation (26) to (29) and the 

percent relative efficiencies i jE (M) and i jE (JS) defined in equation (38) of  i jT i, j=1, 2

with respect to ny  and Ŷ  have been computed and are presented in Table 1. The optimum 

bias of the estimators  i jT i, j=1, 2  has been computed utilizing  i jφ i, j=1, 2  from 

equation (18) to (21) and the  (0)

i jμ i, j=1, 2  from equation (26) to (29) and are shown in 

the Table 2. 
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To validate the above empirical results, Monte Carlo simulation has also been performed 

for the considered population. 

8.1 Simulation Algorithm 

(i) Choose 5000 samples of size n=20 using simple random sampling without replacement 

on first occasion for both the study and auxiliary variable. 

 

(ii) Calculate sample mean n | kx  and  n | kz  for k =1, 2, - - -, 5000. 

(iii) Retain m=17 units out of each n=20 sample units of the study and auxiliary variables 

at the first occasion. 

 

(iv) Calculate sample mean m | kx and m | kz for k= 1, 2, - - -, 5000. 

(v) Select u=3 units using simple random sampling without replacement from N-n=31 

units of the population for study and auxiliary variables at second (current) occasion. 

 

(vi) Calculate sample mean u | ky ,  m | ky  and  u | kz for k = 1, 2, - - -, 5000. 

 

(vii) Iterate the parameter  i jφ i, j=1, 2  from 0.1 to 0.9 with a step of 0.1. 

(viii) Iterate ψ  from 0.1 to 0.9 with a step of 0.2 within (vii). 

(ix) Calculate the percent relative efficiencies of the proposed estimators  i jT i, j=1, 2  

with respect to estimators respect to 
ny  and Ŷ as 

 

   

5000 5000  2
 2

n|k k

k=1 k=1
i j i j5000 5000

 2  2

i j | k  i j | k

k=1 k=1

ˆy - Y Y - Y

E 1  =  × 100  and  E 2 =  × 100 ,  k=1, 2, ..., 5000.

T - Y T - Y
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Table 1: Empirical Comparison of the proposed estimators i jT  with respect to the 

estimators 
ny and Ŷ . 

 

  

Table 2: Optimum Bias of the proposed estimators i jT  for the choices of sample size n. 

Optimum Bias n=15 n=20 n=25 

 11B T  41.87 31.40 25.12 

 12B T  38.36 28.77 23.01 

 21B T  27.69 20.77 16.61 

 22B T  24.56 18.42 14.73 

 

Table 3: Monte Carlo Simulation results when the proposed estimators i jT  are compared 

to 
ny . 

             φ
 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

11E (1)  462.33 405.02 375.06 368.48 364.25 384.56 431.24 488.90 556.41 

12E (1)  477.58 415.00 384.20 375.98 371.26 390.83 436.56 493.61 560.69 

21E (1)  449.59 379.28 336.78 302.91 274.72 253.47 236.82 227.25 222.72 

22E (1)  564.35 488.88 446.47 410.75 381.46 359.95 342.48 332.37 327.29 

 

 

 

Optimum Value of 

 i jφ i, j=1, 2  

Optimum Value of 

 (0)

i jμ i, j=1, 2  

Percent Relative 

Efficiencies with respect 

to 
ny  

Percent Relative 

Efficiencies with respect 

to Ŷ  

 Jμ
 

0.5362   

11φ
 

0.5487 
(0)

11μ  

0.4396 11E (M)  122.22 11E (JS)  130.59 

12φ
 

0.5389 
(0)

12μ  

0.4070 12E (M)  119.34 12E (JS)  127.51 

21φ
 

0.50 
(0)

21μ  

0.3772 21E (M)  115.20 21E (JS)  123.01 

22φ
 

0.50 
(0)

22μ  
0.3554 22E (M)  112.49 22E (JS)  120.12 
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9. Mutual Comparison of the Proposed Estimators 𝐓𝐢 𝐣 (i, j  = 1, 2) 

 

The performances of the proposed estimators i jT  (i, j =1, 2)  have been elaborated 

empirically as well as through simulation studies in above section 8 and the results 

obtained are presented in Table 1 to Table 4. In this section the mutual comparison of the 

four proposed estimators has been elaborated through different graphs given in Figure 9.1 

to Figure 9.3. 
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Figure 9.1: Mutual Comparison of Proposed Estimator i jT  (i, j =1, 2)when  

                   compared with the estimator 
ny .    
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Table 4: Monte Carlo Simulation results when the proposed estimators i jT  are compared  

             to Ŷ . 

            ψ  

φ  

0.1 0.3 0.5 0.7 0.9 

0.1 

11
E (2)  446.13 574.50 601.84 274.17 386.37 

12
E (2)  529.93 672.20 624.14 300.44 356.37 

21
E (2)  448.55 576.43 605.09 274.80 388.70 

22
E (2)  534.19 677.14 628.52 302.17 358.75 

0.2 

11
E (2)  390.02 529.49 516.24 247.17 345.70 

12
E (2)  463.09 615.95 537.18 269.91 320.53 

21
E (2)  393.90 531.26 519.80 248.12 348.97 

22
E (2)  469.50 621.60 542.37 272.32 323.94 

0.3 

11
E (2)  351.29 469.57 463.87 221.79 303.70 

12
E (2)  415.52 545.64 481.55 241.62 282.05 

21
E (2)  356.42 471.06 468.57 222.57 307.64 

22
E (2)  423.69 552.03 488.09 244.14 286.08 

0.4 

11
E (2)  317.06 421.74 414.95 197.24 273.65 

12
E (2)  374.60 489.30 429.51 214.48 254.47 

21
E (2)  322.46 423.22 420.38 197.89 278.20 

22
E (2)  383.45 496.64 437.01 217.21 259.11 

0.5 

11
E (2)  285.50 382.09 373.44 178.19 246.45 

12
E (2)  336.00 441.38 385.90 193.55 229.61 

21
E (2)  290.94 383.39 379.11 178.40 250.93 

22
E (2)  345.27 449.03 393.81 195.99 234.18 

0.6 

11
E (2)  259.66 347.76 338.52 163.18 222.14 

12
E (2)  304.25 400.62 349.09 176.60 207.15 

21
E (2)  265.00 348.45 343.80 163.10 226.48 

22
E (2)  313.65 407.86 356.74 178.87 211.58 

0.7 

11
E (2)  236.64 318.91 312.24 150.54 200.79 

12
E (2)  275.99 365.42 321.32 162.35 187.41 

21
E (2)  241.43 319.25 316.18 150.11 205.02 

22
E (2)  284.80 372.36 327.66 164.32 191.75 

0.8 

11
E (2)  217.64 298.02 290.02 141.70 183.07 

12
E (2)  252.38 339.25 297.96 152.22 171.15 

21
E (2)  221.83 297.48 292.59 140.44 186.98 

22
E (2)  260.48 345.14 302.82 153.29 175.15 

0.9 

11
E (2)  204.19 283.51 273.36 135.44 168.58 

12
E (2)  235.14 320.21 280.43 144.79 157.93 

21
E (2)  207.48 281.09 274.59 133.58 171.96 

22
E (2)  242.09 323.79 290.79 145.11 161.40 
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Figure 9.2: Mutual Comparison of Proposed Estimator i jT  (i, j =1, 2)when   

                   compared with the estimator Ŷ   for ψ=0.1 . 
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Figure 9.3: Mutual Comparison of Proposed Estimator i jT  (i, j =1, 2)when  

                     compared with the estimator Ŷ  for ψ=0.3  . 
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10. Interpretation of results 

 

The performance of an estimator in successive sampling is generally judged on the basis 

of percent relative efficiency and in terms of optimum values of fraction of fresh sample 

drawn on current(second) occasion which in turns  is directly associated to the cost of 

survey. Here the following interpretation can be drawn from Tables 1 - 4 and Figure 9.1 - 

9.3, 

(1) From Table-1, it is observed that  

(a) Optimum values (0)

11μ , (0)

12μ , (0)

21μ  and (0)

22μ for the estimators 
11 12 21 22T , T , T , T  respectively 

exist for the  considered Population and (0) (0) (0) (0)

22 21 12 11 Jμ < μ < μ < μ < μ , which justifies the 

applicability of the proposed estimators 
11T , 12T , 21T , 22T  at optimum conditions. The value 

for (0)

22μ  is lowest amongst all other which leads the results that the estimator 
22T  is most 

favourable in terms of cost amongst the other proposed estimators. However, at optimum 

conditions for the considered population the estimator 
11T  performs better in terms of 

efficiencies with respect to sample mean estimator as well as with estimator Ŷ due to 

Jessen (1942) in terms of precision only.  

 

(b) Appreciable gain is observed in terms of precision indicating the proposed estimators 

 i jT i, j=1, 2 (at their respective optimal conditions) are preferable over the estimators 
ny  

ˆand Y (at optimal conditions). This result justifies the use of additional auxiliary 

information at both occasions which is stable over time in two occasion successive 

sampling.  

 

(2) In Table-2, we see that the optimum bias of the estimators  i jT i, j=1, 2  reduces as the 

sample size of sample is increased. The estimator 
22T  is least biased for population mean 

amongst all the four proposed estimators. 

 



  148 

 

(3) From the simulation results presented in Table-3, where  i jT i, j=1, 2  are compared 

to the sample mean estimator 
ny , it can be seen that  

 

(a) The values for    11 12E 1  and E 1  increases as the value of φ  increases, this is in 

accordance with Sukhatme et al. (1984) results. 

 

(b)  The value for  22E 1 is greatest amongst all when the estimators  i jT i, j=1, 2 are 

compared to sample mean estimator 
ny , This indicates that the estimator 

22T  outperforms 

amongst the four  considered estimators. 

 

(4) From simulation results presented in Table-4, where the estimators  i jT i, j=1, 2  are 

compared with the estimator Ŷ , following results can be drawn 

 

(a) The value for    i jE 2 ; i, j=1, 2 decreases as φ increases for all choices of ψ  which is 

in accordance with the concept of successive sampling. 

 

(b) The value of  22T 2  is maximum amongst    i jE 2 ; i, j=1, 2 , this indicates that the 

estimator  22T 2  dominates the other estimators proposed. 

 

11. Conclusion 

From the preceding interpretations, it may be concluded that the use of exponential 

ratio type estimators for the estimation of population mean at current occasion in two 

occasion successive sampling is highly appreciable as vindicated through empirical and 

simulation results. The use of positively correlated auxiliary information which is stable 

over time is highly rewarding in terms of precision and reducing the cost of survey. From 

the mutual comparison of the estimators it is observed that all the four proposed estimators 

prove to be working more efficiently than sample mean and general successive sampling 
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estimator due to Jessen (1942). Although the estimator 
11T  is most efficient over the 

estimators 
ny  and Ŷ  in terms of precision. 

 

The performance of an estimator in successive sampling is generally judged on the 

basis of percent relative efficiency and cost of survey involved, in terms of optimum 

values of fraction of fresh sample drawn on current(second) occasion since same is 

directly associated to the cost of survey. Empirically the estimator 
22T  is not best in terms 

of efficiency for this population but it provides the minimum fraction of sample to be 

drawn afresh on current occasion, now it is not as good as the others in terms of efficiency 

but  just for sake of little more gain in efficiency, the cost of survey cannot be 

compromised, so for being more precise we have carried out the simulation which suggest 

that 
22T  is best irrespective of optimum value of μ . We see that 

22T  least biased. Hence, 

we conclude that the estimator 
22T  performs best out of the four proposed estimators. This 

leads to the result that more inclusion of exponential type estimators provides more 

efficient results as it utilizes the information on relationship between auxiliary and study 

variable most efficiently as compared to others. Hence the proposed estimators are 

justified and are recommended for their practical use by survey practitioners. 
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CHAPTER – 7* 

 

Multivariate Rotation Design for Population 

Mean in Sampling on Successive Occasions 

 

 
 

 

 

   

* Following is the publication based on the work of this chapter:-- 

     1. Priyanka, K. Mittal, R. Kim, J. M. (2015): Multivariate Rotation Design for 

Population Mean  

         in Sampling on Successive Occasions. Communications for Statistical Applications 

and  

         Methods, Vol. 22, No. 5, 445–462. 
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Multivariate Rotation Design for Population 

Mean in Sampling on Successive Occasions 

 

1. Introduction 

Longitudinal surveys are correlational research studies which involve repeated 

observations of the same variables over long periods of time. Longitudinal studies are 

often used in psychology to study developmental trends across the life span, and in 

sociology to study life events throughout lifetimes or generations. The reason for this is 

that longitudinal studies track the same people, and therefore the differences observed in 

those people are less likely to be the result of cultural differences across generations. 

Because of this benefit, longitudinal studies make observing changes more accurate, and 

they are applied in various other fields. In medicine, the design is used to uncover 

predictors of certain diseases. In advertising, the design is used to identify the changes 

that advertising has produced in the attitudes and behaviours of those within the target 

audience who have seen the advertising campaign. 

Many researchers have tried to take advantage of the longitudinal surveys, to cite 

one may refer the literature by Jessen (1942), Patterson (1950), Rao and Graham (1964), 

Gupta (1979), Das (1982) and Chaturvedi and Tripathi (1983) etc. 

Sometimes we get to sense that different variables are related to the study 

character, which may be helpful in estimating the study character. For example many 

countries keep track of the population through total population register and it is often used 

as a sampling frame of individuals or households. The register contains a number of 
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variables, some quantitative and some categorical, that may serve as auxiliary information 

for identifying the human development index. So age and the taxable income of individual 

are the quantitative auxiliary variables while sex of the individual, marital status and 

residential specification may be considered as categorical auxiliaries.  

Hence utilizing the auxiliary information on both the occasions Sen (1972, 1973), 

Singh et al. (1991), Feng and Zou (1997), Biradar and Singh (2001), Singh and Singh 

(2001), Singh (2005) have successfully added some literature in the field of successive 

sampling. Singh and Priyanka (2006, 2007a, 2008a), Singh and Karna (2009), Singh and 

Prasad (2010) have proposed a variety of estimators for estimating the population mean 

on current (second) occasion in two occasions successive sampling.  

It has been established that, in general, the linear regression estimator is more 

efficient than the ratio estimator except when the regression line y on x passes through the 

neighbourhood of the origin; in this case the efficiencies of these estimators are almost 

equal. Also there are many practical situations when the regression line does not pass 

through the neighbourhood of the origin, in such cases the ratio estimator does not perform 

as good as the linear regression estimator.  

 Motivated with this argument, in the proposed work an attempt has been made to 

utilise multi-auxiliary information which are available on both the occasions and are stable 

over time. The multi-auxiliary information are blended with exponential type structures 

and a multivariate exponential ratio type estimator has been proposed for estimation of 

population mean at current occasion in two occasion rotation sampling. The properties of 

the proposed estimator are derived upto the first order of approximation and the optimum 
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replacement strategies are discussed. These properties have been corroborated 

empirically. The proposed multivariate estimator has been compared with the recent 

literature in rotation sampling due to Singh (2005) and Singh and Priyanka (2008a). A 

simulation study has been carried out which determines the working efficiency of the 

proposed estimator. It has been observed that the proposed exponential type structure 

works well even if the auxiliary variables have low correlation with the study variable.  

2. Sample Structure and Notations 

Let  1 2 NU = U ,U , ... , U  be the finite population of N units, which has been 

sampled over two occasions. We have assumed that the size of the population remains 

unchanged but values of units change over two occasions. The characters under study have 

been denoted by x and y on the first and second occasions respectively. It has been 

assumed that information on p additional auxiliary variables, 1 2 pz , z , ..., z  whose 

population means are known, correlated to x and y, stable over the occasions and are 

readily available on both the occasions. Simple random sample (without replacement) of 

n units is taken on the first occasion. A random subsample of m = nλ  units is retained for 

use on the second (current) occasion. Now at the current occasion a simple random sample 

(without replacement) of u= (n-m) = nµ units is drawn afresh from the remaining (N-n) 

units of the population so that the sample size on the second occasion is also n. Let μ  and 

 λ μ + λ=1; 0 μ , λ 1   are the fractions of fresh and matched samples respectively at 

the second (current) occasion.  
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3. Formulation of the Proposed Estimator | pT  

To estimate the population mean Y on the current (second) occasion, utilizing p-

additional auxiliary information which are stable over time and are readily available on 

both the occasions, a multivariate weighted estimator 
uT  based on sample of the size u= 

nµ drawn afresh on the current (second) occasion is proposed as  

Tu = 𝐖𝐮
′  𝐓exp(u)                                                                                          (1) 

where Wu  is a column vector of p-weights given by 𝐖𝐮 = [wu1
wu2  . . . wup  ]′  

 and  𝐓exp(u) =

[
 
 
 
 
T(1, u)
T(2, u)

...
T(p, u)]

 
 
 
 

 , where 
 

 
i i

u

i i

Z  - z u
T(i, u) = y  exp

Z +  z u

 
  
 

 for i  = 1, 2, 3, …, p 

such that 𝟏′𝐖𝐮 = 1, where  1  is a column vector of order p. 

The second estimator Tm is also proposed as weighted multivariate chain type ratio to 

exponential ratio estimator based on sample size m = nλ  common to the both occasions 

and is given by 

Tm = 𝐖𝐦
′  𝐓exp(m, n)                                                                              (2) 

where Wm  is a column vector of p-weights as 𝐖𝐦 = [wm1
wm2  . . . wmp  ]′ 

and 𝐓exp(m, n) =

[
 
 
 
 
T(1,m, n)
T(2,m, n)

...
T(p,m, n)]

 
 
 
 

, where 
*

*

*

y (i, m)
T(i, m, n) = x (i, n)

x (i, m)

 
 
 

 

where 
 

 
i i*

m

i i

Z  - z m
y (i, m) = y  exp

Z +  z m

 
  
 

, 
 

 
i i*

m

i i

Z  - z m
x (i, m) = x  exp

Z +  z m

 
  
 

 

and 
 

 
i i*

n

i i

Z  - z n
x (i, n) = x  exp

Z +  z n

 
  
 

 for i=1, 2, 3, ..., p.  

Such that 𝟏′𝐖𝐦 = 1, where  1  is a column vector of order p. 

The optimum weights 𝐖𝐮 and 𝐖𝐦  in Tu  and Tm are chosen by minimizing their mean 

square errors respectively. 

Now a convex linear combination of the two estimators
uT  and mT has been considered to 

define the final estimator of population mean Y  on the current occasion and is given as 
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 | p u mT = φ T  + 1 - φ  T                                                                                                           (3) 

where  φ 0 φ 1   is an unknown constant to be determined so as to minimise the mean 

square error of the estimator | pT . 

4. Properties of the Proposed Estimator | pT  

The properties of the proposed estimator | pT  are derived under following large sample 

approximations: 

           u 0 m 1 m 2 n 3 i i 4 iy = Y 1 + e ,  y = Y 1 + e ,  x = X 1 + e , x = X 1 + e , z u = Z 1 + e ,  

       i i 5 i i i 6 i kz m = Z 1 + e and z n =  Z 1 + e  such that |e | < 1  k = 0, 1, 2, 3, 4, 5 and 6  

kiand |e | < 1   i = 1, 2, 3, ..., p.   

Under the above transformations, the estimators uT  and mT  take the following forms: 

   2

0 4i 0 4i 4i

Y
T i, u  = 8 + 8e - 4e - 4e e + 3e   for  i=1, 2, ..., p

8
                    (4)                                                      

  



1 2 3 6 i 1 2 1 3 1 6 i 2 3

2 2

2 6 i 3 6 i 2 6 i

Y
T i, m, n  = 8 + 8e - 8e + 8e - 4e - 8e e + 8e e - 4e e - 8e e

8

                     + 4e e - 4e e + 8e  + 3e    for  i=1, 2, ..., p     

                 (5)                                                                                                                    

Thus we have the following theorems: 

Theorem 4.1: The bias of the proposed estimator | pT  to the first order of approximation 

is obtained as 

       | p u mB T  = φ B T  + 1 - φ  B T                                                                   (6) 

B(Tu) =
1

u
𝐖u

′   𝐁u                                                                                                  (7) 

B(Tm) = 𝐖m
′  (

1

m
Bm1 +

1

n
𝐁m2)                                                                             (8) 
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where 𝐁u = (B1(u), B2(u), … , Bp(u))
′

, 002 011
i 2

i i

C C1 3 1
B (u) = Y  - 

u 8 Z 2 Y Z

 
 
 

,

for i =1, 2, 3, ..., p  

200 110
m1 2

C C
B  = Y  - 

X XY

 
 
 

,  𝐁m2 = (Bm21, Bm22, … , Bm2p)
′ 
    

where 002 110 011 200
2 i 2 2

i i

C C C C3 1
Bm  = Y +  -  - 

8 Z XY 2 YZ X

 
 
 

,      
r s t

rst i i iC = E x - X y  - Y z  - Z 
 

; 

 r, s, t 0  for  i = 1, 2, 3, ..., p . 

Proof: The bias of the estimator 
| pT is given by 

       | p | p u mB T  = E T  - Y  = φ B T  + 1 - φ B T    

where     u u m mB T  = E T  - Y  and  B T  = E T  - Y        

Using large sample approximations assumed in Section 4 and retaining terms up-to the 

first order of approximations, the expression for  T i, u and  T i, m, n for i=1, 2, 3, …, p 

are obtained as in equation (4) and equation (5) respectively and hence using equation (4) 

and (5) in equation (1) and (2) respectively the expression for    u mB T  and  B T are 

obtained as in equations (7) and equation (8) respectively, hence the expression for bias 

of the estimator 
| pT  is obtained as in equation (6). 

Theorem 4.2: The mean square error of the estimator | pT  is given by 

         
 22

| p u m u mM T  = φ  M T  + 1 - φ  M T + 2φ 1 - φ Cov (T , T )
  
      (9)  

M(Tu) = 𝐖u 
′ 𝐊u 𝐖u                                                                                                       (10) 

M(Tm) = (B)𝐖m 
′ 𝐄 𝐖m + 𝐖m 

′ 𝐊m 𝐖m                                                                 (11)  

where 𝐖𝐮 = [wu1
wu2  . . . wup  ]′, 𝐖𝐦 = [wm1

wm2  . . . wmp  ]′, E  is a 

unit matrix of order p × p , 𝐊u = (
1

u
−

1

N
)𝐊u∗   ,   𝐊m = (

1

n
−

1

N
)𝐊m∗  where 
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  𝐊u∗ =

11 12 1p

21 22 2p

p1 p2 pp p × p

ku ku . . . ku

ku ku . . . ku

. . . . . .

. . . . . .

. . . . . .

ku ku . . . ku

 
 
 
 
 
 
 
 
  

     and      𝐊m∗ =

11 12 1p

21 22 2p

p1 p2 pp p × p

km km . . . km

km km . . . km

. . . . . .

. . . . . .

. . . . . .

km km . . . km

 
 
 
 
 
 
 
 
  

                      

where   B = (
1

m
−

1

N
)B1,  2 2

1 yx 0B  = 2 Y 1 - ρ C , 
i i i

2 2 2

ii 0 z yz 0 z

1
ku =Y C  + C - ρ C C

4

 
 
 

, 

i i j j i j i j

2 2

ij 0 yz 0 z yz 0 z z z z z

1 1 1
ku = Y  C  - ρ C C - ρ C C + ρ C C

2 2 4

 
 
 

 
i i i

2 2 2

ii 0 yx yz 0 z z

1
km = Y C 2ρ -1  - ρ C C + C

4

 
 
 

 and

 
i i j j i j i j

2 2

ij 0 yx yz 0 z yz 0 z z z z z

1 1 1
km = Y C 2ρ -  1  - ρ C C - ρ C C + ρ C C   i j=1, 2, 3,..., p.

2 2 4

 
  

 
 

Proof: The mean square error of the estimator | pT is given by  

 
 2

| p | pM T  = E T - Y       
2

u m= E φ T  - Y  + 1 - φ T  - Y 
 

 

              
         

22

u m u m= φ  M T  + 1 - φ M T  + 2 φ 1 - φ  Cov T , T   

where  
 2

u u M T   =  E T  -  Y   and  
 2

m mM T  = E T  -  Y   ;   

The estimators uT  and mT  are based on two independent samples of sizes u and m 

respectively, hence  u mCov T , T  = 0; Considering the population is sufficiently large so 

using large sample approximations assumed in section 4 and retaining terms upto the first 

order of approximations and also assuming x y 0C = C = C (following Cochran(1977)), the 

expression for    u mM T  and  M T are obtained as given in equation (10) and (11) and 

hence the expression for mean square error of estimator 
| pT  is  obtained as in equation (9). 

5. Choice of Optimal Weights 

To find the optimization of the weight vector 𝐖u = [wu1
wu2  . . . wup  ]′, the mean 

square error 
uM(T )  given in equation (10) is minimized subject to the condition 𝟏′𝐖u =

1 using the method of Lagrange’s Multiplier explained as: 
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To find the extrema using Lagrange’s Multiplier Technique, we define uL  as 

  Lu = 𝐖u 
′ 𝐊u 𝐖u − λu(𝟏

′𝐖u − 1),                               (12) 

where 1  is a unit column vector of order p and 
uλ is the Lagrangian multiplier. 

Now, by differentiating equation (12) partially with respect to 𝐖u  and equating it to zero 

we have 

                      
∂Lu

∂𝐖u
= 

∂

∂𝐖u
[𝐖u 

′ 𝐊u 𝐖u − λu(𝟏
′𝐖u − 1)] = 0 

This implies that,  2 𝐊u𝐖u − λu𝟏 = 𝟎, which yields 

                          𝐖u =
λu

2
 𝐊𝐮

−𝟏 𝟏                                                                                    (13) 

 Now pre- multiplying equation (13) by 𝟏′, we get    

           
λu

2
=

1

𝟏′ 𝐊u
−1 𝟏

                                                                                      (14) 

Thus, using equation (14) in equation (13), we obtain the optimal weight vector as   

           𝐖uopt.
=

𝐊u
−1

𝟏′𝐊u
−1𝟏

                                                                    (15) 

In similar manners, the optimal of the weight 𝐖m = [wm1
wm2  . . . wmp  ]′  is 

obtained by minimizing  mM T  subject to the constraint 𝟏′𝐖m = 1  using the method of 

Lagrange’s multiplier, for this we define  

    Lm = (B)𝐖m 
′ 𝐄 𝐖m + 𝐖m 

′ 𝐊m 𝐖m − λm(𝟏′𝐖𝐦 − 1),  

where 
mλ is the Lagrangian multiplier. 

Now, differentiating mL  with respect to 𝐖m and equating to 0, we get 

               𝐖mopt.
=

𝐊m
−1

𝟏′𝐊m
−1𝟏

                                                                           (16) 

Then substituting the optimum values of 𝐖u and 𝐖m in equations (10) and (11) 

respectively, the optimum mean square errors of the estimators are obtained as: 

M(Tu)opt. = (
1

u
−

1

N
)

1

𝟏′ 𝐊u∗
−1 𝟏

                                                                                       (17)                                                                                     

M(Tm)opt. = (
1

m
−

1

N
) B1  +   (

1

n
−

1

N
)

1

𝟏′ 𝐊m∗
−1  𝟏

                                         (18)  
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6. Minimum Mean Square Error of the Proposed Estimator | pT  

The mean square error of the proposed estimator | pT  is given by 

        
22

| p u mopt. opt.
M T = φ M T + 1 - φ M T  

Minimizing  | pM T with respect to φ  gives the optimum value of  φ as 

 
 

   
m opt.

opt.

u mopt. opt.

M T
φ  = 

M T +  M T
                                                                 (19) 

Now substituting the above value of opt.φ in equation (9), we obtain the optimum mean 

square error of the estimators | pT  as 

  
   

   

* u mopt. opt.

| p opt.
u mopt. opt.

M T  . M T
M T = 

M T  +  M T
                                          (20) 

Further, substituting the optimum values of the mean square errors of the estimators given 

in equations (17) and (18) in equation (19) and (20) respectively, the simplified values 

opt.φ and   
*

| p opt.
M T  are obtained as 

 
 

 
1

opt. 2

1

μ μ C - B  + C
φ = 

μ  C - μ B  + C - A  - A

  

  

                               (21) 

  
 * 1 2

| p 2opt.
3

μ D  - D1
M T = 

n μ  C - μ D  - A  

                    (22) 

where 

A =
1

𝟏′ 𝐊u∗
−1 𝟏

  ,  2 2

1 yx 0B  = 2 Y 1 - ρ C ,  C =
1

𝟏′𝐊m∗
−𝟏  𝟏

, 1D = A C,  2 1D = A B  + A C,

3 1D = B  + C - A  and  μ is the fraction of the sample drawn afresh at the current (second) 

occasion. 

7. Optimum Replacement Strategy for the Estimator | pT  

The idea of longitudinal surveys is mainly concerned with obtaining efficient estimates 

with minimal cost in carrying out the survey. So it is technically convenient to maintain a 
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high overlap between repeats of the survey which provides the advantage due to many 

sampled units being located and have some experience in the survey. Hence the decision 

of the optimum value of μ  should be made (fractions of samples to be drawn afresh on 

the current occasion) so that Y  may be estimated with maximum precision and minimum 

cost, we minimize the mean square error  
*

| p opt.
M T  in equation (22) with respect toμ  as: 

                                        
  *

| p opt.
 M T

0
 μ





, 

2

1 2 3                              μ  G - 2 μ G + G = 0 , 

Thus the optimum value of μ  so obtained is one of the two roots given by  

2

2 2 1 3

1

G  ±  G  - G  G
μ = 

G
                                (23) 

where 1 1 2 2 3 1 2 3G = C D ,  G = C D   and  G = A D  +  D  D . 

The real value of μ  exist, iff 
2

2 1 3G  - G  G 0 . For any situation, which satisfies this 

condition, two real values of  μ  may be possible, hence choose a value of μ  such that 

0 μ 1   .  All other values of μ  are inadmissible. If both the real values of μ  are 

admissible, the lowest one will be the best choice as it reduces the total cost of the survey. 

Substituting the admissible value of μ  say  
| pTμ  from (23) in to the equation (22), we get 

the optimum value of the mean square error of the estimator | pT  with respect to φ as well 

asμ which, is given as 

  | p

| p | p

* * T 1 2

| p 2opt.

T T 3

μ  D  -  D1
M T = 

n μ  C - μ  D  - A

 
 

 
 

 .                                                                               (24) 

8. Efficiency with Increased Number of Auxiliary Variables 

As we know that increasing the number of auxiliary variables typically increases the 

precision of the estimates. In this section we verify this property for the proposed estimator 
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as under: Let | pT and | qT be two proposed estimators based on p and q auxiliary variables 

respectively such that p < q , then    | p | qM T  M T , i.e. 

                                          | p | qM T  - M T   0                                                                                   (25) 

p p p p q q q q

2 2

p p p p q q q q

μ A C  - A  (B + C ) μ A C  - A  (B + C )1 1
 -   0

n nμ  C  - μ (B + C  + A ) - A μ  C  - μ (B + C  + A ) - A

       
      

 

On simplification, we get  

    
 

 
   2 p q p q

p q p q p q

p q

A A C - C
A - A μ - 1 μ C C +  - μ B C - C μ - 1  - B 0

A - A

  
   

    

 

This reduces to the condition 

                                                   p qA - A   0                                                                (26) 

So from Section 6 above, we get 

1

𝟏′ 𝐊p
−1 𝟏

−
1

𝟏′ 𝐊q
−1 𝟏

 ≥ 0 

𝟏′ 𝐊q
−1 𝟏 ≥ 𝟏′ 𝐊p

−1 𝟏 

Following Rao (2006), the matrix qK can be partitioned and can be written as 

p

q  = 
 
  

K F
K

F G
  

where F , F  and G are matrices deduced from qK  such that their order never exceeds q-

p and always greater than or equal to 1.  Then,                                                 

                                                            
-1

-1 p

q  = 
  

 
 

K HJH HJ
K

JH J
                                                 (27) 

where  
1

-1

p



 J G F K F and 
1

p

H K F . (See Rao (2006) and Olkin(1958)) 

Now rewriting 
1

q

1 K 1by putting the value of 
-1

qK from equation (27), we get 

                      

 
-1

p1 p

q p q - p

q - p

  
        

   

1K HJH HJ
1 K 1 1 1

1JH J
 

                                p-1

p p q - p p q - p

q - p

 -       -   +  
 

        
 

1
1 K HJH 1 JH 1 HJ 1 J

1
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                               1

p p p q - p p p q - p q - p q - p  -   -     +         1 K HJH 1 1 JH 1 1 HJ 1 1 J 1
                 

   1 1

q p p p p p q - p p p q - p q - p q - p   -    =  -   -     +           1 K 1 1 K 1 1 HJH 1 1 JH 1 1 HJ 1 1 J 1  

                     

    p1 1

q p p p p q - p

q - p

- 
   -    =    

-

 
          

1HJH HJ
1 K 1 1 K 1 1 1

1JH J
 

                     
   1 1

q p p p   -       -    0 
-

   
    

 

H
1 K 1 1 K 1 1 J H I 1

I
 

The latter follows since J is positive definite so that    0 R J R  for all R,  

where  -  R H I 1  . 

Hence from equation (25), we have 

                                              | p | qM T  - M T   0  

This leads to the result that utilizing more auxiliary variables provides more efficient 

estimates in terms of mean square error for the proposed estimator. 

 

9.  Special Cases 

Case 1: 

There are several instances where the p-auxiliary variates are mutually 

uncorrelated but they are correlated to study variates for example, in survey of commercial 

product say the aim is to estimate the number of persons reading newspaper. Then in that 

case the numbers of copies produced by different newspaper companies are different and 

number of copies produced by a particular newspaper company is uncorrelated to the 

number of copies produced by another newspaper but both are correlated to study variates, 

i.e., number of persons reading newspaper. Similarly, in transportation survey if the aim 

is to estimate the number of persons traveling by air per year, then in that case the total 

seating capacity of different airlines may be treated as auxiliary variates. Since, the seating 

capacity of different airlines is different and they are mutually uncorrelated but the 

information on this will contribute a lot in estimation of the number of persons traveling 

by air. Hence, for modelling such type of situations where the p-auxiliary variates are 
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mutually uncorrelated, i.e. 
i jz zρ = 0  i j = 1, 2, ..., p  , the proposed multivariate 

exponential ratio type estimator is applicable and  in this case optimum value of μ say 0μ  

and the optimum value of the mean square error of the estimator | pT  with respect to φ as 

well as 0μ  is given by 

2

0 2 1 3

1

0 0 0 0

2

0

G  ±  G  - G  G
μ  = 

G
                                                                            (28)   

and      
| p

2

| p
| p

0 0 0
T* * 1 2

| p opt. 0 0 0 0 0
TT 3

μ  D  -  D1
M T = 

n μ  C  - μ  D  - A

  

 
 

                                                                            (29) 

 where 
1 1 2 2 3 1 2 3

0 0 0 0 0 0 0 0 0 0 0G = C  D ,  G = C  D  , G = A  D  +  D  D , A0 =
1

𝟏′ 𝐒u∗
−1 𝟏

  ,

 
1

0 2 2

yx 0B  = 2 Y 1 - ρ C ,   

C0 =
1

𝟏′𝐒m∗
−𝟏  𝟏

, 
1

0 0 0D = A  C ,  
2 1

0 0 0 0 0D = A  B  + A  C ,
3 1

0 0 0 0D = B + C - A  , 

 𝐒u∗ =

11 12 1p

21 22 2p

p1 p2 pp p × p

su su . . . su

su su . . . su

. . . . . .

. . . . . .

. . . . . .

su su . . . su

 
 
 
 
 
 
 
 
  

     and      𝐒m∗ =

11 12 1p

21 22 2p

p1 p2 pp p × p

sm sm . . . sm

sm sm . . . sm

. . . . . .

. . . . . .

. . . . . .

sm sm . . . sm

 
 
 
 
 
 
 
 
  

                      

where  
1

0 2 2

yx 0B  = 2 Y 1 - ρ C , 
i i i

2 2 2

ii 0 z yz 0 z

1
su =Y C  + C - ρ C C

4

 
 
 

, 

i i j j

2 2

ij 0 yz 0 z yz 0 z

1 1
su = Y  C  - ρ C C - ρ C C

2 2

 
 
 

,  
i i i

2 2 2

ii 0 yx yz 0 z z

1
sm = Y C 2ρ -1  - ρ C C + C

4

 
 
 

 

and  
i i j j

2 2

ij 0 yx yz 0 z yz 0 z

1 1
sm = Y C 2ρ -  1  - ρ C C - ρ C C   i j=1, 2, 3,..., p.

2 2

 
  

 
 

Case 2: 

The p-auxiliary variates are mutually correlated i.e. 
i jz zρ  0  i j = 1, 2, ..., p   . In this 

case if there is high correlation between p-auxiliary variates, then such a problem can be 

addressed as a problem of multi collinearity in survey sampling. 
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10. Efficiency Comparison  

In order to examine the performance of the proposed estimator with some of the recent 

estimators due to Singh (2005) and Singh and Priyanka (2008a) in successive sampling, 

same assumptions have been considered for proposed estimator for discussing the 

properties of estimators as that of estimators proposed by Singh (2005) and Singh and 

Priyanka (2008a). 

Hence, following Olkin (1958), Raj (1965), Artes and Garcia (2005) and Singh et al. 

(2011) we consider 
i0 zC = C ;  i=1, 2, 3, ..., p  approximately and hence, the optimum 

value of μ say *μ̂ and optimum value of mean square error  
* *

| p opt.
M T of the proposed 

estimator | pT reduces to  

2* * * *
*

2 2 1 3

*

1

G  ±  G  - G  G
μ  = 

G
                                                                            (30) 

 
| p

2

| p
| p

* * *
T* * 1 2

| p opt. * * * * *
TT 3

μ  D  -  D1
M T = 

n μ  C  - μ  D  - A

  

 
 

                                                           (31)                                                                     

where 
* * * * * * * * * * *

1 1 2 2 3 1 2 3G = C  D ,  G = C  D  ,  G = A  D  +  D  D , A∗ =
1

𝟏′ 𝐇u∗
−1 𝟏

  , C∗ =
1

𝟏′𝐇m∗
−𝟏  𝟏

  ,

* * *

1D = A  C , * * * * *

2 1D = A  B  + A  C , * * * *

3 1D = B  + C  - A ,  * 2

1 yx yB  = 2 1 - ρ S  , 

  𝐇u∗ =

11 12 1p

21 22 2p

p1 p2 pp p × p

hu hu . . . hu

hu hu . . . hu

. . . . . .

. . . . . .

. . . . . .

hu hu . . . hu

 
 
 
 
 
 
 
 
  

     and      𝐇m∗ =

11 12 1p

21 22 2p

p1 p2 pp p × p

hm hm . . . hm

hm hm . . . hm

. . . . . .

. . . . . .

. . . . . .

hm hm . . . hm

 
 
 
 
 
 
 
 
  

                      

 * 2

1 yx yB  = 2 1 - ρ S , 
i

2

ii yz y

5
hu = - ρ  S

4

 
 
 

, 
i j i j

2

ij yz yz z z y

1 1 1
hu = 1 - ρ - ρ + ρ  S

2 2 4

 
 
 

, 

i

2

ii yx yz y

3
hm = 2ρ - ρ -  S

4

 
 
 

 and 
i j i j

2

ij yx yz yz z z y

1 1 1
hm = 2ρ - ρ - ρ + ρ - 1  S

2 2 4

 
 
 

 

 i  j=1, 2, 3,..., p.   
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10.1 Comparison of the proposed Estimator 
| pT with respect to estimator ST due to 

Singh (2005) 

The estimator proposed by Singh (2005) is given as 

  u m n
S

u m n

y y x
T = ψ Z + 1 - ψ Z

z x z
,                                                                                   (32)         

and the optimum mean square error of this estimator ST  is given by 

  
2 2

1 1 2 S y

S opt. 2

1 2 S

α + α α  μ  S
M T =

n α + α  μ

  

  

  

with    1 yz 2 yz yxα = 2 1 - ρ , α  = 2  ρ - ρ and 

      S yz yz yx yz yxμ = - 1- ρ  ± 1- ρ 1- ρ ρ - ρ . 

Hence, the percent relative efficiency of the proposed estimator with respect to ST is given 

as 

 

 
| p

s opt.S

T * *

| p opt.

M T
E  =  × 100

M T
                                                                                   (33) 

 

10.2 Comparison of the proposed estimator | pT with respect to estimator SPT due to 

Singh and Priyanka (2008a) 

The proposed estimator | pT at optimum condition is also compared with respect to the 

estimator SPT
 
due to Singh and Priyanka (2008a) given as 

     * * *

SP u y z u m y x n mT = ξ y + β Z - z  + 1- ξ y + β x - x  
   

,                           (34) 

where      * * *

m m yz m n n x z n m m x z my = y + β Z - z , x = x + β Z - z , x = x + β Z - z , yz x zβ  and β

are the population regression coefficients of y on z and x on z respectively and ξ is 

constant so as to minimize the variance of the estimator SPT . 

The optimum variance of estimator SPT  is given as 
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  2

* ySP

SP opt. 2

SP

Sκ κ + μ  χ
V T = 

nκ + μ  χ  
 

where  2 2 2 2

yz yz yx yx yz SP

- κ ± κ (κ + χ)
κ = 1- ρ , χ = 2ρ ρ - ρ 1 + ρ and μ =

χ
. 

Hence, the percent relative efficiency 
| p

SP

TE  for (p=1, 2, 3 …) of the estimator | pT  (under 

their respective optimum conditions) with respect to SPT  is given by 

 

 
| p

*

SP opt.SP

T * *

| p opt.

V T
E =   × 100

M T
; for (p = 1, 2, 3…).                                                                     (35)                

 

11. Empirical Illustrations and Monte Carlo Simulation 

Population Source: [Free access to the data by Statistical Abstracts of the United States]  

For Carrying out the empirical study the population of total electric consumption in 

different states of United States has been considered.  

For carrying out numerical illustration we have considered the case of three auxiliary 

information (i.e. p=3) which are stable over time and are available at both the occasions. 

The population comprise of N = 51 states of the United States. Let  

iy : The total energy consumption during 2007 in the thi  state of U. S. 

ix : The total energy consumption during 2002 in the thi  state of U. S. 

1 iz : The total energy consumption during 2001 in the thi state of  U. S. 

2 iz : The total energy consumption during 2000 in the thi state of  U. S. 

3 iz : The total energy consumption during 1999 in the thi state of  U. S. 

For the considered population, the values of  
| p

*

Tμ p=1, 2 and 3 defined in equation (31) 

and percent relative efficiencies 
| p

S

TE and 
| p

SP

TE defined in equation (33) and (35) of | pT (p= 

1, 2 and 3) with respect to ST  and SPT  have been computed and are presented in Table-2. 
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11.1 Simulation Algorithm 

(i) Choose 5000 samples of size n=20 using simple random sampling without replacement 

on first occasion for both the  study and auxiliary variables. 

(ii) Calculate sample mean n | kx , 
 n | k1z , 

 n | k2z  and 
 n | k3z for k =1, 2, - - -, 5000. 

(iii) Retain m=17 units out of each n=20 sample units of the study and auxiliary variables 

at the first occasion. 

(iv) Calculate sample mean m | kx , 
 m | k  m | k1 2z , z and 

 m | k3z for k= 1, 2, - - -, 5000. 

(v) Select u=3 units using simple random sampling without replacement from N-n=31 

units of the population for study and auxiliary variables at second (current) occasion. 

(vi) Calculate sample mean u | ky ,  m | ky , 
 u | k  u | k1 2z , z  and 

 u | k3z for k = 1, 2, - - -, 5000 . 

(vii) Iterate the parameter φ  from 0.1 to 0.9 with a step of 0.1. 

(viii) Iterate ψ  from 0.1 to 0.9 with a step of 0.1 within (vii). 

(ix) Calculate the percent relative efficiencies of the proposed estimator  |pT p=1, 2 and 3

with the case p=1, p=2 and p=3(i.e.  | p =1 | p =2 | p =3T , T  and T ) with respect to estimator due 

to Singh (2005) and Singh and Priyanka (2008) as 

    

   

5000 5000
 2  2

S | k SP| k

k=1 k=1
p p5000 5000

 2  2

| p | k | p | k

k=1 k=1

T - Y T - Y

E S  =  × 100  and  E SP =  × 100 ,  k=1, 2, ..., 5000.

T - Y T - Y
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Table 1: Empirical comparison of the proposed estimator | pT  (p=1, 2 and 3) with 

respect to the estimators ST and SPT  respectively at their optimum conditions. 

 

 
p=1  p=2  p=3  

*

1μ = 0.5355  

*

2μ = 0.5196  

*

3μ = 0.5137  

| p

S

TE  

Sμ = 0.5502  109.55

 

120.77

 

125.17

 

| p

SP

TE  

SPμ = 0.5496  ** 101.44 105.14 

                   

 Note: ‘**’ denote estimator | p=1T  does not perform better than SPT  in terms of efficiency. 

 

 

Table 2: Monte Carlo Simulation results when the proposed estimator | p=1T  is compared    

               to 
S SPT  and T  respectively ( considering ψ = ξ ). 

 

      ψ  

φ  

 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 
 1E S  1349. 9 5895.1 12296.0 17324.0 36619.0 57157.0 72197.0 84832.0 84170.0 

 1E SP  104.42 102.05 127.52 171.80 262.54 375.88 520.91 638.86 867.55 

0.3 
 1E S  1168.9 4741.7 11796.0 16766.0 32572.0 45474.0 61039.0 81957.0 97409.0 

 1E SP  ** ** 113.58 159.70 237.69 329.08 469.05 577.94 764.94 

0.5 
 1E S  894.8 3399.7 8454.4 12852.0 22913.0 30904.0 41579.0 60708.0 70099.0 

 1E SP  ** ** ** 113.93 167.23 231.62 323.22 410.61 540.09 

0.7 
 1E S  608.0 2258.0 5620.8 8907.0 14926.0 19794.0 27410.0 40345.0 46610.0 

 1E SP  ** ** ** ** 109.21 153.80 211.71 272.91 358.30 

0.9 
 1E S  413.45 1493.1 3817.9 5946.8 10156.0 13715.0 18796.0 26496.0 31819.0 

 1E SP  ** ** ** ** ** 105.43 141.45 184.93 242.63 

Note: ‘**’ denotes estimator | p=1T does not perform better than SPT  in terms of efficiency. 
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Table 3: Monte Carlo Simulation results when the proposed estimator | p=2T  are 

compared  to 
S SPT  and T  respectively ( considering ψ = ξ ). 

 

       ψ  

φ  

 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 
 2E S  1335.2 5940.6 12400.0 17376.0 36883.0 57438.0 73062.0 85114.0 84732.0 

 2E SP  104.44 102.84 128.60 172.31 264.43 377.72 527.15 640.98 873.34 

0.3 
 2E S  1178.3 11795.1 11935.0 16892.0 32827.0 45857.0 61624.0 82646.0 98297.0 

 2E SP  ** ** 114.92 160.90 239.55 331.85 473.55 582.80 771.92 

0.5 
 2E S  902.63 3431.4 8553.5 12956.0 23109.0 31143.0 41964.0 61237.0 70719.0 

 2E SP  ** ** ** 114.85 168.66 233.41 326.21 414.19 544.87 

0.7 
 2E S  612.36 2276.4 5673.3 8977.4 15037.0 19933.0 27637.0 40674.0 46957.0 

 2E SP  ** ** ** ** 110.02 154.88 213.46 275.13 360.96 

0.9 
 2E S  416.00 1502.6 3846.8 5988.2 10221.0 13801.0 18936.0 26671.0 32009 

 2E SP  ** ** ** ** ** 106.09 142.50 186.15 244.08 

Note: ‘**’ denotes estimator | p=2T does not perform better than SPT  in terms of efficiency. 

 

Table 4: Monte Carlo Simulation results when the proposed estimator | p=3T  are 

compared  to 
S SPT  and T  respectively ( considering ψ = ξ ). 

       ψ  

φ  

 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 
 3E S  1407.7 6252.0 12967.0 18284.0 38857.0 61313.0 76382.0 89262.0 88716.0 

 3E SP  110.12 108.23 134.48 181.31 278.58 403.21 551.10 672.22 914.40 

0.3 
 3E S  1222.2 5606.4 12300.0 17513.0 34076.0 47645.0 63630.0 85846.0 10116.0 

 3E SP  104.40 104.34 118.44 166.82 248.67 344.79 488.95 605.36 794.41 

0.5 
 3E S  934.23 3549.5 8812.8 13413.0 23967.0 32399.0 43198.0 63448.0 73073.0 

 3E SP  ** ** ** 118.90 128.23 242.82 335.81 429.14 563.01 

0.7 
 3E S  638.63 2371.6 5891.4 9397.2 15675.0 20776.0 28770.0 42331.0 490.21 

 3E SP  ** ** ** ** 114.69 161.42 222.22 286.35 376.83 

0.9 
 3E S  436.36 1577.9 4023.4 6288.2 10711.0 14474.0 19833.0 27952.0 33593.0 

 3E SP  ** ** ** ** ** 111.27 149.26 195.09 256.16 

   Note: ‘**’ denotes estimator | p=3T does not perform better than SPT  in terms of efficiency. 
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11.2 Performance of proposed estimators for various choices of correlation 

coefficients 

To validate the applicability and performance of the proposed estimator, | pT  (for p=1, 2 

and 3) has been compared with Singh (2005) and Singh and Priyanka (2008a) at their 

respective optimum conditions for various combinations of correlation coefficients and 

results are tabulated in Table 5 to Table 7. 

Table 5: For p =1 

yxρ  0.5 0.6 0.7 

1yzρ  

*

1μ  Sμ  SPμ  

| p

S

TE  

| p

SP

TE  

*

1μ  Sμ  SPμ  

| p

S

TE  

| p

SP

TE  

*

1μ  Sμ  SPμ  

| p

S

TE  

| p

SP

TE  

0.1 0.51 0.57 0.53 141.36 ** 0.54 0.60 0.55 142.23 ** 0.58 0.63 0.58 143.34 ** 

0.3 0.49 0.54 0.52 134.21 ** 0.52 0.56 0.54 134.93 **  0.55 0.60 0.57 135.86 ** 

0.6 0.44 0.47 0.49 116.35 ** 0.47 0.50 0.51 116.69 ** 0.51 0.53 0.53 117.12 ** 

Note: ‘**’ denotes estimator | p=1T  does not perform better than SPT  in terms of efficiency. 

Table 6: For p =2 and 
1 2z zρ = 0 . 

yxρ  0.5 0.6 0.7 

1yzρ  

2yzρ  

*

2μ  Sμ
 SPμ  

| p

S

TE  

| p

SP

TE  

*

2μ  Sμ
 SPμ  

| p

S

TE  

| p

SP

TE  

*

2μ  Sμ
 SPμ  

| p

S

TE  

| p

SP

TE  

0.2 

0.3 0.48 0.55 0.53 158.92 100.0 0.51 0.58 0.55 160.26 102.09 0.54 0.62 0.57 161.99 104.06 

0.4 0.47 0.55 0.53 168.30 105.91 0.50 0.58 0.55 169.91 108.23 0.53 0.62 0.57 171.98 110.48 

0.5 0.46 0.55 0.53 180.81 113.78 0.48 0.58 0.55 182.79 116.44 0.52 0.62 0.57 185.35 119.07 

0.3 

0.3 0.47 0.54 0.52 149.03 ** 0.50 0.56 0.54 150.13 101.65 0.53 0.60 0.57 151.54 103.74 

0.4 0.46 0.54 0.52 156.62 104.62 0.49 0.56 0.54 158.10 107.05 0.53 060 0.57 159.79 109.38 

0.5 0.45 0.54 0.52 167.23 111.58 0.48 0.56 0.54 168.83 114.32 0.52 0.60 0.57 170.91 117.0 

0.4 

0.3 0.46 0.52 0.52 139.32 ** 0.49 0.55 0.53 140.19 100.22 0.53 0.58 0.56 141.30 102.44 

0.4 0.45 0.52 0.52 145.60 102.27 0.48 0.55 0.53 146.63 104.83 0.52 0.58 0.56 147.95 107.27 

0.5 0.45 0.52 0.52 154.20 108.31 0.47 0.55 0.53 155.46 111.14 0.51 0.58 0.56 157.09 113.89 

Note: ‘**’ denotes estimator | p=2T does not perform better than SPT  in terms of efficiency. 
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Table 7: For p =2 and 
1 2z zρ 0 . 

yxρ  0.5 0.6 0.7 

1

1 2

yz

z z

  ρ

=ρ
 

 

2yzρ  

*

2μ  Sμ  SPμ  

| p

S

TE  

| p

SP

TE  

*

2μ  Sμ  SPμ  

| p

S

TE  

| p

SP

TE  

*

2μ  Sμ  SPμ  

| p

S

TE  

| p

SP

TE  

0.2 
0.4 0.47 0.55 0.53 162.28 104.01 0.50 0.58 0.58 166.81 106.26 0.53 0.62 0.57 168.77 108.41 

0.5 0.46 0.55 0.53 178.37 112.24 0.49 0.58 0.58 180.27 114.83 0.52 0.62 0.57 182.73 117.38 

0.3 
0.4 0.47 0.54 0.52 151.70 101.22 0.50 0.56 0.54 152.87 103.51 0.53 0.60 0.57 154.38 105.68 

0.5 0.46 0.54 0.52 162.40 108.36 0.48 0.56 0.54 163.86 110.95 0.52 0.60 0.57 165.75 113.47 

0.4 
0.4 0.46 0.52 0.52 138.66 ** 0.49 0.55 0.53 139.51 ** 0.53 0.58 0.56 140.60 101.94 

0.5 0.45 0.52 0.52 146.88 103.13 0.48 0.55 0.53 147.89 100.73 0.52 058 0.56 149.26 108.21 

Note: ‘**’ denotes estimator | p=2T does not perform better than SPT  in terms of efficiency. 

Table 8: For p =3 and 
i jz zρ = 0  i j =1, 2, 3. 

 

 

yxρ  

1yzρ  

2yzρ  

3yzρ  

*

3μ  Sμ  SPμ  

| p

S

TE  

| p

S

TE  

0.6 0.5 0.6 0.7 0.45 0.52 0.52 152.12 114.09 

0.7 0.5 0.6 0.7 0.49 0.56 0.55 153.67 117.30 

0.7 0.4 0.6 0.5 0.50 0.58 0.56 169.65 122.99 

 

Table 9: For p =3 and 
i jz zρ  0  i j =1, 2, 3.  

 
 

yxρ  

1yzρ  

2yzρ  

3yzρ  

1 2z zρ
 

1 3z zρ
 

2 3z zρ
 

*

3μ
 

Sμ
 

SPμ
 

| p

S

TE
 

| p

S

TE
 

0.6 0.2 0.5 0.3 0.5 0.5 0.4 0.46 0.55 0.53 177.71 111.83 

0.7 0.4 0.7 0.6 0.3 0.3 0.4 0.48 0.58 0.56 182.62 132.40 

0.7 0.3 0.7 0.5 0.3 0.4 0.2 0.48 0.60 0.57 206.51 141.37 

 

 

12. Mutual Comparison of the Estimators | pT (p=1, 2 and 3) 

The performances of the estimator | pT  (p=1, 2 & 3) have been elaborated empirically as 

well as through simulation studies in above sections and the results obtained are presented 

in Table 1 to Table 9. In this section the mutual comparison of the estimators for the cases 

when p=1, p = 2 and p=3 has been elaborated graphically and is presented in Figure 12.1 

and 12.2.   
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Figure 12.1: Mutual Comparison of Proposed Estimator | p =1 | p =2 | p =3T , T  and T  with  

                      respect to the estimator ST  for ψ = 0.1 

 

 

 

Figure 12.2: Mutual Comparison of  Proposed Estimator | p =1 | p =2 | p =3T , T  and T  with  

                      respect to the estimator SPT  for ψ = 0.6 . 
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13. Rendition of Results  

13.1 Results based on Empirical study for the considered population 

1) It is clear from Table 1 that the optimum values of 
*

1μ , 
*

2μ  and 
*

3μ
 
exist for the 

considered population and 
* * *

3 2 1 SP Sμ < μ  < μ <  μ <  μ . This indicates that a smaller fresh 

sample is required when more number of auxiliary variables is used and this fraction is 

even lesser than the procedures given by Singh (2005) and Singh and Priyanka (2008a). 

Hence, total cost of survey is getting reduced. 

2) The value of T | p =3 T | p =2 T | p =1E > E > E , this justifies the fact that efficiency is highly 

increased when more numbers of auxiliary variates are taken into consideration and it also 

results peachy in terms of cost as it gets smaller on increasing the number of auxiliary 

variables, which also abide by Sukhatme et al.(1984). 

3) In the Table 1, we see that the proposed estimator | pT is more efficient than the estimator 

ST  for all the considered values of p (i.e. p=1, 2 & 3) and | pT  is better than the estimator 

SPT except for p=1 as the number of auxiliary variables is increased, efficiency increases 

to a great extent, hence the estimator | pT  is better than the estimator SPT  due to Singh and 

Priyanka (2008a) for p=2 onwards in terms of efficiency but in terms of cost | pT  is better 

then ST and SPT  for every value of p. 

13.2 Results based on Simulation study 

1) From simulation results in Table 2, Table 3 and Table 4 we observe that if less attention 

is given to φ (i.e. more attention is given to the estimator used at the first occasion) then 

the proposed estimators  | pT p=1, 2 and 3 are better than the estimator ST  and abide by 

the theory while keeping higher weights for ψ (i.e. more attention is given to the estimator 

used at the current occasion). This makes the proposed estimators | pT  p=1, 2 and 3 much 

more effective than the estimator ST due to Singh (2005). 
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2) From Table 2, Table 3 and Table 4 it is vindicated that if less emphasis is supplied to 

φ (i.e. more attention is given to the estimator used at the first occasion) then the proposed 

estimators  | pT p=1, 2 and 3 are better than the estimator SPT  and is in accordance with 

the theory while choosing a greater value for ξ (i.e. more attention is given to the estimator 

used at the current occasion).  This makes the proposed estimators | pT  p=1, 2 and 3

much more effective than the estimator SPT due to Singh and Priyanka (2008a). As we 

keep on increasing the value of φ , the efficiency gets reduced for all choices of ξ . 

 

13.3 Results extracted from General Scenario i.e. by considering different choices of 

correlation coefficients 

 

1) In Table 5 we observe that for fixed value of correlation coefficient between the study 

variable at two occasions, if the correlation between the study and auxiliary variates is 

increased then the proposed estimator | pT  for p=1 is efficient over the estimator ST  in 

terms of precision as well as cost but it is efficient over the estimator SPT  only in terms of 

cost. If the contribution of auxiliary variable increases the fraction of sample to be drawn 

on current occasion decreases. 

2) From Table 6, Table 7, Table 8 and Table 9  we observe that, whether the auxiliary 

information utilized are mutually correlated or uncorrelated, the proposed estimator | pT  

for p=2 and p=3 is efficient over the estimators ST  and SPT  even for very low correlation 

between study variable and auxiliary variable, which is a positive point. The fraction of 

samples to be drawn afresh at current occasion is least for the proposed estimator than the 

estimators due to Singh (2005) and Singh and Priyanka (2008a) and it is getting more and 

more reduced as the contribution of auxiliary information increases. 
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12. Conclusion 

The articulation of two structures (i.e. exponential ratio type and chain type ratio to 

exponential ratio type) is certainly beneficial as summed with multi-auxiliary information 

which are stable in nature, pronto and need not to be highly correlated to study variable 

over the two occasions. The empirical study for the considered population, simulation 

study and the study by taking different choices of correlation coefficient suggest that the 

proposed estimator is providing the lowest fraction of fresh sample drawn on the current 

occasion as compared to some very well-known estimators available in the literature for 

estimating population mean, resulting in lowering the total cost of the survey. Although 

the proposed estimator | pT  is better than the estimator SPT  for p=1 in terms of cost only. 

Now as soon as we increase the number of auxiliary variables the proposed estimator 

comes out to be much better than the estimator SPT  in terms of both efficiency as well as 

cost. Hence, the proposed estimator may be recommended for its practical use by survey 

statisticians.  

 

 

 

 

 

 



  176 

 

 

 
 

CHAPTER – 8* 

 

New Approaches using Exponential Type 

Estimator with Cost Modelling for 

Population Mean on Successive Waves 

 
 

 

 

   

* Following is the publication based on the work of this chapter:-- 
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          Statistics in Transition-new series, (Accepted for Publication). 
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New Approaches using Exponential Type 

Estimator with Cost Modelling for 

Population Mean on Successive Waves  

 

1. Introduction 

Real life facts always carry motleying natures which are time dependent. In such 

circumstances where facts change over a period of time, one time enquiry may not serve 

the purpose of investigation since statistics observed previously contain superannuated 

information which may not be good enough to be used after a long period of time. 

Therefore surveys are being designed sophistically to make sure no possible error gets a 

margin to escape at least in terms of design. For this longitudinal surveys are considered 

to be best since in longitudinal surveys, facts are investigated more than once i.e. over the 

successive waves, Also a frame is provided for reducing the cost of survey by a partial 

replacement of sample units in sampling over successive waves. 

Jessen (1942) is considered to be the pioneer for observing dynamics of facts over 

a long period of time through partial replacement of sample units over successive waves. 

The approach of sampling over successive waves has been made more fruitful by using 

twisted and novel ways to consider extra information along with the study character. 

Enhanced literature has been made available by Patterson (1950), Narain (1953), Eckler 

(1955), Sen (1971, 1972, 1973), Gordon (1983), Singh et al. (1991), Arnab and Okafor 

(1992), Feng and Zou (1997), Biradar and Singh (2001), Singh and Singh (2001), Singh 

(2005), Singh and Priyanka (2006, 2007a, 2008a), Singh and Karna (2009), Singh and 

Prasad (2010), Singh et al. (2011),  Singh et al. (2013), Bandyopadhyay and Singh (2014), 

Priyanka and Mittal (2014), Priyanka et al. (2015), Priyanka and Mittal (2015a, 2015b) 

etc.  

It has been theoretically established that, in general, the linear regression estimator 

is more efficient than the ratio estimator except when the regression line y on x passes 
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through the neighborhood of the origin; in this case the efficiencies of these estimators are 

almost equal. Also in many practical situations where the regression line does not pass 

through the neighborhood of the origin, in such cases the ratio estimator does not perform 

as good as the linear regression estimator. Here exponential type estimators play a vital 

role in increasing the precision of the estimates.Motivated with this idea we are aspired to 

develop unexampled estimators for estimating population mean over two successive 

waves applying the concept of exponential type ratio estimators. In this line of work, an 

attempt has been made to consider the dynamic nature of ancillary information also 

because as the time passes by, not only the nature of study variable changes but the nature 

of ancillary information also varies with respect to time in many real life phenomenon 

where time lag is very large between two successive waves. For example, in a social 

survey one may desire to observe the number of females human trafficked from a 

particular region, the number of girls child birth may serve as ancillary information which 

is completely dynamic over a period of 8 years of time span. Similarly in a medicinal 

survey one may be interested to record the number of survivors from a cancerous disease, 

here the number of successfully tested drugs for the disease may not sustain to be stable 

over a period of 10 or 20 years or in an economic survey the government may like to 

record the labor force, the total number of graduates in country may serve as an ancillary 

character to the study character but it surely inherent dynamic nature over a period of 5 or 

10 years.So such situations cannot be tackled considering the ancillary character to be 

stable since doing so will affect the final findings of the survey. Keeping the drawback of 

such flaws in consideration, this work deals in bringing modern approaches for estimating 

population mean over two successive waves. Four estimators have been habituated with a 

fine amalgamation of completely known dynamic ancillary information with exponential 

ratio type estimators. Their properties including optimum rotation rate and a model for 

optimum total cost have been proposed and discussed. Also detailed empirical illustrations 

have been done by doing a comparison of proposed estimators with well-known existing 

estimators in the literature of successive sampling. Simulation algorithms have been 

devised to make the proposed estimators work in practical environment efficiently. 
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2. Survey Design and Analysis 

2.1. Sample Structure and Notations 

Let  1 2 NU = U ,U , ... , U  be the finite population of N units, which has been sampled over 

two successive waves. It is assumed that size of the population remains unchanged but 

values of units change over two successive waves. The character under study be denoted 

by x (y) on the first (second) waves respectively. It is assumed that information on an 

ancillary variable  1 2z z  dynamic in nature over the successive waves with completely 

known population mean  1 2
Z Z  is readily available on both the successive waves and 

positively correlated to x and y respectively. Simple random sample (without replacement) 

of n units is taken at the first wave. A random subsample of m = nλ units is retained for 

use at the second wave. Now at the current wave a simple random sample (without 

replacement) of u= (n-m) = nµ units is drawn afresh from the remaining (N-n) units of the 

population so that the sample size on the second wave remains the same. Let μ and 

 λ μ + λ=1  are the fractions of fresh and matched samples respectively at the second 

(current) successive wave. The following notations are considered here after: 

1 2
X, Y, Z , Z  : Population means of the variables x, y, 

1z  and 
2z  respectively. 

       u u m m 1 2 n 1 2
y , z , x , y , z m , z m , x , z n , z n : Sample mean of respective variate based on 

the sample sizes shown in suffice. 

1 2 1 2 1 2yx xz xz yz yz z z
ρ , ρ , ρ , ρ , ρ , ρ : Correlation coefficient between the variables shown in 

suffices. 

1 2

2 2 2 2

x y z z
S , S , S , S : Population mean squared of variables x, y, 1z  and 

2z  respectively. 
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2.2 Design of the Proposed Estimators  i j i, j=1, 2Ť  

For estimating the population mean Y at the current wave, two sets of estimators have 

been proposed. The first set of estimators is based on sample of size u drawn afresh at 

current occasion and is given by 

 u 1u 2ut , t ,Ť
                                                                                                                         

(1) 

where 
 

2
1u u

2

Z
t = y

z u

 
  
 

                                                                                                                  (2) 

 

 
2 2

2u u

2 2

Z - z u
t = y  exp

Z + z u

 
  
 

                                                                                                       (3) 

The second set of estimators is based on sample of size m common to both occasion and 

is  

 m 1m 2mt , t ,Ť
                                                                                                                  

(4) 

where 
 
 

2 2n
1m m

m 2 2

Z - z mx
t = y  exp 

x Z + z m

  
    

                                                                                          

(5) 

 
*

* n
2m m *

m

x
t = y

x

 
 
                                                                                                                       

(6) 

where 
 

 
* 2 2

m m

2 2

Z - z m
y = y  exp 

Z + z m

 
 
 

, 
 

 
* 1 1

m m

1 1

Z - z m
= x  exp 

Z + z m
x

 
 
 

and 
 

 
* 1 1

n n

1 1

Z - z n
= x  exp 

Z + z n
x

 
 
 

. 

Hence, considering the convex combination of the two sets u m and Ť Ť , we have the final 

estimators of the population mean Y  on the current occasion as  

   i j ij iu ij jmt + 1- t ; i, j=1, 2 Ť
                                                                                        

(7) 
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where  iu jm u mt , t   Ť Ť  and i j are suitably chosen weights so as to minimize the 

mean squared error of the estimators  i j i, j=1, 2Ť . 

 

2.3. Analysis of the estimators  i j i, j=1, 2Ť
 

2.3.1. Bias and Mean Squared Errors of the Proposed Estimators  i j i, j=1, 2Ť  

The properties of the proposed estimators  i j i, j=1, 2Ť  are derived under the following 

large sample approximations 

           

           

u 0 m 1 m 2 n 3 2 2 4

2 2 5 1 1 6 1 1 7 i

y = Y 1 + e ,  y = Y 1 + e ,  x = X 1 + e , x = X 1 + e , z u = Z 1 + e ,

z m = Z 1 + e , z m =  Z 1 + e and z n = Z 1 + e such that |e | < 1  i = 0,...,7.

 

The estimators belonging to the sets  u m and i, j=1, 2Ť Ť  are ratio, exponential ratio, ratio 

to exponential ratio and chain type ratio to exponential ratio type in nature respectively. 

Hence they are biased for population mean Y . Therefore, the final estimators  i j i, j=1, 2Ť

defined in equation (7) are also biased estimators of Y . The bias  B . and mean squared 

errors  M . of the proposed estimators  i j i, j=1, 2Ť are obtained up to first order of 

approximations and thus we have following theorems: 

Theorem 2.3.1.Bias of the estimators  i j i, j=1, 2Ť  to the first order of approximations 

are obtained as 

       i j i j iu i j jmB    B t  + 1 -  B t Ť ; (i, j=1,2),                               (8) 

where   0002 0101
1u 2

2 2

C C1
B t  = Y  - 

u Z Y Z

 
 
 

,                                                                   (9) 

   0002 0101
2u 2

2 2

C C1 3 1
B t  = Y  - 

u 8 Z 2 Y Z

 
 
 

,                                                (10) 
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  2000 0002 1100 0101 1001 1100 2000 1001

1m 2 2 2

2 2 2 2

1 C 3 C C 1 C 1 C 1 C C 1 C
B  = Y  +  -  -  + +  -  - 

m X 8 Z XY 2 YZ 2 XZ n XY X 2 XZ
t

    
    

    
,         (11) 

and  

 
2m

2000 0020 0002 1100 1010 1001 0110 0101 0011

2 2 2

1 2 1 2 1 2 1 2

002 2000 1100 1010 1001 0101

2 2

1 1 2 2

B = Y

                     + 

1 C 1 C 3 C C 1 C 1 C 1 C 1 C 1 C
- + - - + + -

m X 8 Z 8 Z XY 2 XZ 2 XZ 2 YZ 2 YZ 4 Z Z

1 1 C C C 1 C 1 C 1 C 1
- + + -  - +

n 8 Z X XY 2 XZ 2 XZ 2 YZ 4

t -
  
  

 

0011

1 2

C

Z Z
                      (12)
 
 

               

   

where         
r s t q

rstq i i 1i 1 2i 2C = E x - X y  - Y z  - Z z  - Z 
 

;  r, s, t, q 0 . 

Theorem 2.3.2.Mean squared errors of the estimators  i j i, j=1, 2Ť  to the first order of 

approximations are obtained as 

           
2

2

i j i j iu i j jm i j i j iu jmM    M t  + 1 - M t + 2 1 - Cov t , t   Ť ;(i, j=1,2)        (13) 

Where   2

1u 1 y

1
M t  =  A  S

u
                      (14) 

   2

2u 2 y

1
M t  =  A  S

u
                      (15) 

   2

1m 3 4 y

1 1
M t  =  A  +   A  S

m n

 
 
 

                    (16) 

   2

2m 5 6 y

1 1
M t  =  A  +   A  S

m n

 
 
 

                    (17) 

 iu jmCov t , t =0,  
21 yzA = 2 1 - ρ ,

22 yz

5
A =  - ρ

4
,

2 23 yx yz xz

9
A =  - 2ρ  - ρ + ρ ,

4
24 yx xzA = 2ρ - ρ - 1 ,

1 2 1 2 1 2 1 2 1 1 25 yx xz xz yz yz z z 6 yx xz xz yz z z

5 1 1 5
A = - 2ρ - ρ + ρ + ρ - ρ - ρ  and  A = 2ρ + ρ - ρ -  ρ + ρ -   .

2 2 2 4
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2.3.2. Minimum Mean Squared Errors of the Proposed Estimators  i j i, j=1, 2Ť  

Since the mean squared errors of the estimators  i j i, j=1, 2Ť given in equation (13) are 

the functions of unknown constants  i j i, j = 1, 2 , therefore, they are minimized with 

respect to i j  and subsequently the optimum values of  i j i, j = 1, 2 and 

   i j opt.
M i, j=1, 2Ť  are obtained as 

 
 

   opt.

jm

i j

iu jm

M t
 = 

M t  + M t
 ;(i, j = 1, 2)                                          (18) 

  
   
   

 
i u j m

i j opt.
i u j m

M t  . M t
M = ;  i, j = 1, 2

M t  + M t
Ť                               (19) 

Further, substituting the values of the mean squared errors of the estimators defined in 

equations (14)-(17) in equation (18)-(19), the simplified values of 
opt.i j and  i j opt.

M Ť  are 

obtained as 

 
 

 opt.

11 11 4 3 4

11 2

11 4 11 3 4 1 1

μ μ  A  - A + A
= 

μ  A  - μ A + A  - A  - A


  

  

                   (20) 

 
 

 opt.

12 12 6 5 6

12 2

12 6 12 5 6 1 1

μ μ  A  - A + A
= 

μ  A  - μ A + A  - A  - A


  

  

                   (21) 

 
 

 opt.

21 21 4 3 4

21 2

21 4 21 3 4 2 2

μ μ  A  - A + A
= 

μ  A  - μ A + A  - A  - A


  

  

                   (22) 

 

 opt.

22 22 6 5 6

22 2

22 6 22 5 6 2 2

μ μ  A  - A + A
= 

μ  A  - μ A + A  - A  - A


  

  

        (23) 

 
  2

11 1 2 y

11 2opt.

11 4 11 3 1

μ  B  - B S1
M = 

n μ  A  - μ  B  - A  

Ť                     (24)    
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  2

12 4 5 y

12 2opt.

12 6 12 6 1

μ  B  - B S1
M =  

n μ  A  - μ  B  - A  

Ť                                          (25) 

 
  2

21 7 8 y

21 2opt.

21 4 21 9 2

μ  B  - B S1
M = 

n μ  A  - μ  B  - A  

Ť                                          (26) 

 
  2

22 10 11 y

22 2opt.

22 6 22 12 2

μ  B  - B S1
M = 

n μ  A  - μ  B  - A  

Ť                               (27) 

where 1 1 4 2 1 3 1 4 3 3 4 1 4 1 6 5 1 5 1 6
B = A A ,     B = A A  + A A ,      B = A  + A  - A ,    B = A A ,   B = A A  + A A ,

6 5 6 1 7 2 4 8 2 3 2 4 9 3 4 2 10 2 6
B = A  + A  - A ,    B = A A ,    B = A A  + A A ,    B = A  + A  - A ,    B = A A  

 11 2 5 2 6 12 5 6 2 i j
B = A A  + A A  , B = A  + A  - A   and   μ i, j = 1, 2 are the fractions of the sample 

drawn afresh at the current(second) wave. 

 

2.3.3. Optimum Rotation Rate for the Estimators  i j i, j=1, 2Ť  

Since the mean squared errors of the proposed estimators  i j i, j=1, 2Ť are the function of 

the  i jμ i, j = 1, 2 , hence to estimate population mean Y with maximum precision and 

minimum cost, an amicable fraction of sample drawn afresh is required at the current 

wave. For this the mean squared errors of the estimators  i j i, j=1, 2Ť in equations (24) - 

(27) have been minimized with respect to  i jμ i, j = 1, 2 . Hence an optimum rotation rate 

has been obtained for each of the estimators  i j i, j=1, 2Ť and given as : 

2

2 2 1 3

11

1

C  ±  C  - C  C
μ  = 

C
                                (28) 

2

5 5 4 6

12

4

C  ±  C  - C  C
μ  = 

C
                          (29) 

2

8 8 7 9

21

7

C  ±  C  - C  C
μ  = 

C
                     (30) 
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2

11 11 10 12

22

10

C  ±  C  - C  C
μ  = 

C
          (31) 

where 

1 4 1 2 4 2 3 1 1 2 3 4 6 4 5 6 5 6 1 4 5 6C = A B ,  C = A B ,  C = A B + B B ,  C = A B ,  C = A B ,   C = A B + B B  

7 4 7 8 4 8 9 2 7 8 9 10 6 10 11 6 11 12 2 10 11 12C = A B ,  C = A B ,  C = A B + B B ,  C = A B ,  C = A B  and  C = A B + B B .

  

The real values of  i j
μ i, j = 1, 2  exist, iff 2

2 1 3C  - C  C 0,
2

5 4 6C  - C  C 0, 2

8 7 9C  - C  C 0, and

2

11 10 12C  - C  C 0 respectively. For any situation, which satisfies these conditions, two  real 

values of   i j
μ i, j = 1, 2  may be possible , hence to choose a value of  i j

μ i, j = 1, 2 , it 

should be taken care of that i j
0 μ 1   , all other values of  i j

μ i, j = 1, 2  are 

inadmissible. If both the real values of  i j
μ i, j = 1, 2  are admissible, the lowest one will 

be the best choice as it reduces the total cost of the survey. Substituting the admissible 

value of 
i j

μ  say   (0)

i jμ i, j = 1, 2  from equation (28) - (31)  in equation (24) - (27) 

respectively , we get the optimum values of the mean squared errors of the estimators

 i j i, j = 1, 2Ť  with respect to i j as well as  i jμ i, j = 1, 2 which are given as 

  
(0) 2

* 11 1 2 y

11 (0) 2 (0)opt.

11 4 11 3 1

μ  B  - B  S
M = 

n μ  A  - μ  B  - A

  

  

Ť                                (32) 

  
(0) 2

* 12 4 5 y

12 (0) 2 (0)opt.

12 6 12 6 1

μ  B  - B  S
M = 

n μ  A  - μ  B  - A

  

  

Ť                                (33) 

  
(0) 2

* 21 7 8 y

21 (0) 2 (0)opt.

21 4 21 9 2

μ  B  - B  S
M = 

n μ  A  - μ  B  - A

  

  

Ť                                (34) 

  
(0) 2

* 22 10 11 y

22 (0) 2 (0)opt.

22 6 22 12 2

μ  B  - B  S
M = 

n μ  A  - μ  B  - A

  

  

Ť                                           (35) 
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3. Cost Analysis 

The total cost of survey design and analysis over two successive waves is modelled as: 

T f r sC = nc + mc + uc
                                                                                                             

(36) 

where fc : The average per unit cost of investigating and processing data at previous (first) 

wave, 

rc : The average per unit cost of investigating and processing retained data at current wave, 

sc : The average per unit cost of investigating and processing freshly drawn data at current 

wave. 

Remark 3.1: f r sc < c < c , when there is a large gap between two successive waves, the cost 

of investigating a single unit involved in the survey sample should be greater than before 

(at previous occasion) since as time passes by different commodities (software) and 

services (human resources, daily wages and conveyance) become expensive so the cost 

incurring at second occasion increases in a considerable amount. Also the average cost of 

investigating a retained unit from previous wave should be lesser than investigating a 

freshly drawn sample unit since survey investigator as well as respondent has some 

experiences from the previous wave.  

Theorem 3.1.1: The optimum total cost for the proposed estimators  i j i, j=1, 2Ť  is 

derived as 

     (0)

T i j f s ij r sopt.
C = n c + c + 1 - μ c - c  i, j=1, 2Ť

                                          
(37) 

Remark 3.2: The optimum total costs obtained in equation (37) are dependent on the 

value of n. Therefore, if a suitable guess of n is available, it can be used for obtaining 

optimum total cost of the survey by above equation. However, in the absence of suitable 

guess of n, it may be estimated by following Cochran (1977). 
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4. Efficiency Comparison 

To evaluate the performance of the proposed estimators, the estimators  i j i, j=1, 2Ť at 

optimum conditions, are compared with the sample mean estimator ny , when there is no 

matching from previous wave and the estimator ˆ
Y  due to Jessen (1942) given by 

Since the sample mean estimator ny is unbiased for population mean, so variance of the 

estimator ny is given by 

   '

u mŶ = ψ y + 1 - ψ y ,                                                                                                       (38)      

where    '

m m y x n my  = y + β x - x , y xβ  is the population regression coefficient of y on x and 

ψ  is an unknown constant to be determined so as to minimize the mean squared error of 

the estimator Ŷ . The estimators ny  and Ŷ  are unbiased for population mean and variance 

of the estimators n

ˆy  and Y  at optimum conditions are given as 

  2

n y

1
V y  = S

n
,                                           (39) 

   
2*
y2

y x
opt.

S1ˆV Y = 1 + 1 - ρ
2 n

 
 
 

,                                                                                     (40) 

and the fraction of sample to be drawn afresh for the estimator ˆ
Y  

J
2

yx

1
μ =

1 +  1 - ρ
                                                                                                               

(41) 

The percent relative efficiencies i j i jE (M) and  E (J) of the estimator  i j i, j=1, 2Ť  (under 

optimum conditions) with respect to ny and Ŷ are respectively given by 
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n

i j *

i j opt.

V y
E (M)=  × 100

    M Ť
and 

 
 

*

opt.

i j *

i j opt.

ˆV Y

E (J) =  × 100
M Ť

(i, j=1, 2).              (42)   

5. Numerical Illustrations and Simulation 

5.1. Generalization of empirical study  

A generalized study has been done to show the impact of motleying ancillary information 

in enhancing the performance of the proposed estimators  
i j

i, j=1, 2Ť . To elaborate the 

scenario, various choices of correlation coefficients of study and auxiliary variables have 

been considered. The results obtained have been shown in Table 1.  

Table 1: Generalized empirical results while the proposed estimators  
i j

i, j=1, 2Ť have 

been compared to the estimators
n 

ˆ
y Yand for 

1 2
yz yz 1

ρ = ρ = ρ and 
1 2

xz xz 2
ρ = ρ = ρ .

 

z z yx1 2
ρ = ρ = 0.5  

2
ρ  

1
ρ  

J
μ  

(0)

11
μ  

(0)

12
μ  

(0)

21
μ  

(0)

22
μ   

11
E M   

12
E M   

21
E M   

22
E M   

11
E j   

12
E j   

21
E j   

22
E j  

0.4 

0.6 0.53 0.66 0.58 0.44 0.41 119.69 114.58 135.48 128.91 111.67 106.90 126.41 120.28 

0.7 0.53 0.51 0.45 0.43 0.39 149.98 138.58 157.12 145.01 139.93 129.30 146.60 135.30 

0.8 0.53 0.33 0.32 0.42 0.37 197.61 176.31 187.18 166.66 184.38 164.50 174.64 155.50 

0.5 

0.6 0.53 0.61 0.58 0.42 0.41 117.08 114.58 132.04 128.91 109.24 106.90 123.20 120.28 

0.7 0.53 0.48 0.45 0.41 0.39 145.81 138.58 152.67 145.01 136.04 129.30 142.45 135.30 

0.8 0.53 0.33 0.32 0.40 0.37 191.44 176.31 181.18 166.66 178.61 164.50 169.04 155.50 

0.6 

0.6 0.53 0.58 0.58 0.41 0.41 114.58 114.58 128.91 128.91 106.90 106.99 120.28 120.28 

0.7 0.53 0.46 0.45 0.40 0.39 142.03 138.58 148.66 145.01 132.52 129.30 138.70 135.30 

0.8 0.53 0.33 0.32 0.39 0.37 185.89 176.31 175.84 166.66 173.44 164.50 164.06 155.50 

0.7 

0.6 0.53 0.55 0.58 0.40 0.41 112.22 114.58 126.04 128.91 104.70 106.90 117.60 120.28 

0.7 0.53 0.45 0.45 0.39 0.39 138.58 138.58 145.01 145.01 129.30 129.30 135.30 135.30 

0.8 0.53 0.32 0.32 0.38 0.37 180.88 176.31 171.03 166.66 168.76 164.50 159.57 155.50 

z z1 2 yx
ρ = 0.6= ρ  

2
ρ  

1
ρ  

J
μ  

(0)

11
μ  

(0)

12
μ  

(0)

21
μ  

(0)

22
μ   

11
E M   

12
E M   

21
E M   

22
E M   

11
E j   

12
E j   

21
E j   

22
E j  

0.4 

0.6 0.55 0.87 0.69 0.46 0.44 124.52 121.01 143.54 137.34 112.07 108.91 129.18 123.60 

0.7 0.55 0.60 0.49 0.46 0.42 159.70 147.84 167.74 154.84 143.73 133.06 150.97 139.35 

0.8 0.55 0.29 0.33 0.45 0.40 212.25 188.59 201.85 178.44 191.02 169.73 181.58 160.54 

0.5 

0.6 0.55 0.73 0.69 0.45 0.44 122.31 121.01 139.24 137.34 110.08 108.91 125.36 123.60 

0.7 0.55 0.54 0.49 0.44 0.42 154.60 147.84 162.24 154.84 139.14 133.06 145.89 139.35 

0.8 0.55 0.32 0.33 0.43 0.40 204.53 188.59 193.99 178.44 184.08 169.73 174.59 160.59 

0.6 

0.6 0.55 0.66 0.69 0.44 0.44 119.69 121.01 135.48 137.34 107.72 108.91 121.94 123.60 

0.7 0.55 0.51 0.49 0.43 0.42 149.98 147.84 157.12 154.84 134.98 133.06 141.41 139.35 

0.8 0.55 0.33 0.33 0.42 0.40 197.61 188.59 187.18 178.44 177.85 169.73 168.46 160.54 

0.7 

0.6 0.55 0.61 0.69 0.42 0.44 117.08 121.01 132.04 137.34 105.37 108.91 118.84 123.60 

0.7 0.55 0.48 0.49 0.41 0.42 15.81 147.84 152.67 154.84 131.23 133.06 137.41 139.35 

0.8 0.55 0.33 0.33 0.40 0.40 191.44 188.59 181.18 178.44 172.29 169.73 163.06 160.59 

Note: The values for 
(0)

22

(0) (0) (0)

j 11 12 21
μ , μ , μ  μ and μ,  have been rounded off up to two places of decimal for presentation. 
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5.2. Generalized study based on correlation coefficients and optimum total cost 

model  

To validate the proposed cost model, a hypothetical survey design has been assumed in 

which various choices of correlation coefficient and different input costs have been 

considered over two successive waves 

Table 2: Optimum total cost of the survey design at the current wave of the proposed 

estimators  
i j

i, j=1, 2Ť
 

 

yx
0.5 30,ρ n== ,  

fc = ₹  50.00, rc = ₹  75.00 and sc = ₹  80.00 

2
ρ  

1
ρ  

J
μ  

(0)

11
μ  

(0)

12
μ  

(0)

21
μ  

(0)

22
μ   

T
C J

 
 

T
C 11   

T
C 12   

T
C 21   

T
C 22  

0.5 

0.6 0.53 0.61 0.58 0.42 0.41 3830.4 3842.7 3837.5 3814.4 3812.8 

0.7 0.53 0.48 0.45 0.41 0.39 3830.4 3823.1 3817.7 3813.0 3809.8 

0.8 0.53 0.33 0.32 0.40 0.37 3830.4 3799.9 3798.2 3811.2 3806.3 

0.6 

0.6 0.53 0.58 0.58 0.41 0.41 3830.4 3837.5 3837.5 3812.8 3812.8 

0.7 0.53 0.46 0.45 0.40 0.39 3830.4 3820.2 3817.7 3811.3 3809.8 

0.8 0.53 0.33 0.32 0.39 0.37 3830.4 3799.5 3798.2 3809.3 3806.3 

0.7 

0.6 0.53 0.55 0.58 0.40 0.41 3830.4 3833.4 3837.5 3811.4 3812.8 

0.7 0.53 0.45 0.45 0.39 0.39 3830.4 3817.7 3817.7 38.9.8 3809.8 

0.8 0.53 0.32 0.32 0.38 0.37 3830.4 3798.9 3798.2 3807.7 3806.3 

yx
0.6 30,ρ n== ,  

fc = ₹  50.00, rc = ₹  75.00 and sc = ₹  80.00 

2
ρ  

1
ρ  

J
μ  

(0)

11
μ  

(0)

12
μ  

(0)

21
μ  

(0)

22
μ   

T
C J

 
 

T
C 11   

T
C 12   

T
C 21   

T
C 22  

0.5 

0.6 0.55 0.73 0.69 0.45 0.44 3833.3 3860.9 3854.8 3817.9 3817.0 

0.7 0.55 0.54 0.49 0.44 0.42 3833.3 3832.1 3824.9 3816.9 3813.9 

0.8 0.55 0.32 0.33 0.43 0.40 3833.3 3798.9 3799.8 3815.5 3810.2 

0.6 

0.6 0.55 0.66 0.69 0.44 0.44 3833.3 3849.9 3854.4 3816.1 3817.0 

0.7 0.55 0.51 0.49 0.43 0.42 3833.3 3826.9 3824.9 3814.8 3813.9 

0.8 0.55 0.33 0.33 0.42 0.40 3833.3 3833.3 3799.8 3813.2 3810.2 

0.7 

0.6 0.55 0.61 0.69 0.42 0.44 3833.3 3842.7 3854.8 3814.4 3817.0 

0.7 0.55 0.48 0.49 0.41 0.42 3833.3 3823.1 3824.9 3813.0 3813.9 

0.8 0.55 0.33 0.33 0.40 0.40 3833.3 3833.3 3799.9 3811.2 3810.2 
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Table 3: Optimum total cost of the survey design at the current wave of the proposed 

estimators  
i j

i, j=1, 2Ť
 

  

yx
0.5 40,ρ n== ,  fc = ₹  50.00, rc = ₹  75.00 and sc = ₹  80.00 

2
ρ  

1
ρ  

J
μ  

(0)

11
μ  

(0)

12
μ  

(0)

21
μ  

(0)

22
μ   

T
C J

 
 

T
C 11   

T
C 12   

T
C 21   

T
C 22  

0.5 

0.6 0.53 0.61 0.58 0.42 0.41 5107.2 5123.7 5116.7 5085.8 5083.8 

0.7 0.53 0.48 0.45 0.41 0.39 5107.2 5097.5 5090.3 5084.0 5079.8 

0.8 0.53 0.33 0.32 0.40 0.37 5107.2 5066.6 5064.3 5081.5 5075.0 

0.6 

0.6 0.53 0.58 0.58 0.41 0.41 5107.2 5116.7 5116.7 5083.8 5083.8 

0.7 0.53 0.46 0.45 0.40 0.39 5107.2 5093.6 5090.3 5081.8 5079.8 

0.8 0.53 0.33 0.32 0.39 0.37 5107.2 5066.0 5064.3 5079.1 5075.0 

0.7 

0.6 0.53 0.55 0.58 0.40 0.41 5107.2 5111.2 5116.7 5081.9 5083.8 

0.7 0.53 0.45 0.45 0.39 0.39 5107.2 5090.3 5090.3 5079.8 5079.8 

0.8 0.53 0.32 0.32 0.38 0.37 5107.2 5062.2 5064.3 5077.0 5075.0 

yx
0.6 40,ρ n== ,  

fc = ₹  50.00, rc = ₹  75.00 and sc = ₹  80.00 

2
ρ  

1
ρ  

J
μ  

(0)

11
μ  

(0)

12
μ  

(0)

21
μ  

(0)

22
μ   

T
C J

 
 

T
C 11   

T
C 12   

T
C 21   

T
C 22  

0.5 

0.6 0.55 0.73 0.69 0.45 0.44 5111.1 5147.9 5139.7 5090.5 5089.3 

0.7 0.55 0.54 0.49 0.44 0.42 5111.1 5109.4 5099.8 5089.2 5085.2 

0.8 0.55 0.32 0.33 0.43 0.40 5111.1 5065.1 5066.3 5087.3 5080.3 

0.6 

0.6 0.55 0.66 0.69 0.44 0.44 5111.1 5133.3 5139.7 5088.1 5089.3 

0.7 0.55 0.51 0.49 0.43 0.42 5111.1 5102.5 5099.8 5086.4 5085.2 

0.8 0.55 0.33 0.33 0.42 0.40 5111.1 5066.5 5066.3 5084.2 5080.3 

0.7 

0.6 0.55 0.61 0.69 0.42 0.44 5111.1 5123.7 5139.7 5085.8 5089.3 

0.7 0.55 0.48 0.49 0.41 0.42 5111.1 5097.5 5099.8 5084.0 5085.2 

0.8 0.55 0.33 0.33 0.40 0.40 5111.1 5066.6 5066.3 5081.5 5080.3 

 

5.3. Monte Carlo Simulation 

Monte Carlo simulation has been performed to get an overview of the proposed estimators 

in practical scenario through considering different choices of n and μ for better analysis. 

Following three sets have been considered for the simulation study 

Set I : n = 20, μ  = 0.35, (m = 13,u = 7),    

Set II : n = 20, μ = 0.20, (m = 16,u = 4), 

Set III : n = 20, μ  = 0.15, (m = 17,u = 3). 

 

 



  191 

 

5.3.1. Simulation Algorithm 

(i) Choose 5000 samples of size n=20 using simple random sampling without replacement 

on first wave for both the study and auxiliary variable. 

(ii) Calculate sample mean n | kx  and  1 | kz n  for k =1, 2, - - -, 5000. 

(iii) Retain m=17 units out of each n=20  sample units of the study and auxiliary variables 

at the first wave. 

(iv) Calculate sample mean m | kx and  1 | kz m for k= 1, 2, - - -, 5000. 

(v) Select u=3 units using simple random sampling without replacement from N-n=31 

units of the population for study and auxiliary variables at second (current) wave. 

(vi) Calculate sample mean u | ky  and   2 | kz m for k = 1, 2, - - -, 5000. 

(vii) Iterate the parameter   from 0.1 to 0.9 with a step of 0.2. 

(viii) Iterate ψ  from 0.1 to 0.9 with a step of 0.1 within (ix). 

(ix) Calculate the percent relative efficiencies of the proposed estimator  
i j

i, j=1, 2Ť  with 

respect to estimator to 
n

ˆ
y  and Y as 

     
i j i j

i j i j

i j i j

5000 5000  2 2

n | k  | k

k=1 k=1

5000 5000 2  2

k=1 k=1

| k | k

| k | k

M J

ˆ
- y - Y

E  =  × 100  and   E =  × 100  ; i , j=1, 2  k=1, 2, ..., 5000., , ,

  
   

   
   

 

 
Ť Ť

Ť Ť

Ť Ť

 

 

 

 

 

 



  192 

 

Table 4: Simulation Results when proposed estimator  
i j

i, j=1, 2Ť have been compared to 
n

y  

                  ij  

SET 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

I 

 
11

ME ,Ť  344.81 368.65 396.28 415.00 424.49 424.50 415.11 399.40 372.37 

 
12

ME ,Ť  471.37 503.57 532.28 546.96 513.18 526.00 498.87 466.15 422.95 

 
21

ME ,Ť  35.71 343.89 319.56 279.27 236.28 192.75 157.04 127.20 104.46 

 
22

ME ,Ť  481.75 453.54 399.70 329.37 265.46 202.08 166.51 132.62 107.68 

II 

 
11

ME ,Ť  295.21 331.51 362.39 388.13 413.31 432.55 443.08 440.17 431.41 

 
12

ME ,Ť  468.60 517.25 552.45 579.43 599.73 604.44 597.23 570.13 538.56 

 
21

ME ,Ť  304.46 323.91 323.39 303.13 271.90 232.93 199.24 168.94 142.09 

 
22

ME ,Ť  487.75 499.92 464.47 405.47 338.91 273.84 224.47 184.37 151.52 

III 

 
11

ME ,Ť  218.44 244.19 271.66 303.33 333.45 364.67 393.36 419.85 439.71 

 
12

ME ,Ť  461.69 514.46 566.60 619.47 665.56 703.63 731.26 746.47 743.76 

 
21

ME ,Ť  231.69 260.16 283.97 304.00 306.75 299.67 281.22 256.46 228.66 

 
22

ME ,Ť  505.81 562.87 585.67 578.89 529.97 467.34 397.98 334.78 280.42 
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Table 5: Simulation results when the proposed estimator 
11

Ť  is compared with the estimator 
ˆ
Y  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11  

       
ψ

 
SET 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 

I 326.12 332.43 428.19 602.76 882.27 1232.9 1637.4 2159.7 2787.3 

II 276.72 256.44 298.55 389.14 563.25 742.19 1039.6 1443.9 1886.6 

III 182.55 153.16 137.82 159.12 205.37 293.91 390.68 499.10 660.27 

0.2 

I 360.01 360.10 782.72 656.20 936.12 1351.0 1821.4 2348.6 310.88 

II 310.81 281.27 322.94 426.16 614.49 820.41 1173.6 1571.9 2015.2 

III 209.72 166.19 153.72 179.11 229.31 301.97 423.52 550.37 732.32 

0.3 

I 380.60 384.95 514.06 708.38 1010.3 1442.1 1891.4 2541.3 3284.2 

II 336.86 306.94 351.72 465.95 669.62 907.41 1286.9 1654.1 2139.2 

III 229.76 184.83 170.77 196.28 255.02 336.89 470.10 618.90 818.38 

0.4 

I 401.05 400.43 532.96 746.77 1060.7 1520.9 2012.7 2651.1 3471.6 

II 361.82 330.30 377.40 505.19 714.43 984.13 1391.5 1775.2 2298.0 

III 252.68 205.47 188.91 216.26 278.49 376.42 523.01 679.76 908.90 

0.5 

I 414.01 407.18 549.29 764.41 1090.0 1552.8 2044.6 2715.7 3539.2 

II 383.07 345.26 399.88 533.56 767.19 1051.3 1463.7 1887.3 2469.8 

III 278.45 227.24 209.50 239.44 304.72 411.04 574.21 748.40 994.88 

0.6 

I 411.71 410.70 545.30 755.91 1095.5 1549.5 2067.6 2694.6 3548.5 

II 398.06 361.34 415.99 556.75 797.60 1097.9 1514.8 1979.0 2589.5 

III 303.72 249.08 229.98 261.05 333.80 449.52 625.62 813.86 1085.2 

0.7 

I 400.98 400.17 532.67 742.17 1068.7 1521.9 2029.6 2638.5 3478.8 

II 404.20 269.57 424.83 566.29 814.96 1120.9 1552.3 2022.4 2642.9 

III 327.71 270.01 249.29 281.45 362.61 482.77 674.92 882.95 1164.0 

0.8 

I 383.48 385.90 502.00 704.79 1028.8 1456.8 1960.8 2521.3 3325.5 

II 398.93 368.51 424.67 569.15 812.87 1115.5 1549.6 2011.0 2651.8 

III 350.68 287.18 267.02 300.12 385.81 515.96 718.68 947.91 1240.0 

0.9 

I 360.51 360.82 469.77 663.00 955.74 1348.7 1826.2 2366.4 3125.1 

II 387.49 358.90 413.19 557.72 791.19 1379.7 1524.7 1970.4 2579.0 

III 366.09 300.07 280.72 315.76 404.82 541.84 752.31 995.79 1298.8 



  194 

 

Table 6: Simulation results when the proposed estimator 
12

Ť  is compared with the estimator 
ˆ
Y  

 

 

12  
         

ψ
 

SET 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 

I 438.79 454.45 582.11 831.42 1201.8 1694.0 2233.1 2968.4 3831.7 

II 442.66 398.59 469.84 628.23 878.42 1185.5 1648.1 2361.0 2936.5 

III 427.90 343.13 312.59 375.43 472.41 634.04 887.31 1166.2 1504.7 

0.2 

I 481.01 491.89 651.11 890.31 1271.9 1828.8 2451.3 3226.3 4266.5 

II 484.85 439.04 508.95 677.41 967.42 1308.2 1846.5 2485.0 3124.6 

III 475.65 373.99 347.93 407.95 521.89 684.91 962.09 1278.4 1656.4 

0.3 

I 499.05 517.07 686.35 940.19 1348.0 1916.8 2527.0 3388.8 4461.2 

II 517.55 472.81 543.99 725.41 1040.0 1410.6 2000.8 2582.6 3306.2 

III 516.76 407.22 383.11 444.72 572.07 757.85 1047.3 1398.8 1833.6 

0.4 

I 516.41 527.75 692.80 971.12 1377.0 1970.1 2631.3 3458.3 4579.0 

II 545.34 500.29 570.34 768.94 1083.7 1499.5 2117.7 2706.0 3471.8 

III 556.92 445.77 416.14 480.80 614.70 829.45 1138.9 1507.8 1992.2 

0.5 

I 520.23 521.02 696.36 967.83 1375.2 1959.2 2596.5 3454.0 4525.4 

II 559.62 507.51 587.80 789.21 1129.7 1552.7 2165.4 2782.7 3624.1 

III 596.58 480.22 449.92 516.79 655.86 884.66 1221.4 1616.5 2127.7 

0.6 

I 501.75 508.90 670.69 927.60 1343.8 1900.8 2545.1 3324.2 4397.8 

II 560.74 513.26 589.91 794.99 1133.0 1565.5 2162.5 2814.5 3662.3 

III 627.38 510.46 477.32 544.38 696.06 935.55 1286.6 1703.9 2248.6 

0.7 

I 475.33 480.92 636.01 885.73 1272.4 1815.9 2426.3 3158.2 4173.9 

II 548.69 504.44 578.62 776.17 1112.8 1534.4 2132.8 2762.2 3599.1 

III 650.44 531.63 496.40 562.32 724.39 961.78 1335.1 1767.5 2313.1 

0.8 

I 442.41 450.39 581.65 818.15 1191.6 1688.9 2279.4 2929.7 3873.3 

II 519.16 482.41 556.39 748.91 1065.4 1467.8 2041.6 2637.1 3466.6 

III 663.15 538.25 507.13 569.47 733.17 977.60 1353.2 1808.1 2343.7 

0.9 

I 405.82 409.83 530.42 750.32 1077.9 1521.9 2067.0 2677.9 3542.1 

II 485.43 452.18 519.97 705.34 997.25 1379.7 1932.2 2487.1 3243.2 

III 654.95 532.58 504.31 567.16 727.56 972.56 1343.2 1799.6 2322.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  195 

 

Table 7: Simulation results when the proposed estimator 
21

Ť  is compared with the estimator 
ˆ
Y  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21  

         
ψ

 

SET 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 

I 338.97 338.12 438.20 602.27 901.95 1257.7 1682.5 2185.7 2853.7 

II 289.16 265.72 309.35 409.45 583.03 777.05 1085.8 1500.7 1961.1 

III 194.16 162.27 147.18 169.77 218.56 290.84 417.32 531.93 700.09 

0.2 

I 341.08 355.92 451.14 604.12 882.83 1245.9 1694.9 2196.8 2886.7 

II 312.55 277.63 323.08 432.83 610.81 825.45 1162.4 1572.5 2029.8 

III 226.59 179.69 165.54 192.53 246.92 327.07 458.49 592.66 787.86 

0.3 

I 310.27 310.43 408.06 562.85 822.07 1156.5 1551.7 2053.6 2646.2 

II 306.79 275.65 320.34 430.40 607.64 828.57 1159.0 1522.2 1966.6 

III 244.65 197.87 182.29 208.92 270.87 359.27 503.59 657.30 870.32 

0.4 

I 266.62 269.46 348.62 491.28 716.91 1009.3 1355.7 1768.7 2298.6 

II 285.62 259.65 300.40 404.39 566.62 778.82 1088.9 1426.1 1851.3 

III 259.87 210.16 193.93 220.93 284.73 384.16 536.82 700.23 931.24 

0.5 

I 222.99 226.65 292.20 411.81 592.26 838.78 1131.5 1482.9 1913.1 

II 255.38 229.96 268.35 359.57 504.58 699.70 973.42 1268.4 1642.9 

III 266.55 215.90 199.93 226.91 291.38 391.08 548.24 717.8 951.67 

0.6 

I 183.72 186.48 240.18 335.81 487.34 687.36 923.04 121.44 1571.7 

II 220.07 199.74 232.47 310.54 434.76 603.52 836.57 1096.1 1407.9 

III 261.83 212.32 196.50 222.57 286.35 384.76 536.17 701.89 930.06 

0.7 

I 151.98 151.39 193.89 275.64 395.51 560.16 758.68 989.83 1286.5 

II 184.07 170.31 194.83 263.85 370.29 513.19 709.12 931.98 1201.6 

III 244.56 200.80 185.50 209.60 269.14 363.34 504.47 663.99 879.04 

0.8 

I 124.08 122.90 159.60 227.06 324.64 455.54 618.43 812.79 1057.1 

II 154.25 142.83 164.30 221.74 311.35 432.74 590.51 782.89 1005.1 

III 224.81 183.61 170.18 191.41 246.68 331.87 458.85 606.02 800.17 

0.9 

I 101.01 101.22 131.92 187.55 268.81 377.36 512.49 673.75 868.16 

II 127.98 120.18 138.06 186.92 261.26 362.84 494.70 657.75 844.50 

III 200.96 162.94 151.25 171.04 220.55 296.36 409.10 542.09 714.32 



  196 

 

Table 8: Simulation results when the proposed estimator 
22

Ť  is compared with the estimator 
ˆ
Y  

 

 

22  

        
ψ

 

SET 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 

I 457.41 464.45 598.53 833.06 1222.4 1727.8 2280.5 3012.7 3960.2 

II 467.70 420.57 493.51 671.77 917.64 1258.4 1742.7 2481.8 3090.8 

III 471.41 378.45 347.07 417.54 523.23 700.91 985.84 1294.1 1660.1 

0.2 

I 446.59 443.03 585.78 800.42 1159.9 16648.2 2207.2 2917.1 3854.2 

II 480.06 428.10 497.99 673.58 938.32 1290.7 1790.5 2452.5 3116.9 

III 528.24 417.18 384.72 451.31 575.64 760.29 1077.0 1413.8 1830.2 

0.3 

I 383.86 388.26 504.92 699.77 1018.4 1438.3 1925.3 2563.7 3330.3 

II 442.47 396.88 464.53 624.20 875.24 1203.7 1678.5 2236.8 2856.7 

III 341.14 430.65 402.61 465.7 597.23 788.46 1112.2 1462.5 1926.8 

0.4 

I 312.67 317.80 407.50 579.53 838.79 1180.7 1596.0 2093.7 2727.8 

II 381.82 346.73 403.41 541.23 757.30 1046.6 1461.5 1930.6 2490.8 

III 527.18 420.54 394.10 451.06 576.66 772.73 1081.0 1434.4 1888.2 

0.5 

I 249.86 254.63 326.43 463.84 663.01 940.42 1273.4 1670.7 2156.6 

II 317.68 285.88 334.87 448.36 627.38 871.77 1219.9 1589.4 2054.2 

III 485.30 388.39 363.79 412.40 530.19 709.26 990.21 1314.4 1732.8 

0.6 

I 199.22 202.29 259.91 365.76 528.67 746.62 1001.8 1322.7 1709.6 

II 258.73 234.80 273.28 365.36 510.39 710.26 985.07 1295.4 1654.2 

III 425.04 341.89 318.71 361.92 465.0 622.42 863.99 1149.0 1510.5 

0.7 

I 159.98 160.52 204.73 292.77 418.76 593.77 803.81 1050.3 1366.1 

II 206.90 191.63 218.51 297.20 416.59 577.01 798.46 1051.3 1353.4 

III 355.08 291.67 267.62 306.67 392.04 532.08 733.74 974.43 1290.4 

0.8 

I 129.24 128.14 165.99 237.26 338.32 475.01 644.65 848.08 1103.6 

II 167.97 155.56 178.67 241.65 338.98 471.19 642.88 855.11 1095.0 

III 299.61 244.69 227.33 255.76 329.85 444.27 610.04 811.62 1072.3 

0.9 

I 104.04 104.34 135.79 193.67 277.07 389.17 528.32 695.07 895.60 

II 136.23 127.98 146.83 199.20 278.15 386.27 526.53 701.69 899.91 

III 250.56 202.66 188.41 213.37 275.45 370.39 508.81 677.67 893.24 
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7.Rendition of Results 

7.1. Results from Generalized Empirical 

a) The optimum values (0) (0) (0) (0)

11 12 21 22
μ , μ , μ  and μ   exist for almost each combination of 

correlation coefficients. For increasing values of correlation of study and ancillary 

information, the values (0) (0) (0) (0)

11 12 21 22
μ , μ , μ  and μ  decrease, which in accordance with Sukhatme 

et al (1984.) 

b) As the correlation between study and ancillary information is increased, the percent 

relative efficiencies increase and the proposed estimators perform better than n

ˆy  and Y . 

c) The proposed estimators provide a lesser fraction of fresh sample drawn afresh as 

compared to the estimator ˆ
Y for almost every considered choice of correlation 

coefficients. The estimator 
21

Ť performs best in terms of percent relative efficiency and 

the estimator 
22

Ť performs best in terms of sample drawn afresh at current occasion. 

d) The optimum total cost of the survey decreases for increasing correlation between study 

and ancillary character. The estimator 
22

Ť  requires the least total cost for the survey at the 

current occasion. 

7.2 Simulation Results  

a) From Table 4 to Table 8, it can be seen that the proposed estimators  i j
i, j=1, 2Ť are 

efficient over n

ˆy  and Y for all the considered sets. 

b) Also in simulation study, it is observed that the estimator 
22

Ť  is most efficient over the 

estimator ˆ
Y  for all considered set but when 

22
Ť is compared to ny  it is most efficient 

among all proposed estimator only for set III. 

c) As the fraction of sample drawn afresh is increased, the performance of all four 

estimators enhances. 
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8. Ratiocination 

The entire detailed generalized and simulation studies attest that accompanying a 

motleying ancillary character with the study character certainly serves the purpose in long 

lag of two successive waves. The proposed estimators  i j
i, j=1, 2Ť prove to be worthy in 

terms of precision and cost since all the proposed estimators provide a lesser fraction of 

freshly drawn sample at current occasion as compared to the estimators due to Jessen 

(1942).  The minute observation suggest that the estimators 
21 22

and  Ť Ť are providing 

approximately same fraction of sample to be drawn afresh at the current occasion but the 

total cost of survey is least for the estimator 
22

Ť . Since both the estimators 
21 22

and  Ť Ť are 

better than the sample mean estimator and the estimator due to Jessen (1942) and 
21

Ť  is 

best in terms of precision but for little amount of precision, the cost of survey cannot be 

put on stake. Hence according to the requirement of survey investigator, one is free to 

choose any of the estimators out of 
21 22

 and Ť Ť . Hence the proposed estimators are 

recommended to the survey statisticians for their practical use. 
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Intercession of Non-Response through 

Imputation in Longitudinal Surveys for 

Population Mean 

 

1. Introduction 

However we assume to be ascertain that we can fetch complete response from the 

respondents but still we come across the situations where a less or huge portion of sample 

tends to be non-responding and hence sample provides incomplete information for 

statistical treatment. We may choose to go with incomplete information but that would 

entertain the false facts especially when the parameters to be estimated are affected with 

slight change in observation. The problem of sampling on two successive occasions was 

first considered by Jessen (1942) and latter this idea was extended by Patterson (1950), 

Narain (1953), Eckler (1955), Gordon (1983), Arnab & Okafor (1992), Feng & Zou 

(1997), Biradar & Singh(2001), Singh & Priyanka (2008a), Singh et al.(2013a) , 

Bandhopadhyay & Singh (2014) and many others. 

 

Longitudinal surveys focus on studying and analyzing the trends and dynamics of 

those real life scenarios which intend to be monitored multiple times since one time 

canvassing of characteristics may not supply the very essential attributes of the character 

under study. In recent times, usage of longitudinal surveys has heighten enough for 

longitudinal analysis and in many cases; longitudinal surveys are carefully designed to 

permit the derivation of sophisticated analysis of the long dynamics of social and 

economic processes. The scenario of incompleteness becomes worst when one is 

interested in collecting data for more than one occasion because, even though you have a 

complete sample frame but may fail to obtain response in one or other ways (MCAR, 

MAR, OAR, PD and DNR).For example, In a Survey of different mines one may be 

interested in the total or mean yield from the mine. Now it may be possible that total or 

mean yield cannot be recorded since it had been mined completely, it had been shut down 
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due to governmental issues or a natural calamity ruined the entire mine. So the unavailable 

sample units (mines) or the missing data for some mines could be imputed with more 

suitable entities (compensating the unavailability of response), so to get rid over the 

incompleteness of the data and to negotiate with the negative impact of non-response. 

 

Immense efforts have been put together by Rubin (1976), Sande (1979), Kalton et 

al. (1981), Kalton & Kasprzyk (1982) and Singh & Singh (1991) by considering complete 

data set and discarding all those units for which information was not available for at least 

one time. One may site Lee et al. (1994, 1995), Singh & Horn (2002), Ahmed et al. (2006), 

Singh & Priyanka (2007b), Singh (2009) and Singh et al. (2013b) for various new 

estimators for estimation of parameters by method of imputation using additional auxiliary 

information. 

 

Inspired by above motivating efforts we have implicitly assumed Missing 

Completely at Random and aspired to develop more worthy estimator for population mean 

while sampling over successive occasion using an additional auxiliary information, stable 

in nature over the occasions, by imputing missing data in the presence of non-response. 

For this an exponential ratio type estimator has been clubbed with a chain type ratio to 

exponential ratio type estimator over successive occasion to estimate population mean. 

The properties of the proposed estimator have been elaborated theoretically and 

empirically considering that (i) non-response may arise on both occasions, (ii) it may 

occur only at first occasion or (iii) it may occur only at second occasion while comparing 

the proposed estimator with estimator having complete response for all sample units at 

each occasion. A Simulation study has also been put through to substantiate the empirical 

results considering all mentioned three cases for different possibilities of non-response in 

the sample selected on different occasions. 

2. Survey Design and Analysis 

2.1. Notations 

Let  1 2 NU = U , U , ..., U  be the N- element finite population, which has been 

sampled over two occasions. The characters under study is denoted by x(y) on the first 
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(second) occasion, respectively. It is assumed that information on an almost stable 

auxiliary variable z, with the known population mean is available on both the occasions. 

We assume that there is non-response at both the occasions. A simple random sample 

without replacement ns of n units has been drawn on the first occasion. Let the number of 

responding unit out of n sampled units, which are drawn at the first occasion, be denoted 

by 1r , the set of responding units in ns by 1R and that of non-responding by 
c

1R . A random 

sub-sample ms of m = nλ unit is retained (matched) for its use on the current (second) 

occasion from the units which responded ( 1r ) at the first occasion and it is assumed these 

matched units are completely responding at the current (second) occasion as well. A fresh 

simple random sample (without replacement), us of u = n - m = nμ units, is drawn on the 

second occasion from the non-sampled units of the population so that the sample size on 

the second occasion remains the same i.e. n. Let the number of responding units out of u 

sampled units which are drawn afresh at current occasion, be denoted by 2r , the set of 

responding unit in us by 2R , and that of non-responding units by 
c

2R . λ andμ

 0 μ, λ 1, λ + μ =1  are the fractions of matched and fresh sample, respectively, at the 

current(second) occasion. For every unit  ji R j =1, 2 , the values  i ix y  are observed, 

but for the units  c

ji R j =1, 2 the values  i ix y are missing and instead imputed values 

are derived. The following notations have been used hereafter: 

X, Y, Z  : Population means of the variables x, y and z respectively. 

 2  2  1  1  1u u r r m m m r r r n ny , z , y , z , x , y , z , x , y , z , x , z  : Sample mean of respective variate based 

on the sample sizes shown in suffice. 

yx xz yzρ , ρ , ρ : Correlation coefficient between the variables shown in suffices. 

2 2 2

x y zS , S , S : Population mean square of variables x, y and z respectively. 

1 2
1 2

r r
f = , f =

n u

   
   
   

: The fraction of respondents at first and second occasions respectively. 
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   1 1 2 2t = 1- f , t = 1- f : The fraction of non- respondents at first and second occasions  

                                      respectively. 

2.2. Design 

To estimate the population mean Y on the current (second) occasion, an estimator 

uT  has been proposed utilizing the concept of exponential ratio type estimators based on 

sample of the size u= nµ drawn afresh on the current (second) occasion. Considering that 

non-response occurs at current occasion, the missing values occurring in the sample of 

size u are replaced by imputed values. Hence, the following imputation method has been 

proposed to cope up with the problem of non-response in sample us   

 2

 2  2 2

 2

i 2

r•i c

r 2 r

2 r

y                                                             if      i R

Z - zy = 1
u y  exp - r  y         if      i R

u - r Z + z




    
    

   

                                   (1) 

where 
 2  2

2 2

r i r i

  i R    i R2 2

1 1
y = y   and  z = z

r r 

  . 

and hence the estimator for Y  at current occasion is given by 

 2

 2
c

u 2 2  2

r

u •i •i •i r

  i s    i R   i R r

Z - z1 1
T = y = y + y = y  exp

u u Z + z  

  
     

   
  

                                       

(2) 

The second estimator
mT  is based on sample size m = nλ  common to the both occasions 

utilizing information retained from first occasion. Since non- response is assumed to be 

occurring on first occasion as well so the missing values occurring in the sample of size n 

are replaced by imputed values. The following imputation technique has been suggested 

 1

 1  1 1

 1

i 1

r•i c

r 1 r

1 r

x                                                             if      i R

Z - zx = 1
n x  exp - r  x         if      i R

n - r Z + z




    
    

   

                                      (3) 
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where  
 1  1

1 1

r i r i

  i R   i R1 1

1 1
x = x   and  z = z

r r 

  . 

Considering above proposed imputation method the estimator based on sample 
ns  is 

altered to 

 1

 1
c

n 1 1  1

r*

n •i •i •i r

  i s   i R   i R r

Z - z1 1
x = x = x + x = x  exp

n n Z + z  

  
     

   
                                              (4) 

Therefore, Estimator based on sample size m common to both occasions which utilizes 

the missing values by above method of imputation is given by 

 
*

* n
m m *

m

x
T = y

x

 
 
                                                                                                                           

(5) 

where  
* m
m m

m

Z - z
y = y  exp

Z + z

 
 
 

, 
* m
m m

m

Z - z
x = x  exp

Z + z

 
 
 

 and 1

1

1

r*

n r

r

Z - z
x = x  exp

Z + z

 
  
 

. 

Considering the convex combination of the two estimators uT and 
mT , we have the final 

estimator of population mean Y  on the current occasion as 

 u mT = α T + 1- α T                                                                                                                (6) 

where  α 0 α 1  is a constant to be determined so as to minimize the mean squared 

error of the proposed estimator T. 

2.3. Analysis  

The properties of the proposed estimators T  are derived under the following large sample 

approximations 

           
2 1 2r 0 m 1 m 2 r 3 r 4 m 5y = Y 1 + e ,  y = Y 1 + e ,  x = X 1 + e , x = X 1 + e , z = Z 1 + e , z = Z 1 + e ,

       
1r 6 u 7 n 8 n 9 iz =  Z 1 + e , y = Y 1 + e , x = X 1 + e  and z = Z 1 + e such that |e | < 1  i = 0, 1, 2, 3,

4, 5, 6, 7, 8 and 9 .
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2.3.1. Bias and Mean Square Error of the Estimators T  

The estimators u mT  and T are exponential ratio and chain type ratio to exponential ratio 

type in nature respectively. Hence they are biased for population mean Y . Therefore, the 

final estimator T defined in equation (6) is also biased estimator of Y . The bias  B .  and 

mean square error  M . of the proposed estimator T are obtained (ignoring finite 

population corrections) up to first order of approximations and thus we have following 

theorems: 

Theorem 2.3.1.Bias of the estimator T  to the first order of approximations is obtained as 

       B T  = α B T  + 1 - α  B T                                             (7) 

where   002 011
u 2

2

C C1 3 1
B T  = Y  - 

r 8 Z 2 Y Z

 
 
 

                                                       (8) 

and      200 110 002 110 011 200
m 2 2 2

1

C C C C C C1 1 3 1
B T = Y  - + +  -  - 

m X XY r 8 Z XY 2 YZ X

    
    

                              

(9) 

where       
r s t

rst i i iC = E x - X y  - Y z  - Z 
 

;  r, s, t 0 . 

Proof: The bias of the estimator T  is given by 

       u mB T  = E T - Y  = α B T  + 1 - α B T    

where     u u m mB T  = E T  - Y  and  B T  = E T  - Y         

Using large sample approximations and retaining terms up-to the first order of 

approximations, the expression for    u mB T  and  B T are obtained as in equation (8) and 

(9) and hence the expression for bias of the estimator T  is obtained as in equation (7). 

Theorem 2.3.2.Mean square error of the estimator T  to the first order of approximations 

is obtained as 
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22

u m u mM T = α  M T + 1- α M T + 2 α 1- α Cov T ,T                               (10) 

  2

u y

2

1
M T  = A S

r
                                                                                                               (11) 

  2

m y

1

1 1
M T  = B + C  S

m  r

 
 
 

                                                                                            (12) 

where     yz yx yx yzA = 5 4 - ρ , B = 2 - 2 ρ   and  C = 2 ρ - ρ - 3 4 .  

Proof: The mean square error of the proposed estimator T is given by 

 
 2

M T = E T - Y        
 2

22

u m= E α T - Y  + 1- α T - Y 
 

 

         
         

22

u m u m= α  M T  + 1- α M T + 2 α 1- α Cov T , T  

where  
 2

u u M T   =  E T  -  Y   and  
 2

m mM T  = E T  -  Y   .  

Since x and y denote the same study character over two occasions and z being auxiliary 

variate positively correlated to x and y, therefore, looking at the stability nature (see Reddy 

(1978)) of the coefficient of variation and following Cochran (1977) and Feng & Zou 

(1997), the coefficient of variation of x, y and z are considered to be approximately same. 

The estimators uT  and mT  are based on two independent samples of sizes u and m 

respectively, hence  u mCov T , T  = 0 . Considering population size is sufficiently large (i.e.

N    ), therefore finite population corrections are ignored and using large sample 

approximations and retaining terms upto the first order of approximations, the expression 

for    u mM T  and  M T are obtained as given in equations (11) and (12) and hence the 

expressions for mean squarde errors of estimators T  are obtained as in equation (10). 

2.3.2. Minimum Mean Square Error of the Proposed Estimator T  

Since the mean squared error of the estimator T given in equation (10) is the 

function of unknown constant α , therefore, it has been minimized with respect to α and 

subsequently the optimum value of α  is obtained as 

      opt. m u mα = M T M T  + M T                                                                                     (13) 



  208 

 

Now substituting the values of opt.α in equation (10), we obtain the optimum mean squared 

error of the estimator T  as 

            u m u mopt.
M T = M T  . M T M T  + M T                   (14) 

Further, substituting the value of the mean squared error of the estimators defined in 

equations (2) and (5) in equation (13) and (14) respectively, the simplified values of opt.α

and   
opt.

M T  are obtained as 

    2

opt. 2 1 2 1 2 2 1α = μf  μ C - f B+ C μ f  C - μ f f B+ f C - f A  - A                      (15) 

    2 2

1 2 y 3 4 5opt.
M T = μ C  - C S n μ  C  - μ C  - C                                (16) 

where  1 2 1 3 2 4 1 2 2 1 5 1 yz

5
C = AC,  C = AC + f A B,  C = f C,  C = f f  B + f  C - f A,  C = f A,  A = - ρ ,

4  

yx yx yz

3
B = 2 - 2 ρ , C = 2 ρ - ρ -  and   μ

4
is the fraction of the sample drawn afresh at the 

current(second) occasion. 

Remark 2.3.1:  
opt.

M T derived in equation (16) is a function of μ . To estimate the 

population mean on each occasion the better choice of  μ  are 1(case of no matching); 

however, to estimate the change in mean from one occasion to other, μ  should be 0(case 

of complete matching). But intuition suggests that the optimum choices of μ  are desired 

to devise the amicable strategy for both the problems simultaneously. 

2.4. Optimum Replacement Strategies for the Estimator T  

The key design parameter affecting the estimates of change is the overlap between 

successive samples. Maintaining high overlap between repeats of a survey is operationally 

convenient, since many sampled units have been located and have some experience in the 

survey. Hence to decide about the optimum value of μ  (fractions of samples to be drawn 

afresh on current occasion) so that Y  may be estimated with maximum precision and 
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minimum cost, we minimize the mean square error  
opt.

M T  in equation (16) with respect 

toμ . 

The optimum value of μ  so obtained is one of the two roots given by 

 2

2 2 1 3 1μ = D  ±  D  - D  D D                      (17) 

where 1 1 3 2 2 3 3 1 5 2 4D = C  C ,  D = C  C ,  D = C  C  +  C  C . 

The real value of μ  exist, iff 2

2 1 3D  - D  D 0 . For any situation, which satisfies these 

conditions, two  real values of  μ  may be possible , hence to choose a value of μ , it should 

be taken care of that 0 μ 1   , all other values of μ  are inadmissible. If both the real 

values of μ  are admissible, the lowest one will be the best choice as it reduces the total 

cost of the survey. Substituting the admissible value of μ  say  0μ  from equation (17) in 

equation (16), we get the optimum value of the mean square error of the estimator T  with 

respect to α as well as μ which is given as 

    0
opt.

* 2 2

0 1 2 y 3 0 4 5M T = μ  C  - C S n μ  C  - μ  C  - C  
                                            

(18) 

3. Special Cases 

3.1. Case I: When there is Non-Response only at the First Occasion (Previous 

Occasion) 

When there is a presence of non-response, the proposed estimator T for population mean 

Y  changes to 

 θ

1 u mT  = φ T + 1- φ T                                                                                                             (19) 
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where θ u
u u

u

Z - z
T = y  exp

Z + z

 
 
 

 and mT is defined in equation (5) and  φ 0 φ 1  is a real 

constant to be determined so as to minimize the mean square error of the estimator 1T . 

In this case, the optimum value of fraction of sample drawn afresh is obtained as 

    2

2 2 1 3 1 1μ̂ = H  ±  H  - H  H  H = μ say                                                                                              

and the minimum mean square error of the estimator 1T  at the admissible value of μ̂ is 

derived as  

    1
opt.

* 2 2

1 1 1 2 y 1 3 4M T = μ  G  - G  S n μ  C - μ  G  - G                                                  (20) 

where 

1 1 2 2 3 1 4 2 3 1 2 1 3 1 1H = CG ,  H = CG ,  H = G G + G G ,  G = AC,  G = AC + f AB,  G = f B + C - f A,  

4 1 1 1G = f A  and   f = r n.  

3.2. Case II: When there is Non-Response only at the Second (Current) Occasion 

The estimator for population mean Y  at the current occasion in the presence of non-

response at current occasion is given by 

  θ

2 u mT  = ψ T + 1- ψ T                                                                                                                (21) 

 where 
*

θ * m
m n *

m

y
T =  x

x

 
 
 

,   * m
m m

m

Z - z
y = y  exp ,

Z + z

 
 
    

* m
m m

m

Z - z
x = x  exp

Z + z

 
 
 

 and  

* n
n n

n

Z - z
x = x  exp

Z + z

 
 
 

 uT is defined in equation (2) and  ψ 0 ψ 1  is a real constant to 

be determined so as to minimize the mean square error of the estimator 2T . 

In this case, the optimum value of fraction of sample drawn afresh is obtained as 

    2

5 5 4 6 4 2μ̂ = H  ±  H  - H  H  H = μ say                                                                                              
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and the minimum mean square error of the estimator 2T  at the admissible value of μ̂ is 

derived as 

    
opt.

* 2 2

2 2 5 6 y 2 7 2 3M T = μ  G  - G S n μ  G  - μ  G  - A                                                (22) 

where    

4 5 7 5 6 7 6 5 6 8 5 6 7 2H = G G ,  H = G G ,  H = AG + G G ,  G = AC,  G = AB + AC,  G = f C,  

8 2 2 2 2G = f B + f C - A  and  f = r u.  

4. Efficiency Comparison 

The percent relative loss in the efficiency of the proposed estimator T has been recorded 

to infer about the effect of incompleteness in the data over the occasions with respect to 

the estimator CRT  under the same circumstances but for complete response over the 

occasions. 

Considering following estimator of population mean for complete response: 

 θ θ

CR u mT = ξ T + 1- ξ T                                                                                                          (23) 

where  ξ 0 ξ 1  is a real constant to be determined so as to minimize the mean square 

error of the estimator CRT . 

The optimum mean squared error for the estimator CRT  with respect to ξ  as well as μ is 

obtained as 

   
* * 2 *2 *

CR 1 2 y 3opt.
M T = μ B - B S n μ  C - μ B - A                                                             (24) 

where  * 2

5 5 4 6 4μ = B  ±  B  - B  B  B , 4 1 5 2 6 1 2 3 1B = B C,  B = B C,  B = AB + B B ,  B = AC,

   2 3 yz yx yx yz  B = AB + AC,  B = B + C - A, A = 5 4 - ρ , B = 2 - 2 ρ   and  C = 2 ρ - ρ - 3 4 .  

The percent relative loss in precision of the estimators 1 2T, T  and T with respect to the 

estimator CRT  under their respective optimality conditions are given by 
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* *

CRopt. opt.

0 *

opt.

* *

1 CRopt. opt.

1 *

1 opt.

* *

2 CRopt. opt.

2 *

2 opt.

M T -  M T
L =  ×100

M T

M T -  M T
L =  ×100                                              

M T

M T -  M T
L =  ×100    

M T














                                             (25) 

5. Numerical Illustrations and Simulation 

Empirical validation has been carried out by Monte Carlo Simulation. Real life 

situation of completely known finite population has been considered.  

Population Source: [Free access to the data by Statistical Abstracts of the United States] 

The population comprise of N = 51 states of United States. Let 
iy be the total 

energy consumption during 2008 in the 
thi  state of U. S., 

ix be the total energy 

consumption during 2003 in the 
thi  state of U. S. and 

iz denote the total energy 

consumption during 2001 in the 
thi state of  U. S.  

For the considered population, the value of μ defined in equation (17) and the 

percent relative loss in precision 0 1L , L and 2L defined in equation (25) of the estimator 

1 2T, T  and T respectively with respect to estimator CRT  have been computed and are 

presented in Table 1. To judge about the performance of the estimator in the presence of 

different percentages of non-response, a more general illustration has been worked out by 

considering choices of correlation coefficients of study and auxiliary variables on different 

occasions. These results have been shown in Table 2 to Table 4.   

To validate the above empirical results, Monte Carlo simulation has also been 

performed for the considered population. For better analysis, the above simulation 

experiments were repeated for different choices of 1 2t  and t .  
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5.1. Simulation Algorithm 

(i) Choose 5000 samples of size n=25 using simple random sampling without replacement 

on first occasion for both the study and auxiliary variable. 

(ii) For 1f = 0.88 , choose 1r =22   responding units out of  n=25 samples units. 

(iii) Calculate sample mean
 1r  | kx  and 

 1r  | kz  for k =1, 2, - - -, 5000. 

(iv) Retain m=15 units out of each 1r =22  sample units of the study and auxiliary variables 

at the first occasion. 

(v) Calculate sample mean m | kx and m | kz for k= 1, 2, - - -, 5000. 

(vi) Select u=10 units using simple random sampling without replacement from N-n=26 

units of the population for study and auxiliary variables at second (current) occasion. 

(vii) For 2f = 0.90 , choose 2r =9   responding units out of  u=10 samples units. 

(viii) Calculate sample mean
 2r  | ky ,  m | ky  and 

 2 r  | kz for k = 1, 2, - - -, 5000. 

(ix) Iterate the parameter α  from 0.1 to 0.9 with a step of 0.2. 

(x) Iterate ξ  from 0.1 to 0.9 with a step of 0.1 within (ix). 

(xi) Calculate the percent relative loss in efficiencies of the proposed estimator 

1 2T, T and T  with respect to estimator to CRT as 

   

 

5000 5000
 2  2

| k CR | k | k CR | k

k=1 k=1
15000 5000

 2  2

| k 1| k

k=1 k=1

5000
 2

2| k CR | k

k=1
2 5000

 2

2| k

k=1

T - T T - T

            L T  =  × 100  ,      L T =  × 100 

T T

T - T

and      L T =  × 100

T

      

      

  

  

 

 




 ,    k=1, 2, ..., 5000.
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Table 1: Empirical Comparison of the proposed estimators 1 2T, T  and T with respect to 

the estimator 
CRT . 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Percent Relative Loss in 

Efficiency for estimator T  

Percent Relative Loss in 

Efficiency  for estimator 1T  

Percent Relative Loss in 

Efficiency  for estimator 2T  

*μ  0μ  0L  
1μ  1L  2μ  2L  

0.3554 0.5562 3.3442 0.4521 -29.4932 0.4779 9.5745 
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Table 2: Percent relative loss  0L  when estimator T is compared to the estimator 

CRT in  the presence of  non-response on both the occasions. 

 

yzρ
 

0.1 0.3 0.5 0.7 

1t  2t
 yxρ

 0μ
 

*μ
 0L

 0μ
 

*μ
 0L

 0μ
 

*μ
 0L

 0μ
 

*μ
 0L

 

0.05 

0.05 

0.6 0.50 0.54 11.43 0.40 0.52 -4.11 0.89 0.49 -17.49 0.54 0.45 -35.58 

0.7 0.56 0.58 5.51 0.52 0.55 -9.12 0.44 0.52 -24.43 0.79 0.48 -38.66 

0.8 0.62 0.62 -1.66 0.59 0.60 -15.51 0.56 0.57 -29.79 0.48 0.53 -44.78 

0.9 0.70 0.70 -11.14 0.68 0.68 -24.02 0.65 0.65 -37.18 0.61 0.62 -50.78 

0.10 

0.6 0.42 0.54 15.99 0.24 0.52 -1.03 * 0.49 * 0.61 0.45 -30.27 

0.7 0.52 0.58 10.40 0.46 0.55 -4.82 0.32 0.52 -21.23 * 0.48 * 

0.8 0.60 0.62 3.23 0.56 0.60 -11.03 0.51 0.57 -25.80 0.40 0.53 -41.59 

0.9 0.68 0.70 -12.99 0.65 0.68 -26.35 0.61 0.65 -40.09 0.55 0.62 -54.46 

0.15 

0.6 0.34 0.54 19.89 0.07 0.52 1.53 * 0.49 * 0.69 0.45 -24.10 

0.7 0.48 0.58 15.02 0.40 0.55 -0.95 0.19 0.52 -9.34 0.76 0.48 -36.60 

0.8 0.57 0.62 8.04 0.53 0.60 -6.70 0.47 0.57 -22.06 0.31 0.53 -38.98 

0.9 0.67 0.70 -1.64 0.6 0.68 -15.25 0.61 0.65 -29.19 0.56 0.62 -43.65 

0.15 

0.05 

0.6 0.55 0.54 13.68 0.46 0.52 -2.78 0.91 0.49 -17.50 0.59 0.45 -36.80 

0.7 0.61 0.58 8.79 0.57 0.55 -6.75 0.49 0.52 -2306 0.81 0.48 -38.72 

0.8 0.66 0.62 2.75 0.64 0.60 -11.94 0.60 0.57 -27.17 0.53 0.53 -43.28 

0.9 0.73 0.70 -5.37 0.71 0.68 -19.01 0.69 0.65 -33.02 0.65 0.62 -47.60 

0.10 

0.6 0.48 0.54 18.86 0.32 0.52 1.00 * 0.49 * 0.65 0.45 -31.11 

0.7 0.57 0.58 14.20 0.52 0.55 -1.92 0.39 0.52 -19.29 * 0.48 * 

0.8 0.64 0.62 8.10 0.61 0.60 -7.03 0.56 0.57 -22.76 0.46 0.53 -39.64 

0.9 0.72 0.70 -0.25 0.70 0.68 -14.28 0.67 0.65 -28.68 0.63 0.62 -43.68 

0.15 

0.6 0.41 0.54 23.48 0.17 0.52 3.44 * 0.49 * 0.72 0.45 -24.63 

0.7 0.53 0.58 19.41 0.46 0.55 2.54 0.27 0.52 -16.42 * 0.48 * 

0.8 0.62 0.62 13.42 0.58 0.60 -2.21 0.52 0.57 -18.54 0.38 0.53 -36.51 

0.9 0.71 0.70 4.91 0.69 0.68 -9.52 0.65 0.65 -24.36 0.61 0.62 -39.83 

0.20 

0.05 

0.6 0.57 0.54 14.81 0.49 0.52 -2.11 0.91 0.49 -17.51 0.61 0.45 -37.40 

0.7 0.63 0.58 10.44 0.60 0.55 -5.55 0.52 0.52 -22.37 0.83 0.48 -38.75 

0.8 0.68 0.62 5.00 0.66 0.60 -10.13 0.62 0.57 -25.85 0.56 0.53 -42.53 

0.9 0.75 0.70 -2.41 0.73 0.68 -16.46 0.71 0.65 -30.91 0.67 0.62 -46.00 

0.10 

0.6 0.51 0.54 20.31 0.36 0.52 2.02 * 0.49 * 0.67 0.45 -31.53 

0.7 0.59 0.58 16.13 0.55 0.55 -0.45 0.42 0.52 -18.32 * 0.48 * 

0.8 0.66 0.62 10.59 0.63 0.60 -4.99 0.59 0.57 -21.22 0.49 0.53 -38.66 

0.9 0.74 0.70 2.89 0.73 0.68 -11.55 0.69 0.65 -26.40 0.65 0.62 -41.92 

0.15 

0.6 0.45 0.54 25.31 0.22 0.52 4.91 * 0.49 20.08 0.74 0.45 -24.89 

0.7 0.56 0.58 21.65 0.49 0.55 4.31 0.31 0.52 -15.08 * 0.48 * 

0.8 0.64 0.62 16.17 0.60 0.60 0.06 0.55 0.57 -16.76 0.42 0.53 -35.26 

0.9 0.73 0.70 8.28 0.70 0.68 -6.59 0.67 0.65 -21.89 0.63 0.62 -37.89 

Note: (*) denotes that percent relative loss does not exist since value of optimum 0μ does not exist.  
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Table 3: Percent relative loss  1L  when estimator T is compared to the estimator 

CRT in  the presence of  non-response at first occasion. 

 

yzρ
 

0.1 0.3 0.5 0.7 

1t  yxρ
 1μ  

*μ
 1L

 1μ  
*μ

 1L
 1μ  

*μ
 1L

 1μ  
*μ

 1L
 

0.05 

0.6 0.56 0.54 6.31 0.54 0.52 -8.51 0.51 0.49 -23.91 0.48 0.45 -40.15 

0.7 0.60 0.58 0.41 0.57 0.55 13.79 0.55 0.52 -28.50 0.51 0.48 -43.95 

0.8 0.64 0.62 -6.61 0.62 0.60 -20.10 0.59 0.57 -33.99 0.56 0.53 -48.49 

0.9 0.72 0.70 -15.85 0.70 0.68 -28.40 0.67 0.65 -41.23 0.64 0.62 -54.48 

0.10 

0.6 0.59 0.54 7.17 0.56 0.52 -8.12 0.54 0.49 -24.05 0.50 0.45 -40.98 

0.7 0.62 0.58 1.18 0.60 0.55 -12.84 0.57 0.52 -28.05 0.54 0.48 -44.12 

0.8 0.66 0.62 -4.62 0.64 0.60 -18.52 0.62 0.57 -32.87 0.58 0.53 -47.93 

0.9 0.73 0.70 -13.15 0.71 0.68 -26.07 0.69 0.65 -39.30 0.66 0.62 -53.03 

0.15 

0.6 0.61 0.54 8.03 0.59 0.52 -7.72 0.56 0.49 -24.20 0.53 0.45 -41.80 

0.7 0.64 0.58 3.22 0.62 0.55 -11.87 0.59 0.52 -27.60 0.56 0.48 -44.29 

0.8 0.68 0.62 -2.60 0.66 0.60 -16.92 0.64 0.57 -31.75 0.60 0.53 -47.37 

0.9 0.74 0.70 -10.42 0.73 0.68 -23.71 0.71 0.65 -37.36 0.68 0.62 -51.58 

 

 

Table 4: Percent relative loss  2L  when estimator T is compared to the estimator  

               CRT in  the presence of  non-response at second occasion. 

yzρ
 

0.1 0.3 0.5 0.7 

2t
 yxρ

 2μ
 

*μ
 2L

 2μ
 

*μ
 2L

 2μ
 

*μ
 2L

 2μ
 

*μ
 2L

 

0.05 

0.6 0.47 0.54 10.32 0.37 0.52 -4.77 0.89 0.49 -17.48 0.52 0.45 -34.97 

0.7 0.54 0.58 3.90 0.50 0.55 -10.30 0.41 0.52 -25.11 0.78 0.48 -38.63 

0.8 0.60 0.62 -3.83 0.57 0.60 -17.27 0.53 0.57 -31.09 0.45 0.53 -45.52 

0.9 0.69 0.70 -13.97 0.67 0.68 -26.47 0.64 0.65 -39.23 0.59 0.62 -52.35 

0.10 

0.6 0.39 0.54 14.57 0.20 0.52 -2.04 * 0.49 * 0.59 0.45 -29.84 

0.7 0.49 0.58 8.52 0.44 0.55 -6.25 0.28 0.52 -22.20 * 0.48 -2.15 

0.8 0.58 0.62 0.84 0.54 0.60 -13.00 0.49 0.57 -27.31 0.37 0.53 -42.55 

0.9 0.67 0.70 -9.41 0.65 0.68 -22.25 0.62 0.65 -35.37 0.57 0.62 -48.89 

0.15 

0.6 0.31 0.54 18.12 0.02 0.52 -0.90 * 0.49 * 0.67 0.45 -23.84 

0.7 0.45 0.58 12.86 0.37 0.55 -2.67 0.14 0.52 -20.36 * 0.48 * 

0.8 0.55 0.62 5.42 0.51 0.60 -8.90 0.44 0.57 -23.79 0.27 0.53 -40.21 

0.9 0.66 0.70 -4.83 0.63 0.68 -18.05 0.59 0.65 -31.56 0.54 0.62 -45.54 

Note: (*) denotes that percent relative loss does not exist since value of optimum
2μ does not exist.  
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Table 5: Simulation result when the proposed estimator T is compared with the  

                 estimator CRT when non-response occurs on both the occasion 

 

     
ξ  

α  
SET 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

0.1 

I -23.85 6.10 33.28 43.81 57.06 62.36 66.77 

II -24.09 5.21 22.58 47.06 53.96 60.85 66.88 

III -13.18 16.70 33.33 43.50 59.94 66.85 68.68 

0.3 

I -46.87 -19.46 10.19 29.28 43.39 54.65 60.04 

II -54.92 -25.77 2.14 30.79 41.07 50.64 60.43 

III -42.99 -9.49 12.51 33.32 51.20 58.26 59.94 

0.5 

I -80.12 -47.12 -9.73 12.33 31.92 45.49 51.44 

II -90.55 -56.39 -16.28 14.25 28.86 41.93 51.74 

III -85.44 -39.60 -9.91 16.85 37.16 46.19 50.30 

0.7 

I -111.24 -70.35 -27.92 -2.13 21.43 36.56 43.82 

II -118.92 -75.86 -31.04 2.00 19.47 34.44 44.77 

III -123.06 -68.43 -33.23 0.2.37 24.28 34.80 40.76 

0.9 

I -125.68 -82.26 -37.31 -8.64 16.15 32.29 40.13 

II -127.09 -81.47 -35.76 -3.02 17.91 32.01 42.22 

III -148.24 -88.23 -49.20 -12.81 14.80 27.73 34.46 

                               I: n=25,
1 2μ = 0.40, t =0.12, t =0.10  , II: n=25,

1 2μ = 0.40, t =0.16, t =0.20  

                               III: n=25,
1 2μ = 0.40, t =0.28, t =0.30  

 

Table 6: Simulation result when the proposed estimator 1T  is compared with the   

                estimator CRT when non-response occurs only on first occasion 

 

     
ξ  

φ  
SET 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

0.1 

I -20.98 -9.49 30.43 39.38 53.20 65.04 67.24 

II -20.86 18.17 34.12 49.80 64.98 67.15 71.37 

III -88.05 -50.30 -15.35 8.46 32.66 39.43 51.38 

0.3 

I -56.20 -28.72 7.70 24.69 45.06 55.00 60.02 

II -42.21 -4.87 17.89 36.77 52.01 58.26 64.38 

III -126.69 -82.31 -44.79 -133.22 15.23 31.43 38.67 

0.5 

I -88.42 -53.78 -15.51 9.19 31.80 44.73 50.29 

II -75.35 -35.25 -4.74 19.44 40.41 49.53 55.66 

III -178.35 -117.28 -71.18 -34.22 -2.78 17.97 25.30 

0.7 

I -119.74 -80.62 -36.35 -3.79 19.56 35.45 41.96 

II -109.31 -60.23 -24.21 2.17 28.08 40.13 47.12 

III -211.19 -144.73 -92.32 -52.77 -14.78 7.84 16.30 

0.9 

I -138.83 -92.46 -47.51 -12.53 12.47 29.92 37.16 

II -131.52 -76.53 -37.68 -7.70 20.50 34.10 41.37 

III -218.85 -149.08 -95.39 -53.67 -15.79 5.98 14.28 

                               I: n=25,
1μ = 0.40, t =0.12  , II: n=25,

1μ = 0.40, t =0.16  

                               III: n=25,
1μ = 0.40, t =0.28  
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Table 7: Simulation result when the proposed estimator 2T  is compared with the  

               estimator CRT when non-response occurs only on first occasion 

 

     
ξ  

ψ  
SET 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

0.1 

I 0.20 21.90 39.82 53.53 65.07 71.45 74.45 

II 0.49 11.24 39.58 54.34 64.62 70.92 72.31 

III 0.97 22.26 40.05 53.15 65.12 70.63 74.91 

0.3 

I -24.01 2.56 25.24 41.91 55.55 63.79 67.82 

II -24.03 2.40 24.51 42.73 55.57 63.87 66.25 

III -24.0 2.45 25.41 42.42 55.88 63.72 67.49 

0.5 

I -51.48 -19.09 7.28 29.29 45.59 55.71 60.37 

II -53.87 -22.26 6.66 29.17 44.95 55.14 58.55 

III -38.49 -20.32 7.25 28.09 44.54 54.64 59.88 

0.7 

I -76.61 -40.99 -8.27 17.96 36.49 48.50 53.69 

II -84.57 -48.72 -12.11 15.02 33.79 46.31 50.53 

III -69.30 -47.13 -13.11 12.94 32.66 44.53 51.04 

0.9 

I -91.20 -51.71 -16.71 11.37 31.41 44.66 50.21 

II -110.70 -66.95 -27.96 4.02 25.74 39.31 44.18 

III 102.42 -73.68 -36.88 -1.03 21.95 35.42 42.77 

                               I: n=25,
2μ = 0.40, t =0.20 ,  II: n=25,

2μ = 0.40, t =0.30  

                               III: n=25,
2μ = 0.40, t =0.40  

 

9. Rendition of Results 

The performance of an estimator in successive sampling in the presence of non-

response is generally judged on the basis of percent relative loss in efficiency (lesser is 

loss better is the estimator) and in terms of optimum value of fraction of fresh sample to 

be drawn on current (second) occasion which in turns is directly associated to the cost of 

survey. Following interpretation can be drawn from Tables 1- 7, 

(1)From Table-1, it is observed that  

(a) Optimum values 0 1 2μ , μ  and μ  for the estimators 1 2T, T  and T respectively exist for 

the considered Population and *

1 2 0μ < μ  < μ < μ , which justifies the applicability of the 

proposed estimators 
1 2T, T  and T at optimum conditions. This also signifies that portion 

consisting more non response requires a more number of units in the sample to be drawn 

afresh on current occasion.  
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(b) Lesser percent relative loss in efficiency is observed in terms of precision indicating 

the proposed estimator T (at optimal conditions) to be considerable if non response 

appears in the survey design. This result justifies the use of additional auxiliary 

information which is stable over time embedding with exponential type structure at both 

occasions in two occasion successive sampling.  

(2) In Table-2, we see that 

(a) For a fixed value of 1t , as percentage of non-response on current occasion increases 

the amount of loss increases which is natural and  for a fixed 2t as the value of yxρ  

increases the loss in efficiency decreases, in fact a little gain is observed when compared 

to the estimator CRT . 

(b) For fixed amount of 1 2t  and t  as the value of yzρ  increases, the loss in efficiency 

decrease. 

(c) As the percentage of non-response at first occasion increases for fixed value of 2t , loss 

in efficiency increases. 

(3) From Table -3 and Table-4 we observe that 

(a) For fixed values of 1 2t  and t , increasing values of yx yzρ  and ρ  the percent relative loss 

in efficiency decreases. 

(b) As we keep on increasing the value of 1 2t  and t , percent relative loss increases. 

(4) From the simulation results presented in Table-5, 6 and 7, where the estimators 

1 2T, T  and T  are respectively compared to estimator CRT , following results can be drawn 

(a) The values for      1 2L T , L T and L T  increase as the value of ξ increase for fixed 

choice of α . (b) As we increase the value of α, φ and ψ  respectively for fixed choices of 

ξ , the value of      1 2L T , L T and L T  decrease and gain is also observed over the 

estimator CRT . 
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10. Conclusion 

The thorough analysis of proposed estimators utilizing information on an 

additional auxiliary variable in the presence of non-response with variety of cases 

depending upon the occurrence of non-response, seems to be interesting enough as an 

amalgamation of exponential structure with ratio type estimator because even in the midst 

of non- response, the proposed method of  imputation not just provides lesser percent 

relative loss in efficiency of the estimator but it also helps in reducing the cost of survey. 

So the proposed estimator T can be considered for its practical use in the presence of non-

response by survey practitioners. 
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A fresh approach for Intercession of Non-

Response in Multivariate Longitudinal 

Designs  

 

1. Introduction 

Probably a most smartly designed sample survey may bout with incompleteness 

of data due to completely stochastic nature of non-response and cannot ascertain the 

complete response from the respondents due to many uncertainties lying in the conduction 

of survey. However we always have a data to conclude with but in an incomplete form of 

the true fact of the study. The severity of spoiling inference gets worse when the samples 

are drawn on multiple waves. The research related to sampling on successive waves has 

started in the international arena since early 1942. Some of the work in the last five 

decades are summarized below: Jessen (1942) was pioneer to start the work and latter this 

idea was extended by Patterson (1950), Narain (1953), Eckler (1955), Gordon (1983), 

Arnab and Okafor (1992), Feng and Zou (1997), Biradar and Singh (2001), Singh and 

Priyanka (2008a), Singh et al. (2013a), Bandyopadhyay and Singh(2014), Priyanka and 

Mittal(2014), Priyanka and Mittal(2015a, 2015b)and many others. Longitudinal surveys 

focus on studying and analyzing the trends and dynamics of those real life scenarios which 

intend to be monitored multiple times since one time canvassing of characteristics may 

not supply the very essential attributes of the character under study. 

 

The scenario of incompleteness becomes awful when one is interested in collecting 

data for more than one wave because, even though we have a complete sample frame but 

may fail to obtain response in one or other ways (MCAR, MAR, OAR, PD and DNR). 

For example, in a survey of different retail outlets of consumable commodities, one may 

be keen to estimate average daily sales of a specific product in a particular outlet. Now it 

may not be possible to record the total or average daily sale of specific product from any 

of the retail outlet since the outlet might be shut down, outlet might be closed that day, the 

sale of product might be discontinued from that outlet; the product might be out of stock 
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in the outlet or the producing company might have discontinued the production of the 

product due to any issue. So rather than discarding the unavailable sample units, suitable 

values can be imputed in place of unavailable sample units so as to overcome 

incompleteness of the data due to non-response. 

 

Immense efforts have been put together by Rubin (1976), Sande (1979), Kalton et 

al.(1981), Kalton and Kasprzyk (1982), Singh and Singh (1991) by considering complete 

data set and discarding all those units for which information was not available for at least 

one time. One may site Lee et al. (1994, 1995), Singh and Horn (2002), Ahmed et al. 

(2006), Singh and Priyanka (2007b), Singh (2009),Singh et al. (2010), Diana and Perri 

(2010) and Singh et al. (2013b) for various new estimators for estimation of parameters 

in presence of non-response. 

 

So many authors have effort fully commanded the literature by an exceptional use 

of multi-auxiliary information while sampling over two or more waves for the estimation 

of population mean when complete response of sample units is available but as far as our 

knowledge is concerned, it is the very initial effort to use imputation technique in order to 

handle non-response using multi-auxiliary information for the estimation of population 

mean on successive waves. Motivated by above argument, MCAR have been assumed 

implicitly and completely known multi-auxiliary information have been utilized to 

estimate the population mean in the presence of non-response while sampling over two 

successive waves. For this an exponential ratio type estimator has been clubbed with chain 

type ratio to exponential ratio type estimator over successive waves to estimate population 

mean. The problem of non-response (incompleteness in data) has been handled by 

imputation technique. Fresh imputation technique has been devised. The possible cases in 

which non-response may creep in two successive waves have been elaborated in details. 

The properties have been discussed theoretically as well as empirically. The proposed 

estimators under devised imputation techniques have been compared with a multivariate 

weighted estimator due to Priyanka et al. (2015). A detailed simulation algorithm has been 

designed and applied to substantiate the empirical and theoretical results. 
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2. Survey Design and Analysis 

2.1 Notations 

Let  1 2 NU = U , U , ..., U  be the N- element finite population, which has been 

sampled over two successive waves. The characters under study is denoted by x(y) on the 

first (second) wave, respectively. It is assumed that information on almost stable auxiliary 

variables 1 2 pz , z , ..., z , with the known population mean, are available on both successive 

waves. It has been assumed that there is non-response on both successive waves 

(occasions). A simple random sample without replacement ns of n units has been drawn 

on the first wave. Let the number of responding unit out of n sampled units, which are 

drawn at the first wave, be denoted by 1r , the set of responding units in ns by 1R and that 

of non-responding by 
c

1R . A random sub-sample ms of m = nλ unit is retained (matched) 

for its use on the current (second) wave from the units which responded ( 1r ) at the first 

wave and it is assumed that these matched units are completely responding at the current 

(second) wave as well. A fresh simple random sample (without replacement), us of 

u = n - m = nμ units, is drawn on the second wave from the non-sampled units of the 

population so that the sample size on the second wave remains the same. Let the number 

of responding units out of u sampled units which are drawn afresh at current wave, be 

denoted by 2r , the set of responding unit in us by 2R , and that of non-responding units by 

c

2R . λ and μ  λ + μ =1 are the fractions of matched and fresh sample, respectively, at the 

current (second) wave. For every unit  kj R k =1, 2 , the values  j jx y  are observed, but 

for the units  c

kj R k =1, 2
 

the values  j jx y
 

are missing and instead values are 

imputed. The following notations have been used hereafter: 

iX, Y, Z  : Population means of the variables x, y and 1 2 pz , z , ..., z  respectively. 

       
 2  1  1u u r i 2 m m i r r i  1 n iy , z , y , z r , x , y , z m , x , y , z r , x , z n  : Sample mean of respective   

                                                           variates based on the sample sizes shown in suffice. 
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i i jyx xz yz z zρ , ρ , ρ , ρ : Correlation coefficient between the variables shown in suffices for 

                               i j=1, 2, ..., p . 

i

2 2 2

x y zS , S , S : Population mean square of variables x, y and 1 2 pz , z , ..., z  respectively. 

1 2
1 2

r r
f = , f =

n u

   
   
   

: The fraction of respondents at first and second waves respectively. 

   1 1 2 2t = 1- f , t = 1- f : The fraction of non- respondents at first and second waves 

respectively. 

 

2.2 Survey Design under Proposed Imputation Technique 

To estimate the population mean Y on the current (second) wave, utilizing p-

additional auxiliary information which are stable over time and are readily available on 

both successive waves. Considering the case of non-response at current wave, the missing 

values in the sample of size u, are replaced by imputed values. A fresh imputation 

technique have been proposed to manage non-response as under 

 

  2  2 2

j 2

•j i i  2 c

r 2 r

2 i i  2

y                                                                     if      j R

y = Z  - z r1
u y  exp - r  y         if      j R

u - r  Z  + z r




    
    

                              

(1) 

where  
 2 j

2 2

r j i  2 i

j R j R2 2

1 1
y = y   and  z r = z , i=1, 2, ..., p

r r 

  . 

and hence the estimator   T i, u i=1, 2, ..., p  under above proposed imputation 

technique becomes 

 
 

  2

i i  2

r

i i  2

Z  - z r
T i,u = y  exp ,i=1, 2, ..., p.

 Z  + z r

 
  
                                                                       

(2) 

A multivariate weighted estimator 
uT  based on sample of the size u= nµ drawn afresh on 

the current (second) wave is proposed as  

Tu = 𝐖𝐮
′ 𝐓exp(u)                                                                                          (3) 

where Wu is a column vector of p-weights given by 𝐖𝐮 = [wu1
wu2

. . . wup]′ 
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and  𝐓exp(u) =

[
 
 
 
 
T(1, u)
T(2, u)

...
T(p, u)]

 
 
 
 

, such that 𝟏′𝐖𝐮 = 1, where  1  is a column vector of order p. 

The second estimator Tm, based on sample of size m, is also proposed as weighted 

multivariate chain type ratio to exponential ratio estimator and hence is given by 

Tm = 𝐖𝐦
′ 𝐓exp(m, n)                                                                                          (4) 

where Wm is a column vector of p-weights as 𝐖𝐦 = [wm1
wm2

. . . wmp]′ 

and 𝐓exp(m, n) =

[
 
 
 
 
T(1,m, n)
T(2,m, n)

...
T(p,m, n)]

 
 
 
 

, Such that 𝟏′𝐖𝐦 = 1, where  1  is a column vector of order 

p. 

Since non- response is assumed to be occurring on first wave as well, so the missing values 

occurring in the sample of size n are replaced by imputed values. For finding relevant 

imputed values following imputation technique has been proposed 

 

  1  1 1

j 1

•j i i  1 c

r 1 r

1 i i  1

x                                                                    if      j R

x = Z  - z r1
n x  exp - r  x         if      j R

n - r  Z  + z r




    
    

                                    

(5) 

where     
 1 j

1 1

r j i  1 i  1

j R j R1 1

1 1
x = x   and  z r = z r ,i=1, 2, ..., p

r r 

  . 

In the light of above proposed imputation technique the estimator based on sample 
ns

becomes  

 

  1

i i  1*

n r

i i  1

Z  - z r
x = x  exp , i=1, 2, ..., p

 Z  + z r

 
  
                                                                              

(6) 

Now the estimator based on sample size m common to both successive waves is proposed 

as  

 
*

*

*

y (i, m)
T i, m, n = x (i, n)

x (i, m)

 
 
                                                                                            

(7) 



  227 

 

where 
 
 

i i*

m

i i

Z  - z m
y (i, m) = y  exp

Z +  z m

 
  
 

,
 
 

i i*

m

i i

Z  - z m
x (i, m) = x  exp

Z +  z m

 
  
 

 

and
 
 1

i i 1*

r

i i 1

Z  - z r
x (i, n) = x  exp

Z +  z r

 
  
 

for i=1, 2, 3, ..., p.  

The optimum weights 𝐖𝐮 and  𝐖𝐦 in uT  and mT are chosen by minimizing their mean 

squared errors respectively. 

Now a convex linear combination of the two estimators
uT  and mT has been considered to 

define the final estimator of population mean Y  on the current wave in the presence of 

non-response on both successive waves and is given as 

   | p u mT NR = α T  + 1 - α  T  
                                                                                             

(8) 

where  α 0 α 1  is a constant to be determined so as to minimize the mean squared 

error of the proposed estimator  | pT NR . 

2.3. Analysis  

The properties of the proposed estimator  | pT NR  are derived under the following large 

sample approximations 

           
2 1r 0 m 1 m 2 r 3 i 2 i 4iy = Y 1 + e , y = Y 1 + e ,  x = X 1 + e , x = X 1 + e , z r = Z 1 + e ,  

             i i 5i i 1 i 6i n 7 i i 8iz m = Z 1 + e , z r = Z 1 + e , x = X 1 + e , z n = Z 1 + e  such that  

k|e | < 1  i= 1, 2, ..., p and k = 0, 1, 2, 3,4, 5, 6, 7 and 8.  

Under the above transformations, the estimators uT  and mT  take the following forms: 

   2

0 4i 0 4i 4i

Y
T i, u  = 8 + 8e - 4e - 4e e + 3e   for  i=1, 2, ..., p

8
                                    (9) 

  



1 2 3 6 i 1 2 1 3 1 6 i 2 3

2 2

2 6 i 3 6 i 2 6 i

Y
T i, m, n  = 8 + 8e - 8e + 8e - 4e - 8e e + 8e e - 4e e - 8e e

8

                     + 4e e - 4e e + 8e  + 3e    for  i=1, 2, ..., p     
                

(10) 
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2.3.1. Bias and Mean Squared Error of the Estimator  | pT NR  

The estimators u mT  and T are exponential ratio and chain type ratio to exponential 

ratio type in nature respectively. Hence they are biased for population mean Y . Therefore, 

the final estimator  | pT NR defined in equation (8) is also biased estimator of Y . The bias 

 B .  and mean square error  M . of the proposed estimator  | pT NR are obtained 

(ignoring finite population corrections) up to first order of approximations and thus we 

have following theorems: 

Theorem 2.3.1: The bias of the proposed estimator  | pT NR  to the first order of 

approximation has been derived as 

        | p u mB T NR  = α B T  + 1 - α  B T                                          (11) 

B(Tu) =
1

 r2
𝐖u

′𝐁u                                                                                                             (12) 

B(Tm) = 𝐖m
′ (

1

m
Bm1 +

1

r1
𝐁m2)                                                                (13) 

where 𝐁u = (B1(u), B2(u), … , Bp(u))
′

, 002 011
i 2

i i

C C3 1
B (u) = Y  - 

8 Z 2 Y Z

 
 
 

,

for i =1, 2, 3, ..., p  

200 110
m1 2

C C
B  = Y  - 

X XY

 
 
 

,  𝐁m2 = (Bm21, Bm22, … , Bm2p)
′
 

where 002 110 011 200
2 i 2 2

i i

C C C C3 1
Bm  = Y +  -  - 

8 Z XY 2 YZ X

 
 
 

,      
r s t

rst i i iC = E x - X y  - Y z  - Z 
 

; 

 r, s, t 0 for  i = 1, 2, 3, ..., p . 

Theorem 2.3.2: The mean squared error of the estimator  | pT NR  is obtained as 

          
 22

| p u m u mM T NR  = α  M T  + 1 - α  M T + 2α 1 - α Cov (T , T )     (14) 

M(Tu) = 𝐖u 
′ Ω u𝐖u                                                                                                         (15) 

M(Tm) = (B)𝐖m 
′ 𝐄 𝐖m + 𝐖m 

′ Ω m𝐖m                                                                           (16) 
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where 
1 2 p

u u u

'

w  w  . . . w   u
W , 

1 2 p
m m m

'
w  w  . . . w   m

W , E is a unit matrix of order p × p ,     

Ω u = (
1

 r2
−

1

N
) Ω u∗   ,   Ω m = (

1

 r1
−

1

N
) Ω m∗ where 

11 12 1p 11 12 1p

21 22 2p 21 22 2p

p1 p2 pp p1 p2 ppp × p

Ωu Ωu . . . Ωu Ωm Ωm . . . Ωm

Ωu Ωu . . . Ωu Ωm Ωm . . . Ωm

. . . . . . . . . . . .
= and   

. . . . . . . . . . . .

. . . . . . . . . . . .

Ωu Ωu . . . Ωu Ωm Ωm . . . Ωm

Ω Ω

   
   
   
   

   
   
   
   
      

u * m *

 

where   B = (
1

m
−

1

N
)B1,  2 2

1 yx 0
B  = 2 Y 1 - ρ C , 

i i i

2 2 2

ii 0 z yz 0 z

1
Ωu =Y C  + C - ρ C C

4

 
 
 

,

i i j j i j i j

2 2

ij 0 yz 0 z yz 0 z z z z z

1 1 1
Ωu = Y  C  - ρ C C - ρ C C + ρ C C

2 2 4

 
 
 

,

 
i i i

2 2 2

ii 0 yx yz 0 z z

1
Ωm = Y C 2ρ -1  - ρ C C + C

4

 
 
 

and

 
i i j j i j i j

2 2

ij 0 yx yz 0 z yz 0 z z z z z

1 1 1
Ωm = Y C 2ρ -  1  - ρ C C - ρ C C + ρ C C   i j=1, 2, 3,..., p.

2 2 4
 

 
 
 

 u mand Cov T , T = 0  as they are based on two independent samples. 

 

 

2.4. Choice of Optimal Weights 

To find the optimization of the weight vector 
1 2 p

'

u u u
w  w  . . . w  
 u

W , the mean squared 

error 
uM(T )  given in equation (15) is minimized subject to the condition 𝟏′𝐖u = 1using 

the method of Lagrange’s Multiplier explained as: 

To find the extrema using Lagrange’s Multiplier Technique, we define uL  as 

 Lu = 𝐖u 
′ Ω u𝐖u − λu(𝟏

′𝐖u − 1),                                           (17) 

where 1  is a unit column vector of order p and 
uλ is the Lagrangian multiplier. 

Now, by differentiating equation (17) partially with respect to 𝐖uand equating it to zero 

we have 

∂Lu

∂𝐖u
= 

∂

∂𝐖u
[𝐖u 

′ Ω u 𝐖u − λu(𝟏
′𝐖u − 1)] = 0 
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This implies that,  2 Ω u𝐖u − λu𝟏 = 𝟎, which yields 

𝐖u =
λu

2
Ω u

−1
𝟏                                                                                                  (18) 

Now pre- multiplying equation (18) by 𝟏′, we get 

λu

2
=

1

𝟏′ Ω u

−1

𝟏

                                                                                                      (19) 

Thus, using equation (19) in equation (18), we obtain the optimal weight vector as   

 𝐖uopt.
=

Ω u

−1

𝟏′ Ω u

−1

𝟏

                                                                                                (20) 

In similar manners, the optimal of the weight 
1 2 p

'

m m m
w  w  . . . w   m

W , is obtained by 

minimizing  mM T  subject to the constraint 𝟏′𝐖m = 1  using the method of Lagrange’s 

multiplier, for this we define  

Lm = (B)𝐖m 
′ 𝐄 𝐖m + 𝐖m 

′ Ω m𝐖m − λm(𝟏′𝐖𝐦 − 1),  

where
mλ is the Lagrangian multiplier. 

Now, differentiating mL  with respect to 𝐖m and equating to 0, we get 

𝐖mopt.
=

Ω m

−1

𝟏′ Ω m

−1

𝟏

                                                                                               (21) 

Then substituting the optimum values of 𝐖u and 𝐖m in equations (15) and (16) 

respectively, the optimum mean square errors of the estimators are obtained as: 

M(Tu)opt. = (
1

r2
−

1

N
)

1

𝟏′ Ω u∗

−1

𝟏

                                                                               (22)                                                                                     

M(Tm)opt. = (
1

m
−

1

N
) B1  +   (

1

r1
−

1

N
)

1

𝟏′ Ω m∗

−1

𝟏

                                                                  (23) 

2.5. Minimum Mean Squared Error of the Proposed Estimator  | pT NR
 

Since the mean squared error of the estimator  | pT NR given in equation (14) is a function 

of unknown constant α , therefore, it has been minimized with respect to α and 

subsequently the optimum value of α  is obtained as 
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m opt.

opt.

u mopt. opt.

M T
α = 

M T +  M T
                                                                                           

(24) 

Now substituting the values of opt.α in equation (14), we obtain the optimum mean squared 

error of the estimator  | pT NR  as 

   
   

   

* u mopt. opt.

| p opt.
u mopt. opt.

M T  . M T
M T NR = 

M T  +  M T
                                                                         (25) 

Further, substituting the optimum values of the mean squared error of the estimator given 

in equations (22) and (23) in equation (24) and (25) respectively, the simplified values 

opt.α and    
*

| p opt.
M T NR  are obtained as 

 
 

 
2 1 2 1 2

opt. 2

2 1 2 1 2 1 1

μ μ f  C - f  f B  + f C
α = 

μ f C - μ f  f B  + f C - f A  - f A

  

  

                  (26) 

   
 * 1 2

| p 2opt.
3 4 5

μ C  - C1
M T NR = 

n μ  C  - μ C  - C  

        (27) 

where A =
1

𝟏′ Ω u∗

−1

𝟏

,  2 2

1 yx 0B  = 2 Y 1 - ρ C ,C =
1

𝟏′ Ω m∗

−𝟏

𝟏

, 1C = A C, 2 1 1C = f A B  + A C,

3 2C = f C , 4 1 2 1 2 1C = f  f B  + f C - f A , 5 1C = f A and  μ is the fraction of the sample drawn 

afresh at the current (second) wave. 

2.6. Optimum Replacement Strategy for the Estimator  | pT NR  

The idea of longitudinal surveys is mainly concerned with obtaining efficient 

estimates with minimal cost in carrying out the survey. So it is technically convenient to 

maintain a high overlap between repeats of the survey which provides the advantage due 

to many sampled units being located and have some experience in the survey. Hence the 

decision of the optimum value of μ should be made (fractions of samples to be drawn 

afresh on the current occasion) so that Y may be estimated with maximum precision and 

minimum cost, we minimize the mean squared error   
*

| p opt.
M T NR  in equation (27) with 

respect to μ  and thus the optimum value of μ  so obtained is one of the two roots given by 
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2

2 2 1 3

1

D  ±  D  - D  D
μ = 

D
          (28) 

where 
1 1 3 2 2 3 3 1 5 2 4

D = C C ,  D = C C   and  D = C C  +  C C . 

The real value of μ  exist, iff 
2

2 1 3
D  - D D 0 . For any situation, which satisfies this 

condition, two real values of  μ  may be possible, hence choose a value of μ such that

0 μ 1   .  All other values of μ  are inadmissible. If both the real values of μ  are 

admissible, the lowest one will be the best choice as it reduces the total cost of the survey. 

Substituting the admissible value of μ say  
| p

NR

Tμ  from (28) in to the equation (27), we get 

the optimum value of the mean squared error of the estimator  | p
T NR  with respect to α

as well as μ which, is given as 

   | p

2

| p | p

NR

* * T 1 2

| p opt. NR NR

T 3 T 4 5

μ  C  -  C1
M T NR = 

n μ  C  - μ  C  - C

 
 

 
 

 .                                                                (29) 

 

3. Special Cases 

3.1. Case I: When Non-Response occurs only at the First (Previous) wave 

When there is a presence of non-response only at first wave, the proposed estimator 

 | p
T NR  for population mean Y reduces to 

   θ

| p u mT P  = φ T + 1- φ T
                                                                                                 

(30) 

where Tu
θ = 𝐖𝐮

′ 𝐓exp(u),where Wu is a column vector of p-weights given by 

1 2 p

'

u u u
w  w . . . w   u

W  

and 𝐓exp(u) =

[
 
 
 
 
T(1, u)
T(2, u)

...
T(p, u)]

 
 
 
 

, where 
 

 
i i

u

i i

Z  - z u
T(i, u) = y  exp

Z +  z u

 
  
 

 for i  = 1, 2, 3, …, p 
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such that 𝟏′𝐖𝐮 = 1, where  1  is a column vector of order p and mT is defined in equation 

(4) and  φ 0 φ 1  is a real constant to be determined so as to minimize the mean squared 

error of the estimator  | pT P . 

In this case, the optimum value of fraction of sample drawn afresh is obtained as 

    
| p

2 P

2 2 1 3 1 Tμ̂ = H  ±  H  - H  H  H = μ say  

and the minimum mean squared error of the estimator  | pT P  at the admissible value of 

μ̂ is derived as  

  
 2

| p | p | p
opt.

** P P P

| p T 1 2 T T 3 4M T P = μ  G  - G n μ  C - μ  G  - G  
                                         

(31) 

where

1 1 2 2 3 1 4 2 3 1 2 1 1 3 1 1 1H = CG ,  H = CG ,  H = G G + G G ,  G = AC,  G = AC + f AB ,  G = f B  + C - f A,  

4 1G = f A, A =
1

𝟏′ Ω u∗

−1

𝟏

,  2 2

1 yx 0B  = 2 Y 1 - ρ C ,C =
1

𝟏′ Ω m∗

−𝟏

𝟏
1 1and   f = r n.  

3.2. Case II: When Non-Response occurs only at the Second (Current) wave 

The estimator for population mean Y in the presence of non-response at current wave 

only, is given by 

    θ

| p u mT C  = ψ T + 1- ψ T
                                                                                 

(32)           

where Tm
θ = 𝐖𝐦

′ 𝐓exp(m, n), where 
m

W is a column vector of p-weights 

1 2 pm m m

'

w  w . . . w  
 m

W  

and 𝐓exp(m, n) =

[
 
 
 
 
T(1,m, n)
T(2,m, n)

...
T(p,m, n)]

 
 
 
 

, where 
*

*

*

y (i, m)
T(i, m, n) = x (i, n)

x (i, m)

 
 
 

 

where
 

 
* i i

m

i i

Z  - z m
y (i, m) = y  exp

Z +  z m

 
 
 

, 
 

 
* i i

m

i i

Z  - z m
x (i, m) = x  exp

Z +  z m

 
 
 

 

and
 

 
* i i

n

i i

Z  - z n
x (i, n) = x  exp

Z +  z n

 
 
 

for i=1, 2, 3, ..., p.  
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Such that 𝟏′𝐖𝐦 = 1, where  1  is a column vector of order p. 

uT has been defined in equation (3) and  ψ 0 ψ 1  is a real constant to be determined so 

as to minimize the mean squared error of the estimator  | pT C . 

In this case, the optimum value of fraction of sample drawn afresh is obtained as 

    
| p

2 C

5 5 4 6 4 Tμ̂ = H  ±  H  - H  H  H =μ say
                                                                        

(33) 

and the minimum mean squared error of the estimator  | pT C  at the admissible value of 

μ̂ is derived as 

  
 2

| p | p | p
opt.

** C C C

| p T 5 6 T 7 T 8M T C = μ  G  - G n μ  G  - μ  G  - A  
                                     

(34) 

where 4 5 7 5 6 7 6 5 6 8 5 6 1 7 2H = G G ,  H = G G ,  H = AG + G G ,  G = AC,  G = AB  + AC,  G = f C,  

8 2 1 2G = f B  + f C - A, A =
1

𝟏′ Ω u∗

−1

𝟏

,  2 2

1 yx 0B  = 2 Y 1 - ρ C ,  C =
1

𝟏′ Ω m∗

−𝟏

𝟏
2 2and  f = r u. 

4. Efficiency with Increased Number of Auxiliary Variables 

As we know that increasing the number of auxiliary variables typically increases the 

precision of the estimates. In this section here, we verify this property for the proposed 

estimator as under: Let  | p
T NR and  | q

T NR be two proposed estimators based on p and 

q auxiliary variables respectively such that p < q , then      | p | q
M T NR  M T NR , i.e. 

     | p | q
M T NR  - M T NR   0 

                                                                                    
(35) 

p p p p q q q q

2 2

p p p p q q q q

μ A C  - A  (B + C ) μ A C  - A  (B + C )1 1
 -   0

n nμ  C  - μ (B + C  + A ) - A μ  C  - μ (B + C  + A ) - A

       
      

 

On simplification, we get 

    
 

 
   2 p q p q

p q p q p q

p q

A A C - C
A - A μ - 1 μ C C +  - μ B C - C μ - 1  - B 0

A - A

  
   

    

 

This reduces to the condition 

 p qA - A   0
                                                                                                                  

(36) 

So from Section 2.5 above, we get 
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1

𝟏′ Ω p

−1
 𝟏

−
1

𝟏′ Ω q

−1
 𝟏

 ≥ 0 

𝟏′ Ω q

−1
 𝟏 ≥ 𝟏′ Ω p

−1
 𝟏 

Following Rao (2006), the matrix Ω qcan be partitioned and can be written as 

p

q

Ω
Ω  = 

 
  

F

F G
 

where F , F and G are matrices deduced from qΩ  such that their order never exceeds q-

p and always greater than or equal to 1.Then,                                                 

-1

p-1

q

Ω
Ω  = 

 



 
 
 

HJH HJ

JH J
                                                                                

(37) 

where  
1

-1

pΩ


 J G F F and 
1

pΩH F . (See Rao (2006) and Olkin (1958)) 

Now rewriting 
1

qΩ1 1 by putting the value of 
-1

qΩ from equation (37), we get 

 
-1

p1 p

q p q - p

q - p

Ω
Ω   

        
   

1HJH HJ
1 1 1 1

1JH J
 

   p-1

p p q - p p q - p

q - p

 Ω -       -   +  
 

        
 

1
1 HJH 1 JH 1 HJ 1 J

1
 

 1

p p p q - p p p q - p q - p q - p Ω  -   -     +         1 HJH 1 1 JH 1 1 HJ 1 1 J 1

   1 1

q p p p p p q - p p p q - p q - p q - p Ω   -  Ω   =  -   -     +           1 1 1 1 1 HJH 1 1 JH 1 1 HJ 1 1 J 1  

    p1 1

q p p p p q - p

q - p

- 
 Ω   -  Ω   =    

-

 


 


  
  

   

1HJH HJ
1 1 1 1 1 1

1JH J
 

   1 1

q p p p Ω   -  Ω      -    0 
-

   
    

 

H
1 1 1 1 1 J H I 1

I
 

The latter follows since J is positive definite so that    0 R J R  for all R,  

where  -  R H I 1  . 

Hence from equation (35), we have 

      | p | qM T NR  - M T NR   0  
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This leads to the result that utilizing more auxiliary variables provides more efficient 

estimates in terms of mean squared error for the proposed estimator. 

 

5. Complexity in compliance with multi-collinearity 

Case 1: when the p-auxiliary variables are mutually uncorrelated i.e.
i jz zρ = 0

 i j = 1, 2, ..., p  , the proposed multivariate estimators are applicable and in this case 

optimum value for μ say NR P Cμ ,  μ  and μ   and the mean squared error of the estimators 

     | p | p | p
T NR , T P  and T C with respect to φ and μ are obtained as 

 2

2 2 1 3 1

NR
D  ±  D  - D  D  Dμ = 

    


 

 2
P

2 2 1 3 1
μ = H  ±  H  - H  H  H

    


 

 2
C

5 5 4 6 4
μ  = H  ±  H  - H  H  H

    


 

  
2

| p

* * NR NR NR

| p 1 2 3 T 4 5opt.
M T NR = μ  C  -  C n μ  C  - μ  C  - C

    

 
     

 

  
 2

opt.

** P P P

| p 1 2 3 4
M T P = μ  G  - G n μ  C  - μ  G  - G

    

  
     

 

  
 2

opt.

** C C C

| p 5 6 7 8
M T C = μ  G  - G n μ  G  - μ  G  - A

    

  
     

 

1 1 3 2 2 3 3 1 5 2 4 1 1 2 2 3 1 4 2 3
D = C C ,  D = C C , D = C C  +  C C ,  H = C G ,  H = C G ,  H = G G + G G ,

                     

 

1 2 1 1 3 1 1 1 1 1 4 5 7 5 6 7
G = A C ,  G = A C  + f A B ,  G = f B  + C - f A , G = f A ,  H = G G ,  H = G G ,

                   

6 5 6 8 5 6 1 7 2 8 2 1 2
H = A G + G G ,  G = A C ,  G = A B  + A C ,  G = f C , G = f B  + f C - A ,

                  

A  =
1

𝟏′∆u∗
−1𝟏

,  2 2

yx 01
B = 2 Y 1 - ρ C ,

 C  =
1

𝟏′∆m∗
−𝟏 𝟏

, 
1 1 2 2

f = r n  and f = r u.  

where

11 12 1p 11 12 1p

21 22 2p 21 22 2p

p1 p2 pp p1 p2 ppp × p

u u . . . u m m . . . m

u u . . . u m m . . . m

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

u u . . . u m m . . . m

= and   

     

     

     

   
   
   
   

   
   
   
   
      

 u * m *
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i i i

2 2 2

ii 0 z yz 0 z

1
u =Y C  + C - ρ C C

4


 
 
 

, 
i i j j

2 2

ij 0 yz 0 z yz 0 z

1 1
u = Y  C  - ρ C C - ρ C C

2 2


 
 
 

, 

 
i i i

2 2 2

ii 0 yx yz 0 z z

1
m = Y C 2ρ -1  - ρ C C + C

4


 
 
 

 and

 
i i j j

2 2

ij 0 yx yz 0 z yz 0 z

1 1
m = Y C 2ρ -  1  - ρ C C - ρ C C   i j=1, 2, 3,..., p

2 2
.  

 
 
 

 

Case 2: When the p-auxiliary variables are mutually correlated i.e. 
i jz zρ  0

 i j = 1, 2, ..., p  . In this case if there is high correlation between p-auxiliary variates, 

then such a problem can be addressed as a problem of multi-collinearity in survey 

sampling. 

 

6. Efficiency Comparison  

In order to examine the performance of the proposed estimators under non-

response, the estimators      | p | p | p
T NR , T P  and T C have been compared to the estimator 

| pT due to Priyanka et al. (2015). 

Hence, following Olkin (1958), Raj (1965), Artes and Garcia (2005) and Singh et al. 

(2011) we consider 
i0 zC = C ;  i=1, 2, 3, ..., p  approximately and hence, the optimum 

value of μ for the case (i) when non-response occurs on both the occasion, (ii)  non-

response occurs only at first occasion (iii) non-response occurs only at second occasion,  

say 
T| p

NRμ̂ ,
T T| p | p

P Cˆ ˆμ and  μ and optimum value of mean squared errors   
* *

| p opt.
M T NR ,

     
* * * *

| p | popt. opt.
M T P  and M T C of the proposed estimators      | p | p | p

T NR , T P  and T C

reduce to 

The optimum value of μ is given by 

 
*

T 2| p

NR * *2 * * *

2 1 3 1
μ = D  ±  D  - D  D  D       

      (38) 

 
*

T 2| p

P * * 2 * * *

2 1 3 1
μ = H  ±  H  - H  H  H

                                                                                          
(40) 

            
 

*

T 5| p

C * * 2 * * *

5 4 6 4
μ  = H  ±  H  - H  H  H

                                                                                       
(42) 
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and the optimum mean squared error of the estimators given as 

  
* * 2 *

T T T| p | p | p

* ** NR * * NR * NR * *

| p 1 2 3 4 5opt.
M T NR = μ  C  -  C  n μ  C  - μ  C  - C   

                                 
(39) 

  
* * 2 *

T T T| p | p | popt.

*** P * * P * P * *

| p 1 2 3 4
M T P = μ  G  - G n μ  C  - μ  G  - G   

                                               
(41) 

  
* * 2 *

T T T| p | p | popt.

*** C * * C * C * *

| p 5 6 7 8
M T C = μ  G  - G n μ  G  - μ  G  - A   

                                        
(43) 

where * * * * * * * * * * * * * * * * * * * * *

1 1 3 2 2 3 3 1 5 2 4 1 2 1 1 3 2
D = C C ,  D = C C , D = C C  +  C C ,  C = A  C ,  C = f A  B  + A  C , C = f C ,  

* * * * * * * * * * * * * * * * * * * *

4 1 2 1 2 1 5 1 1 1 2 2 3 1 4 2 3 1
C = f  f B  + f C - f A , C = f A ,  H = C G ,  H = C G ,  H = G G + G G ,  G = A C ,  

2 3

* * * * * * * * * * * * * * * * * * *

1 1 1 1 4 5 7 5 6 7 6 5 6 8

* * *

1 1 4G = A C + f A B , G = f B  + C - f A , G = f A , H = G G ,  H = G G , H = A G + G G ,

* * * * * * * * * * * * * *

5 6 1 7 2 8 2 1 2 1 1
G = A C , G = A B  + A C , G = f C , G = f B  + f C  - A ,  f = r n , A∗ =

1

𝟏′Ł u∗

−1

𝟏

, 

  2

yx y

*

1B = 2 1 - ρ S   ,C∗ =
1

𝟏′Ł m∗

−𝟏

𝟏

 

11 12 1p 11 12 1p

21 22 2p 21 22 2p

u* m*

p1 p2 pp p1 p2 ppp × p p × p

Łu Łu . . . Łu m m . . . m

Łu Łu . . . Łu m m . . . m

. . . . . . . . . . . .
and      = 

. . . . . . . . . . . .

. . . . . . . . . . . .

Łu Łu . . . Łu m m . . . m

Ł Ł

   
   
   
   

    
   
   
   
      

Ł Ł Ł

Ł Ł Ł

Ł Ł Ł

 

  2

yx y

*

1B  = 2 1 - ρ S , 
i

2

ii yz y

5
u = - ρ  S

4

 
 
 

Ł , 
i j i j

2

ij yz yz z z y

1 1 1
u = 1 - ρ - ρ + ρ  S

2 2 4

 
 
 

Ł , 

i

2

ii yx yz y

3
m = 2ρ - ρ -  S

4

 
 
 

Ł  and
i j i j

2

ij yx yz yz z z y

1 1 1
m = 2ρ - ρ - ρ + ρ - 1  S

2 2 4

 
 
 

Ł  i  j=1, 2, 3,..., p.   

6.1 Comparison of the proposed estimators      | p | p | pT NR , T P  and T C with 

respect to estimator  | pT PR due to Priyanka et al. (2015) 

The estimator  | pT PR  proposed by Priyanka et al. (2015) is given as 

 
   θ θ

| p u mT PR = ξ T + 1 - ξ  T  
                                                                                            

(44) 
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where θ θ

u mT  and T are discussed in equation (30) and (32) respectively and  ξ 0 ξ 1  is a 

real constant to be determined so as to minimize the mean squared error of the estimator 

 | pT PR . 

The optimum value of fraction of sample to be drawn afresh say
| p

PR

Tμ  and optimum value 

of mean squared error   
* *

| p opt.
M T PR of the estimator  | pT PR is given by 

2

| p

* * * *

2 2 1 3PR

T *

1

J  ±  J  - J  J
μ  = 

J
                                                                            (45) 

   | P

2

| p
| p

PR * *

* * T 1 2

| p opt. PR 0 * * 0
TT 3

μ  I  -  I1
M T PR = 

n μ  C  - μ  I  - A

 
 

 
                                                                    

(46) 

where 
* 0 * * 0 * * 0 * * *

1 1 2 2 3 1 2 3
J = C  I ,  J = C  I  ,  J = A  I  +  I  I , A0 =

1

𝟏′𝐇u∗
−1𝟏

  ,C0 =
1

𝟏′𝐇m∗
−𝟏𝟏

  , * 0 0

1
I = A  C ,

* 0 * 0 0

2 1
I = A  B  + A  C ,

* * 0 0

3 1
I = B  + C  - A ,  * 2

1 yx y
B  = 2 1 - ρ S , 

11 12 1p 11 12 1p

21 22 2p 21 22 2p

u* m*

p1 p2 pp p1 p2 ppp × p p × p

hu hu . . . hu hm hm . . . hm

hu hu . . . hu hm hm . . . hm

. . . . . . . . . . . .
and       

. . . . . . . . . . . .

. . . . . . . . . . . .

hu hu . . . hu hm hm . . . hm

   
   
   
   

    
   
   
   
      

H H

 

  2

yx y

*

1B  = 2 1 - ρ S , 
i

2

ii yz y

5
hu = - ρ  S

4

 
 
 

, 
i j i j

2

ij yz yz z z y

1 1 1
hu = 1 - ρ - ρ + ρ  S

2 2 4

 
 
 

, 

i

2

ii yx yz y

3
hm = 2ρ - ρ -  S

4

 
 
 

 and
i j i j

2

ij yx yz yz z z y

1 1 1
hm = 2ρ - ρ - ρ + ρ - 1  S

2 2 4

 
 
 

 i  j=1, 2, 3,..., p.   

The percent relative loss in precision of the proposed estimators  | p
T NR ,  | p

T P  

and  | p
T C have been recorded to infer about the effect of incompleteness in the data over 

the successive waves with respect to the estimator  | p
T PR and are given under their 

respective optimal conditions as 
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*** **

| p | popt. opt.0

| p ***

| p opt.

*** **

| p | popt. opt.1

| p ***

| p opt.

*** **

| p | popt. opt.2

| p ***

| p opt.

M T NR -  M T PR
L =  ×100, 

M T NR

M T P -  M T PR
L =  ×100,

M T P

M T C -  M T PR
L =  ×100 .                               

M T C
   













                                     

(47) 

7. Numerical Illustrations and Monte Carlo Simulation 

Empirical validation has been carried out by Monte Carlo Simulation. Real life situation 

of completely known finite population has been considered.  

Population Source: [Free access to the data by Statistical Abstracts of the United States] 

For carrying out numerical illustration we have considered the case of three auxiliary 

information (i.e. p=3) which are stable over time and are available at both the occasions. 

The population comprise of N = 51 states of the United States. Let  

jy : The total energy consumption during 2007 in the thj  state of U. S. 

jx : The total energy consumption during 2002 in the thj  state of U. S. 

1 jz : The total energy consumption during 2001 in the thj state of  U. S. 

2 jz : The total energy consumption during 2000 in the thj state of  U. S. 

3 jz : The total energy consumption during 1999 in the thj state of  U. S. 

For the considered population, the values of μ defined in equations (38), (40) and 

(42) and the percent relative loss in efficiencies 0 0 0 1 1 1 2 2 2

1 2 3 1 2 3 1 2 3
L , L , L , L , L , L , L , L  and L defined 

in equation (47) of the estimators      | p | p | p
T NR , T P  and T C for p=1, 2 and 3, 

respectively with respect to estimator  | p
T PR have been computed and are presented in 

Table 1.  

To judge about the performance of the estimator in the presence of different 

percentages of non-response, a more general illustration has been worked out by 

considering choices of correlation coefficients of study and auxiliary variables on different 

waves. These results have been shown in Table-2 to Table-6. 
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To validate the above empirical results, Monte Carlo simulation has also been 

performed for the considered population. For convenience the choices of 1 2t  and t are 

considered 0.20 and 0.30 respectively. The simulation results are shown in Table-7 to 

Table-9. 

7.1 Simulation Algorithm 

(i) Choose 5000 samples of size n=25 using simple random sampling without replacement 

on first wave for both the  study and auxiliary variables. 

(ii) For 1f = 0.80 , choose 1r =20   responding units out of  n=25 samples units. 

(iii) Calculate sample mean
1r  | kx ,  

 | k1 1z r ,  
 | k2 1z r and  

 | k3 1z r for k =1, 2, - - -, 5000. 

(iv) Retain m=15 units out of each 1r =20  sample units of the study and auxiliary variables 

at the first wave. 

(v) Calculate sample mean m | kx , 
 m | k  m | k1 2z , z and 

 m | k3z for k= 1, 2, - - -, 5000. 

(vi) Select u=10 units using simple random sampling without replacement from N-n=26 

units of the population for study and auxiliary variables at second (current) wave. 

(vii) For 2f = 0.70 , choose 2r =7   responding units out of  u=10 samples units. 

(viii) Calculate sample mean
 2r  | k

y ,  m | k
y ,      

 | k   | k   | k1 2 2 2 3 2
z r , z r and z r for k = 1, 2, - - -, 

5000. 

(ix) Iterate the parameter α  from 0.1 to 0.9 with a step of 0.1. 

(x) Iterate ξ  from 0.1 to 0.9 with a step of 0.1 within (ix). 

(xi) Calculate the percent relative loss in efficiencies of the proposed estimator  | p
T NR ,

   | p | p
T P  and T C with respect to estimator respect to  | p

T PR for p=1, 2 and 3 as 

 
   

 
 

   

 

5000 5000
 2  2

| p | k | p | k | p | k | p | k

k=1 k=1

0 15000 5000
 2  2

| p | k | p | k

k=1 k=1

| T NR - T PR | T P - T PR

     L p  =  × 100  ,  L p =  × 100 ,

T NR T P
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5000
 2

| p | k | p | k

k=1

2 5000
 2

| p | k

k=1

| T C - T PR

and L p =  × 100 ,    k=1, 2, ..., 5000

T C

.

  

  




 

Similarly, the algorithm has been modified for the case when non-response occurs only at 

previous wave or only at current wave. 

 

 

 

Table 1: Empirical Comparison of the proposed estimators      | p | p | pT NR , T P  and T C with respect  

               to the  estimator  | pT PR . 

 
| p

PR

T
μ  

| p

NR

T
μ  

| p

P

T
μ

 

| p

C

T
μ

 

0

| p
L  

1

| p
L

 

2

| p
L  

p=1 0.5355 0.5555 0.6284 0.4444 4.0912 1.3253 2.2902 

p=2 0.5196 0.4831 0.6157 0.3539 3.4008 0.7533 2.1065 

p=3 0.5137 0.4212 0.6109 0.2765 3.0501 0.5326 1.9302 

 

Table 2: Percent relative loss when estimators      | p | p | p
T NR , T P  and T C  are compared to the    

               estimator  | pT PR for p=1. 

 

1t  2t  

yxρ  0.6 0.8 

1yzρ  

NR

1
μ  

P

1
μ  

C

1
μ  

PR

1
μ  

0

1
L  

1

1
L  

2

1
L  

NR

1
μ  

P

1
μ  

C

1
μ  

PR

1
μ  

0

1
L  

1

1
L  

2

1
L  

0
.0

5
 0.05 

0.6 0.61 0.50 0.59 0.47 2.67 -0.27 2.82 0.53 0.58 0.50 0.56 3.02 0.53 2.38 

0.7 0.54 0.48 0.52 0.45 2.31 -0.51 2.68 0.48 0.56 0.45 0.53 2.79 0.36 2.31 

0.10 
0.6 0.74 0.50 0.73 0.47 6.27 -0.27 6.33 0.47 0.58 0.45 0.56 5.27 0.53 4.52 

0.7 0.61 0.48 0.59 0.45 5.51 -0.51 5.77 0.40 0.56 0.37 0.53 4.85 0.36 4.23 

0
.1

0
 0.05 

0.6 0.63 0.52 0.59 0.47 2.52 -0.54 2.82 0.55 0.60 0.50 0.56 3.66 0.77 2.38 

0.7 0.57 0.50 0.52 0.45 1.94 -1.03 2.68 0.51 0.58 0.45 0.53 3.28 0.73 2.31 

0.10 
0.6 0.76 0.52 0.73 0.47 6.20 -0.54 6.33 0.50 0.60 0.45 0.56 6.03 0.77 4.52 

0.7 0.63 0.50 0.59 0.45 5.26 -1.03 5.77 0.43 0.58 0.37 0.53 5.47 0.73 4.23 

0
.1

5
 0.05 

0.6 0.65 0.55 0.59 0.47 2.37 -0.82 2.82 0.58 0.62 0.50 0.56 4.31 1.61 2.38 

0.7 0.59 0.53 0.52 0.45 1.56 -1.54 2.68 0.53 0.60 0.45 0.53 3.76 1.10 2.31 

0.10 
0.6 0.77 0.55 0.73 0.47 6.14 -0.82 6.33 0.53 0.62 0.45 0.56 6.79 1.61 4.52 

0.7 0.65 0.53 0.59 0.45 5.01 -1.54 5.77 0.46 0.60 0.37 0.53 6.09 1.10 4.23 
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Table 3: Percent relative loss when estimators      | p | p | p
T NR , T P  and T C  are compared to the  

              estimator  | pT PR for p=2 and
1 2z zρ 0  

  yxρ  0.6 0.8 

1t
 

2t
 

1yz
ρ  

2yz
ρ  

NR

2
μ  

P

2
μ  

C

2
μ  

PR

2
μ  

0

2
L  

1

2
L  

2

2
L  

NR

2
μ  

P

2
μ  

C

2
μ  

PR

2
μ  

0

2
L  

1

2
L  

2

2
L  

0
.1

0
 

0
.0

5
 

0.4 

0.3 0.48 0.57 0.42 0.53 3.08 0.58 2.25 0.58 0.62 0.54 0.58 4.00 1.39 2.41 

0.4 0.44 0.57 0.38 0.52 2.88 0.45 2.17 0.57 0.61 0.53 0.57 3.88 1.28 2.40 

0.5 0.35 0.56 0.27 0.51 2.49 0.26 1.93 0.56 0.60 0.51 0.56 3.73 1.13 2.39 

0.5 

0.3 0.42 0.56 0.35 0.52 2.77 0.38 2.11 0.57 0.61 0.52 0.57 3.83 1.23 2.40 

0.4 0.35 0.56 0.27 0.51 2.49 0.26 1.93 0.56 0.60 0.51 0.56 3.73 1.13 2.39 

0.5 * 0.55 * 0.50 * 0.10 * 0.54 0.60 0.49 0.55 3.58 1.00 2.37 

0
.1

0
 

0.4 

0.3 0.38 0.57 0.31 0.53 5.13 0.58 4.00 0.55 0.62 0.50 0.58 6.45 1.39 4.66 

0.4 0.31 0.57 0.23 0.52 4.71 0.45 3.67 0.53 0.61 0.48 0.57 6.31 1.28 4.61 

0.5 0.12 0.56 * 0.51 3.65 0.26 * 0.51 0.60 0.46 0.56 6.12 1.13 4.55 

0.5 

0.3 0.26 0.56 * 0.52 4.48 0.38 * 0.52 0.61 0.47 0.57 6.24 1.23 4.59 

0.4 0.12 0.56 * 0.51 3.65 0.26 * 0.51 0.60 0.46 0.56 6.12 1.13 4.55 

0.5 * 0.55 * 0.55 * 0.10 * 0.49 0.60 0.43 0.55 5.92 1.00 4.47 

0
.1

5
 

0
.0

5
 

0.4 

0.3 0.51 0.60 0.42 0.53 3.50 0.87 2.25 0.61 0.64 0.54 0.58 4.79 2.09 2.41 

0.4 0.47 0.59 0.38 0.52 3.24 0.67 2.17 0.60 0.63 0.53 0.57 4.62 1.92 2.40 

0.5 0.38 0.58 0.27 0.51 2.77 0.40 1.93 0.58 0.62 0.51 0.56 4.40 1.70 2.39 

0.5 

0.3 0.45 0.59 0.35 0.52 3.10 0.58 2.11 0.59 0.63 0.52 0.57 4.55 1.85 2.40 

0.4 0.38 0.58 0.27 0.51 2.77 0.40 1.93 0.58 0.62 0.51 0.56 4.40 1.70 2.39 

0.5 * 0.57 * 0.50 * 0.15 * 0.57 0.62 0.49 0.55 4.19 1.50 2.37 

0
.1

0
 

0.4 

0.3 0.41 0.60 0.31 0.53 5.69 0.87 4.00 0.57 0.64 0.50 0.58 7.34 2.09 4.66 

0.4 0.35 0.59 0.23 0.52 5.23 0.67 3.67 0.56 0.63 0.48 0.57 7.16 1.92 4.61 

0.5 * 0.58 * 0.51 * 0.40 * 0.54 0.62 0.46 0.56 6.90 1.70 4.55 

0.5 

0.3 0.30 0.59 * 0.52 4.94 0.58 * 0.55 0.63 0.47 0.57 7.07 1.85 4.59 

0.4 0.17 0.58 * 0.51 4.13 0.40 * 0.54 0.62 0.46 0.56 6.90 1.70 4.55 

0.5 * 0.57 * 0.50 * 0.15 * 0.52 0.62 0.43 0.55 6.65 1.50 4.47 

Note:“ *” denotes that percent relative loss cannot be obtained since 
NR

2μ , 
P

2μ and 
C

2μ  do not exist. 
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Table 4: Percent relative loss when estimators      | p | p | pT NR , T P  and T C  are compared to the  

               estimator  | pT PR for p=2 and
1 2z zρ 0

 
 

  yxρ  0.7 0.8 

1t
 

2t
 

1yz
ρ  

2yz
ρ  

NR

2
μ  

P

2
μ  

C

2
μ  

PR

2
μ  

0

2
L  

1

2
L  

2

2
L  

NR

2
μ  

P

2
μ  

C

2
μ  

PR

2
μ  

0

2
L  

1

2
L  

2

2
L  

0
.1

0
 

0
.0

5
 

0.4 

0.3 0.51 0.58 0.45 0.54 3.28 0.74 2.31 0.59 0.63 0.55 0.58 4.13 1.52 2.42 

0.4 0.49 0.58 0.43 0.53 3.15 0.63 2.27 0.59 0.62 0.54 0.58 4.04 1.43 2.42 

0.5 0.45 0.57 0.38 0.52 2.90 0.45 2.18 0.57 0.61 0.53 0.57 3.89 1.29 2.40 

0.5 

0.3 0.46 0.57 0.40 0.52 2.99 0.52 2.22 0.58 0.61 0.53 0.57 3.94 1.34 2.41 

0.4 0.45 0.57 0.38 0.52 2.90 0.45 2.18 0.57 0.61 0.53 0.57 3.89 1.29 2.40 

0.5 0.39 0.56 0.32 0.51 2.65 0.32 2.04 0.56 0.61 0.51 0.56 3.78 1.18 2.39 

0
.1

0
 

0.4 

0.3 0.43 0.58 0.37 0.54 5.48 0.74 4.24 0.56 0.63 0.51 0.58 6.60 1.52 4.69 

0.4 0.40 0.58 0.33 0.53 5.25 0.63 4.09 0.55 0.62 0.50 0.58 6.49 1.43 4.67 

0.5 0.31 0.57 0.24 0.52 4.74 0.45 3.69 0.53 0.61 0.48 0.57 6.32 1.29 4.62 

0.5 

0.3 0.35 0.57 0.28 0.52 4.94 0.52 3.86 0.54 0.61 0.49 0.57 6.38 1.34 4.64 

0.4 0.31 0.57 0.24 0.52 4.74 0.45 3.69 0.53 0.61 0.48 0.57 6.32 1.29 4.62 

0.5 0.20 0.56 0.12 0.51 4.11 0.32 3.13 0.52 0.61 0.46 0.56 6.18 1.18 4.57 

0
.1

5
 

0
.0

5
 

0.4 

0.3 0.54 0.60 0.45 0.54 3.77 1.11 2.31 0.62 0.65 0.55 0.58 4.98 2.28 2.42 

0.4 0.52 0.60 0.43 0.53 3.59 0.95 2.27 0.61 0.64 0.54 0.58 4.85 2.15 2.42 

0.5 0.48 0.59 0.38 0.52 3.26 0.68 2.18 0.60 0.63 0.53 0.57 4.63 1.93 2.40 

0.5 

0.3 0.49 0.59 0.40 0.52 3.38 0.78 2.22 0.60 0.64 0.53 0.57 4.71 2.01 2.41 

0.4 0.48 0.59 0.38 0.52 3.26 0.68 2.18 0.60 0.63 0.53 0.57 4.63 1.93 2.40 

0.5 0.42 0.58 0.32 0.51 2.95 0.49 2.04 0.59 0.63 0.51 0.56 4.47 1.77 2.39 

0
.1

0
 

0.4 

0.3 0.46 0.60 0.37 0.54 6.11 1.11 4.24 0.58 0.65 0.51 0.58 7.55 2.28 4.69 

0.4 0.43 0.60 0.33 0.53 5.83 0.95 4.09 0.57 0.64 0.50 0.58 7.41 2.15 4.67 

0.5 0.35 0.59 0.24 0.52 5.26 0.68 3.69 0.56 0.63 0.48 0.57 7.17 1.93 4.62 

0.5 

0.3 0.38 0.59 0.28 0.52 5.48 0.78 3.86 0.56 0.64 0.49 0.57 7.25 2.01 4.64 

0.4 0.35 0.59 0.24 0.52 5.26 0.68 3.69 0.56 0.63 0.48 0.57 7.17 1.93 4.62 

0.5 0.25 0.58 0.12 0.51 4.60 0.49 3.13 0.54 0.63 0.46 0.56 6.99 1.77 4.57 
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Table 5: Percent relative loss when estimators      | p | p | p
T NR , T P  and T C  are compared to the  

                estimator  | pT PR for p=3 and
i jz zρ = 0, i j=1, 2 and 3

 

 

1t  2t  yxρ  

1yzρ  

2yzρ  

3yzρ  

NR

3μ  

P

3μ  

C

3μ  

PR

3μ  

0

3L  

1

3L  

2

3L  

0.10 

0.05 

0.6 0.5 0.6 0.7 0.53 0.48 0.47 0.43 1.37 -1.57 2.63 

0.7 0.5 0.6 0.7 0.61 0.52 0.56 0.46 2.33 -0.68 2.76 

0.7 0.4 0.6 0.5 0.91 0.54 0.90 0.49 3.52 -0.16 3.53 

0.10 

0.6 0.5 0.6 0.7 0.57 0.48 0.53 0.43 4.58 -1.57 5.55 

0.7 0.5 0.6 0.7 0.70 0.52 0.67 0.46 5.85 -0.68 6.08 

0.7 0.4 0.6 0.5 * 0.54 * 0.49 * -0.16 * 

0.15 

0.05 

0.6 0.5 0.6 0.7 0.55 0.51 0.47 0.43 0.75 -2.35 2.63 

0.7 0.5 0.6 0.7 0.63 0.54 0.56 0.46 2.11 -1.03 2.76 

0.7 0.4 0.6 0.5 0.91 0.56 0.90 0.49 3.52 -0.24 3.53 

0.10 

0.6 0.5 0.6 0.7 0.60 0.51 0.53 0.43 4.09 -2.35 5.55 

0.7 0.5 0.6 0.7 0.72 0.54 0.67 0.46 5.74 -1.03 6.08 

0.7 0.4 0.6 0.5 * 0.56 * 0.49 * -0.24 * 

Note:“ *” denotes that percent relative loss cannot be obtained since 
NR

3μ and 
C

3μ  do not exist. 

 

Table 6: Percent relative loss when estimators      | p | p | pT NR , T P  and T C  are compared to the  

               estimator  | pT PR for p=3 and
i jz zρ > 0, i j=1, 2 and 3

 
 

1t  2t  yxρ  

1yzρ  

2yzρ  

3yzρ  

1 2z zρ  

1 3z zρ
 

2 3z zρ
 

NR

3μ  

P

3μ  

C

3μ  

PR

3μ  

0

3L  

1

3L  

2

3L  

0.10 

0.05 

0.6 0.2 0.5 0.3 0.5 0.5 0.4 0.78 0.53 0.76 0.48 3.13 -0.24 3.18 

0.7 0.4 0.7 0.6 0.3 0.3 0.4 0.68 0.53 0.64 0.48 2.75 -0.40 2.93 

0.7 0.3 0.7 0.5 0.3 0.4 0.2 0.65 0.52 0.61 0.47 2.58 -0.50 2.85 

0.10 

0.6 0.2 0.5 0.3 0.5 0.5 0.4 * 0.53 * 0.48 * -0.24 * 

0.7 0.4 0.7 0.6 0.3 0.3 0.4 0.84 0.53 0.83 0.48 6.73 -0.40 6.77 

0.7 0.3 0.7 0.5 0.3 0.4 0.2 0.78 0.52 0.75 0.47 6.34 -0.50 6.44 

0.15 

0.05 

0.6 0.2 0.5 0.3 0.5 0.5 0.4 0.79 0.56 0.76 0.48 3.11 -0.36 3.18 

0.7 0.4 0.7 0.6 0.3 0.3 0.4 0.70 0.55 0.64 0.48 2.67 -0.60 2.93 

0.7 0.3 0.7 0.5 0.3 0.4 0.2 0.66 0.55 0.61 0.47 2.45 -0.75 2.85 

0.10 

0.6 0.2 0.5 0.3 0.5 0.5 0.4 * 0.56 * 0.48 * -0.36 * 

0.7 0.4 0.7 0.6 0.3 0.3 0.4 0.85 0.55 0.83 0.48 6.72 -0.60 6.77 

0.7 0.3 0.7 0.5 0.3 0.4 0.2 0.79 0.55 0.75 0.47 6.29 -0.75 6.44 

Note:“ *” denotes that percent relative loss cannot be obtained since 
NR

3μ and 
C

3μ  do not exist. 
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Table 7: Simulation result when the proposed estimators      | p | p | pT NR , T P  and T C  are compared  

               with the  estimator  | pT PR for p=1. 

 

ξ  

α  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0.1 

 0L 1  4.69 25.85 39.22 42.75 35.11 21.05 -3.15 -38.59 

 1L 1  0.90 24.37 38.66 43.07 37.62 18.89 -0.75 -35.43 

 2L 1  1.37 23.89 37.14 40.14 33.76 20.21 -4.67 -44.45 

0.2 

 0L 1  -5.40 18.02 32.87 36.19 28.29 11.87 -15.82 -53.04 

 1L 1  -11.75 14.60 31.12 35.49 27.73 10.08 -14.42 -54.92 

 2L 1  -9.06 15.91 30.94 34.16 27.34 11.71 -16.95 -55.56 

0.3 

 0L 1  -12.92 13.30 28.21 32.15 23.77 6.90 -22.95 -62.45 

 1L 1  -24.09 5.72 23.99 28.33 19.73 1.35 -26.10 -71.40 

 2L 1  -15.88 10.62 26.39 30.32 23.21 6.20 -23.77 -66.00 

0.4 

 0L 1  -15.69 11.10 26.75 3.46 22.51 5.16 -24.35 -64.80 

 1L 1  -33.76 -0.23 18.17 22.29 14.24 -5.97 -35.43 -84.45 

 2L 1  -17.57 9.26 25.01 29.10 22.02 4.51 -25.51 -68.47 

 

0.5 

 0L 1  -12.78 13.65 28.57 32.70 24.59 7.90 -20.67 -60.31 

 1L 1  -36.59 -2.44 15.71 19.71 12.28 -8.83 -39.94 -90.22 

 2L 1  -14.00 12.23 27.18 31.49 24.51 7.40 -22.14 -63.46 

0.6 

 0L 1  -5.17 19.70 33.68 37.35 30.23 14.65 -12.06 -49.41 

 1L 1  -34.57 -0.71 16.64 21.06 13.75 -7.25 -38.24 -87.08 

 2L 1  -5.76 18.22 32.40 36.48 30.07 14.18 -13.05 -51.25 

0.7 

 0L 1  5.83 28.04 40.16 43.61 37.56 23.33 -0.43 -34.37 

 1L 1  -27.38 4.60 20.89 25.80 18.71 -1.02 -31.38 -76.74 

 2L 1  5.42 26.94 39.52 43.82 37.28 22.85 -1.43 -35.29 

0.8 

 0L 1  17.30 37.15 47.39 50.65 45.16 32.86 11.74 -17.69 

 1L 1  -16.36 13.69 27.39 31.64 25.31 7.78 -20.21 -61.48 

 2L 1  17.50 36.13 47.02 50.10 45.13 32.54 11.38 -18.25 

0.9 

 0L 1  28.57 45.51 54.08 57.30 52.75 41.73 23.51 -1.34 

 1L 1  -3.40 23.42 35.85 39.00 33.86 18.01 -7.06 -43.40 

 2L 1  26.87 45.02 54.26 56.88 52.69 41.83 23.11 -1.29 
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Table 8:  Simulation result when the proposed estimators      | p | p | pT NR , T P  and T C  are compared  

                with the  estimator  | pT PR for p=2 

 

ξ  

α  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0.1 

 0L 2  3.24 24.82 38.69 42.08 35.69 21.83 -1.95 -36.46 

 1L 2  -1.59 22.49 37.08 43.83 39.29 20.32 -0.75 -34.47 

 2L 2  1.38 23.81 37.82 41.41 35.36 22.41 -0.19 -38.59 

0.2 

 0L 2  -7.60 17.11 31.87 35.82 28.84 12.59 -13.83 -49.94 

 1L 2  -13.68 12.97 30.11 35.17 28.76 10.84 -14.24 -53.05 

 2L 2  -9.37 15.88 31.40 35.26 28.87 14.26 -12.41 -49.97 

0.3 

 0L 2  -15.10 11.60 27.23 31.73 24.14 7.60 -21.35 -59.74 

 1L 2  -26.02 3.52 22.67 27.85 20.82 1.92 -25.45 -69.23 

 2L 2  -16.43 10.28 26.64 31.020 24.79 8.49 -19.25 -60.42 

0.4 

 0L 2  -17.88 9.23 25.61 29.89 22.75 5.74 -23.06 -62.48 

 1L 2  -36.76 -2.83 16.62 21.80 15.04 -4.95 -34.53 -82.91 

 2L 2  -18.66 8.56 24.92 29.37 23.34 6.60 -21.84 -63.60 

0.5 

 0L 2  -15.12 11.83 27.05 32.06 24.67 8.19 -19.67 -58.42 

 1L 2  -39.90 -5.36 13.95 19.09 12.82 -8.08 -39.02 -88.85 

 2L 2  -15.49 11.05 26.74 31.71 25.38 9.06 -19.14 -59.58 

0.6 

 0L 2  -7.84 17.69 32.61 36.60 30.14 14.78 -11.44 -48.09 

 1L 2  -38.71 -3.76 14.68 20.25 14.09 -6.85 -37.53 -85.90 

 2L 2  -7.93 16.69 31.76 36.45 30.63 15.33 -10.88 -48.29 

0.7 

 0L 2  3.20 26.17 38.64 42.80 37.39 23.38 0.60 -33.38 

 1L 2  -31.54 1.65 19.08 24.97 18.34 -0.74 -30.85 -75.83 

 2L 2  3.15 25.11 38.55 42.82 37.59 23.57 0.13 -33.45 

0.8 

 0L 2  14.97 35.38 46.39 49.91 44.92 32.73 12.04 -17.13 

 1L 2  -20.15 10.42 25.66 30.94 25.35 7.99 -19.99 -61.94 

 2L 2  15.34 34.31 45.93 49.66 45.32 32.88 12.32 -16.99 

0.9 

 0L 2  26.39 43.96 53.49 56.63 52.54 41.62 23.70 -1.10 

 1L 2  -6.90 20.34 34.31 38.47 33.12 18.02 -7.06 -42.84 

 2L 2  26.88 43.21 53.19 56.38 52.74 41.89 24.11 -2.25 
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Table 9: Simulation result when the proposed estimators      | p | p | pT NR , T P  and T C  are compared  

               with the  estimator  | pT PR for p=3. 

 

 

ξ  

α  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0.1 

 0L 3  2.51 22.50 36.19 39.97 33.42 21.13 -0.29 -34.02 

 1L 3  -3.89 19.77 33.48 41.28 36.68 19.54 -0.66 -30.84 

 2L 3  1.29 22.31 35.72 39.85 34.12 22.20 2.02 -33.06 

0.2 

 0L 3  -7.60 15.29 29.35 33.48 26.93 12.23 -11.64 -45.36 

 1L 3  -14.96 10.96 26.74 32.38 26.77 10.64 -13.30 -49.21 

 2L 3  -8.82 14.76 29.46 33.64 27.96 14.62 -9.17 -43.45 

0.3 

 0L 3  -14.95 10.05 25.14 29.50 22.44 7.32 -18.53 -54.15 

 1L 3  -26.38 1.93 19.67 25.42 19.20 2.58 -23.37 -63.34 

 2L 3  -15.36 9.48 24.92 29.77 24.11 9.18 -15.49 -53.02 

0.4 

 0L 3  -17.73 7.84 23.46 27.72 21.21 5.72 -20.17 -56.53 

 1L 3  -35.88 -3.83 14.06 19.73 13.92 -3.76 -31.18 -75.58 

 2L 3  17.66 7.84 23.24 28.27 22.74 7.30 -17.95 -55.93 

0.5 

 0L 3  -14.93 10.50 24.84 29.87 23.13 8.13 -17.18 -52.58 

 1L 3  -39.43 -6.53 11.55 17.07 11.92 -6.71 -35.23 -80.90 

 2L 3  -14.63 10.03 24.82 30.09 24.54 9.46 -15.76 -52.64 

0.6 

 0L 3  -8.17 16.06 29.66 34.30 28.42 14.39 -9.57 -43.11 

 1L 3  -38.44 -4.96 12.25 17.93 12.99 -5.75 -34.12 -78.27 

 2L 3  -7.84 15.26 29.66 34.56 29.42 15.31 -8.25 -42.64 

0.7 

 0L 3  2.48 24.18 36.07 40.36 35.54 22.60 1.15 -29.81 

 1L 3  -31.86 -0.07 16.25 22.35 16.98 -0.31 -28.18 -69.46 

 2L 3  2.57 23.25 36.19 40.61 36.02 22.97 1.70 -29.37 

0.8 

 0L 3  13.67 33.16 43.42 47.33 42.91 31.63 12.41 -14.81 

 1L 3  -21.40 8.02 22.58 28.10 23.38 7.59 -18.46 -56.30 

 2L 3  14.12 32.13 43.36 47.34 43.49 31.89 12.95 -14.44 

0.9 

 0L 3  24.71 41.54 50.92 54.06 50.49 40.24 23.47 0.12 

 1L 3  -8.81 17.42 31.13 35.43 30.86 16.97 -6.53 -39.93 

 2L 3  25.31 40.84 50.66 54.03 50.82 40.58 24.07 0.20 
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8. Rendition of Results 

The performance of an estimator in successive sampling in the presence of non-

response is generally judged on the basis of percent relative loss in efficiency (lesser is 

loss better is the estimator) and in terms of optimum value of fraction of fresh sample to 

be drawn on current (second) wave which in turns is directly associated to the cost of 

survey. Following interpretation can be drawn from Tables 1- 9, 

8.1 Results based on empirical study for the considered population 

1) From Table-1, it is observed that the Optimum values
| p | p | p

NR P C

T T T
μ , μ  and μ  for the estimators 

     | p | p | p
T NR , T P  and T C respectively exist for the considered Population also

NR NR NR

3 2 1μ < μ  < μ , P P P

3 2 1μ < μ < μ and C C C

3 2 1μ < μ < μ , which justifies the applicability of the 

proposed estimators      | p | p | p
T NR , T P  and T C at optimum conditions. This indicates 

that a smaller fresh sample is required when more number of auxiliary variables is used. 

2)  We also observe that 
| p | p

PR P

T T
μ < μ for p=1, 2 and 3. This is probably because in successive 

sampling we try to reduce the fraction of sample to be drawn afresh and make most use of 

the information available from previous occasion but in the case when non-response 

occurs only at previous occasion then for compensating the absence of response at first 

occasion, more fraction of fresh sample is required. 

3)We also see that 0 0 0 1 1 1 2 2 2

3 2 1 3 2 1 3 2 1
L < L  < L ,   L < L < L  and L < L < L , which supports the fact that 

utilization of more number of auxiliary variables decreases the percent relative loss in 

precision when compared to the estimator due to Priyanka et al. (2015). 

8.2 Results extracted from general scenario i.e. by considering different choices of 

correlation coefficients 

1) From Table 2 to Table 6, we see that, even for low correlation coefficients of study and 

auxiliary variables, the proposed estimators work efficiently and provide lesser loss 

although as the correlation between the study and auxiliary increases (whether the 

auxiliary variables are mutually correlated or uncorrelated), the amount of percent relative 
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loss decreases for the estimators      | p | p | p
T NR , T P  and T C  when compared with the 

estimator  | p
T PR . 

2) From Table 2 to Table 6, we observe that for fixed fraction 1t if we increase the fraction

2t , the percent relative loss
0

| pL , p=1, 2 3, decreases and if 2t  is kept fixed and we keep 

on increasing the fraction 1t , the percent relative loss
0

| pL , p=1, 2, 3, increases. 

3) From Table 2 to Table 6, we see that for increasing correlation between study and 

auxiliary variables if 1t is kept fixed the percent relative loss
1

| pL , p=1, 2, 3, decreases but 

if we even increases 1t , the percent relative loss
1

| pL , p=1, 2, 3, also increases. 

4)From Table 2 to Table 6, we can infer that if 2t  is kept fixed then increasing the amount 

of correlation between study and auxiliary variable results in lower percent relative loss  

2

| pL  for p=1, 2, 3 but if we increases 2t then the percent relative loss also increases. 

8.3 Results based on simulation study 

1) From simulation results in Table 7 to Table 9 we observe that for fixed choices of α , 

the percent relative loss       0 1 2
L p , L p  and L p p=1, 2 and 3 increases initially and start 

to decrease as ξ is increased when the proposed estimators are compared to the estimator 

due to Priyanka et al. (2015). 

2) Also it is observed that for fixed choices of ξ , the value of  0L p ,  1L p and  2L p

 p=1, 2 and 3 decreases initially and start to increase as α is increased when the proposed 

estimators are compared to the estimator due to Priyanka et al. (2015). 

3) It is also observed that when the proposed estimators      | p | p | p
T NR , T P  and T C utilize 

more number of auxiliary variable, the percent relative loss      0 1 2
L p , L p  and L p p=1, 

2, 3 are observed to have decreasing trend which signifies the use of more number of 

auxiliary variables. 
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9. Conclusion 

The thorough analysis of proposed multivariate weighted estimators utilizing information 

on multi-auxiliary variables in the presence of non-response with variety of cases 

depending upon the occurrence of non-response, seems to be interesting enough as an 

amalgamation of exponential structure with ratio type estimator because even in the midst 

of non- response, the proposed method of imputation not just provides lesser percent 

relative loss in efficiency of the estimator but it also helps in reducing the cost of survey 

as far as possible when a comparative study is carried out with respect to estimator 

 | p
T PR . Therefore, the proposed estimators  | p

T NR ,  | p
T P  | p

and T C can be 

considered for their practical use in the presence of non-response, if any, on successive 

waves by survey practitioners. 
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Cogitation of Incompleteness in the midst of 

Imputation in Longitudinal Surveys for 

Population Mean 

 

1. Introduction 

Sophisticated sample surveys are being designed to prevent the non-response of 

sample units but it is hard to prevent completely due to the pure stochastic nature of 

incompleteness. Missing data makes the analysis more miserable when the data has to be 

collected and analysed on more than one occasion. The problem of sampling on two 

successive occasions was initiated by Jessen (1942), and latter this idea was explored by 

Patterson (1950), Narain (1953), Eckler (1955), Gordon (1983), Arnab and Okafor (1992), 

Feng and Zou (1997), Singh and Singh (2001), Singh and Priyanka (2008a), Singh et al. 

(2013a), Bandyopadhyay and Singh (2014), Priyanka and Mittal (2014, 2015a, 2015b), 

Priyanka et al. (2015) and many others. 

 

Longitudinal surveys are mainly about observing characteristics on more than one 

chance (occasion) so that the dynamics of the characteristic could be understood over a 

period so as to infer about the behaviors and patterns. In this process a variety of literature 

has been put on using many explanative twists, definitely enriching the field of study and 

a vast literature is available for dealing with non-response while sampling over successive 

occasion.One may cite Rubin (1976), Sande (1979), Kalton et al. (1981), Kalton and 

Kasprzyk (1982), Singh and Singh (1991) by considering complete data set and discarding 

all those units for which information was not available for at least one time. Also Lee et 

al. (1994, 1995), Singh and Horn (2002), Ahmed et al. (2006), Singh and Priyanka 

(2007b), Singh (2009) and Singh et al. (2013b) can be seen for various new estimators for 

estimation of parameters by method of imputation using additional auxiliary information 

in successive sampling. 
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Various ideas have been dug into conceiving that auxiliary information utilized 

remains stable in nature while sampling over successive occasions but when difference 

(gap) between two occasions is sufficiently large, the nature of auxiliary variable may not 

sustain to be stable. In such a case the nature of auxiliary characteristic turns to be dynamic 

over the period of observation. Soa completely fresh approach has been made using 

imputation technique while sampling over two successive occasions to negotiate with the 

ill effects of non-response. MCAR has been assumed implicitly and a more worthy 

estimator for population mean while sampling over successive occasion using additional 

auxiliary information which is changing (dynamic) over the period of observation, by 

imputing missing data in the presence of non-response. The properties of the proposed 

estimator have been elaborated theoretically considering that (i) non-response may arise 

on both occasions, (ii) it may occur only at first occasion or (iii) it may occur only at 

second occasion while comparing the proposed estimator with estimator having complete 

response, proposed by Priyanka and Mittal (2016). A Simulation study has also been put 

through to substantiate the practicability of the proposed estimator. 

 

2. Survey Design and Analysis 

2.1 Notations 

Let  1 2 NU = U , U , ..., U  be the N- element finite population, which has been 

sampled over two occasions. The characters under study is denoted by x(y) on the first 

(second) occasion, respectively. It is assumed that information on a dynamic (varying) 

auxiliary variable  1 2z z , with the known population mean, is available on first (second) 

occasion. We assume that there is non-response at both the occasions. A simple random 

sample without replacement ns of n units has been drawn on the first occasion. Let the 

number of responding unit out of n sampled units, which are drawn at the first occasion, 

be denoted by 1r , the set of responding units in ns by 1R and that of non-responding by 
c

1R

. A random sub-sample ms of m = nλ unit is retained (matched) for its use on the current 

(second) occasion from the units which responded ( 1r ) at the first occasion and it is 

intuitive that these matched units will be completely responding at the current (second) 
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occasion as well. A fresh simple random sample (without replacement), us of 

u = n - m = nμ units, is drawn on the second occasion from the non-sampled units of the 

population so that the sample size on the second occasion remains the same i.e. n. Let the 

number of responding units out of u sampled units which are drawn afresh at current 

occasion, be denoted by 2r , the set of responding unit in us by 2R , and that of non-

responding units by 
c

2R . λ and μ  λ + μ =1 are the fractions of matched and fresh sample, 

respectively, at the current(second) occasion. For every unit  ji R j =1, 2 , the values

 i ix y  are observed, but for the units  c

ji R j =1, 2 the values  i ix y are missing and 

instead imputed values are derived. The following notations have been used hereafter: 

1 2X, Y, Z , Z  : Population means of the variables x, y, 
1z  and 

2z  respectively. 

       
 2  1u u r 2  2 m m 1 2 r 1  1y , z , y , z r , x , y , z m , z m , x , z r : Sample mean of respective variate 

based on the sample sizes shown in suffice. 

1 2 1 2 1 2yx xz xz yz yz z zρ , ρ , ρ , ρ , ρ , ρ : Correlation coefficient between the variables shown in 

suffices. 

1 2

2 2 2 2

x y z zS , S , S , S : Population mean squared of variables x, y, 
1z  and 

2z  respectively. 

1 2
1 2

r r
f = , f =

n u

   
   
   

: The fraction of respondents at first and second occasions respectively. 

   1 1 2 2t = 1- f , t = 1- f : The fraction of non- respondents at first and second occasions  

                                       respectively. 

 

2.2. Formulation of the Proposed Estimator T  

To estimate the population mean Y on the current (second) occasion, an estimator uT  has 

been proposed considering that non-response occurs at current occasion andthe missing 

values occurring in the sample of size u are replaced by imputed values. Hence, the 

following imputation method has been proposed to cope up with the problem of non-

response in sample us : 
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  2  2 2

i 2

•i 2 2  2 c

r 2 r

2 2 2  2

y                                                                     if      i R

y = Z  - z r1
u y  exp - r  y         if      i R

u - r Z  + z r




    
    

                             

(1) 

where  
 2 i

2 2

r i 2  2 2

i R i R2 2

1 1
y = y   and  z r = z

r r 

  . 

and hence the estimator for Y  is given by 

 

  2

2 2  2

u r

2 2  2

Z  - z r
T =  y  exp

Z  + z r

 
  
                                                                                                   

(2) 

The second estimator
mT  is based on sample size m = nλ  common to the both occasions 

utilizing information retained from first occasion. Since non- response is assumed to be 

occurring on first occasion as well so the missing values occurring in the sample of size n 

are replaced by imputed values. The following imputation technique has been suggested 

 

  1  1 1

i 1

•i 1 1  1 c

r 1 r

1 1 1  1

x                                                                    if      i R

x = Z  - z r1
n x  exp - r  x         if      i R

n - r Z  + z r




    
    

                               

(3) 

where   
 1 i

1 1

r i 1  1 1

i R i R1 1

1 1
x = x   and  z r = z

r r 

  . 

Considering above proposed imputation method the estimator based on sample 
ns  is 

altered to 

 

  1

n

1 1  1*

n •i r

i s 1 1  1

Z  - z r1
x = x = x  exp

n Z  + z r

 
  
 


                                                                            

(4) 

Therefore, the estimator based on sample size m common to both occasions which utilizes 

the missing values by above method of imputation is given by 
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*

* n
m m *

m

x
T = y

x

 
 
                                                                                                                   

(5) 

where  
 

 
2 2*

m m

2 2

Z  - z m
y = y  exp

Z  + z m

 
  
 

,   
 

 
1 1*

m m

1 1

Z  - z m
x = x  exp

Z  + z m

 
  
 

 and 

 

 1

1 1 1*

n r

1 1 1

Z  - z r
x = x  exp

Z  + z r

 
  
 

. 

Considering the convex combination of the two estimators uT and
mT , we have the final 

estimator of population mean Y  on the current occasion as 

 u mT = α T + 1- α T
                                                                                                        

(6) 

where  α 0 α 1  is a constant to be determined so as to minimize the mean squared 

error of the proposed estimators T. 

 

2.3. Properties of the Proposed Estimators T  

The properties of the proposed estimators T  are derived under the following large sample 

approximations 

           

           
2 1r 0 m 1 m 2 r 3 2 2 2 4

2 2 5 1 1 6 1 1 1 7 i

y = Y 1 + e ,  y = Y 1 + e ,  x = X 1 + e , x = X 1 + e , z r = Z 1 + e ,

z m = Z 1 + e , z m =  Z 1 + e and z r = Z 1 + e such that |e | < 1  i = 0, ...,7.
 

2.4. Bias and Mean Squared Error of the Estimators T  

The estimators u mT  and T are exponential ratio and chain type ratio to exponential ratio 

type in nature respectively. Hence they are biased for population mean Y . Therefore, the 

final estimator T defined in equation (6) is also biased estimator of Y . The bias  B .  and 

mean squared error  M . of the proposed estimator T are obtained (ignoring finite 

population corrections) and thus we have following theorems: 
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Theorem 2.4.1.Bias of the estimator T  to the first order of approximations is obtained as 

       u mB T  = α B T  + 1 - α  B T                                             (7) 

where   0002 0101
u 2

2 2 2

C C1 3 1
B T  = Y  - 

r 8 Z 2 Y Z

 
 
 

                                                       (8) 

and 

(9)

 

where         
i i

t qr s

rstq i i 1 1 2 2C = E x - X y  - Y z  - Z z  - Z 
  

;  r, s, t, q 0 . 

 

Theorem 2.4.2.Mean squared error of the estimator T  to the first order of approximations 

is obtained as 

           
22

u m u mM T = α  M T + 1- α M T + 2 α 1- α Cov T ,T
                                  

(10) 

  2

u 1 y

2

1
M T  = A  S

r
                                                                                                            

(11) 

  2

m 2 3 y

1

1 1
M T  = A  + A  S

m  r

 
 
                                                                                          

(12) 

where      
2 1 2 1 2 1 21 yz 2 yx yz yz xz xz z zA  = 5 4 - ρ ,    A = 5 2  - 2 ρ + ρ - ρ - ρ + ρ - 1 2 ρ  

     
1 1 2 1 23 yx yz xz xz z z u mA  = 2 ρ - ρ + ρ - ρ + 1 2 ρ - 5 4  and  Cov T , T  = 0. 

 

2.5. Minimum Mean Squared Error of the Proposed Estimator T  

Since the mean squared error of the estimator T given in equation (10) is a function of 

unknown constant α , therefore, it has been minimized with respect to α and subsequently 

  2000 0020 0002 1100 1010 1001 0110 0101 0011

m 2 2 2

1 2 1 2 1 2 1 2

0020 2000 1100 1010 1001 0110

2 2
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                   +  - +  + - -  +
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the optimum value of α  and hence optimum mean squared error of the estimator T are 

given respectively as 

      opt. m u mα = M T M T  + M T
                                                                                      

(13) 

            u m u mopt.
M T = M T  . M T M T  + M T        (14) 

Further, substituting the value of the mean squared error of the estimators defined in 

equations (2) and (5) in equation (13) and (14) respectively, the simplified values of opt.α

and   
opt.

M T  are obtained as 

    2

opt. 2 3 1 2 3 2 3 1 2 2 2 3 1 1 1 1α = μf  μ A  - f A + A μ f  A  - μ f f A + f A  - f A  - f A       
   (15) 

    2 2

1 2 y 3 4 5opt.
M T = μ C  - C S n μ  C  - μ C  - C                                (16) 

where 
1 1 3 2 1 1 2 1 3 3 2 3 4 2 3 1 2 2 1 1 5 1 1C = A A ,  C = f A A + A A ,  C = f A ,  C = f A + f f  A  - f A ,  C = f A   and  μ is 

the fraction of the sample drawn afresh at the current (second) occasion. 

Remark 2.5.1:  
opt.

M T derived in equation (16) is a function of μ . To estimate the 

population mean on each occasion the better choice of  μ  are 1(case of no matching); 

however, to estimate the change in mean from one occasion to other, μ  should be 0(case 

of complete matching). But intuition suggests that the optimum choices of μ  are desired 

to devise the amicable strategy for both the problems simultaneously. 

2.6. Optimum Replacement Strategies for the Estimator T  

The key design parameter affecting the estimates of change is the overlap between 

successive samples. Maintaining high overlap between repeats of a survey is operationally 

convenient, since many sampled units have been located and have some experience in the 

survey. Hence to decide about the optimum value of μ  (fractions of samples to be drawn 

afresh on current occasion) so that Y  may be estimated with maximum precision and 
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minimum cost, we minimize the mean squared error  
opt.

M T  in equation (16) with respect 

toμ . 

The optimum value of μ  so obtained is one of the two roots given by 

 2

2 2 1 3 1μ = D  ±  D  - D  D  D                                 (17) 

where 1 1 3 2 2 3 3 1 5 2 4D = C  C ,  D = C  C ,  D = C  C  +  C  C . 

The real value of μ  exist, iff 2

2 1 3D  - D  D 0 . For any situation, which satisfies these 

conditions, two  real values of  μ  may be possible , hence to choose a value ofμ , it should 

be taken care of that 0 μ 1   , all other values of μ  are inadmissible. If both the real 

values of μ  are admissible, the lowest one will be the best choice as it reduces the total 

cost of the survey. Substituting the admissible value of μ  say  0μ  from equation (17) in 

equation (16), we get the optimum value of the mean squared error of the estimator T  with 

respect to α as well as μ which is given as 

    0
opt.

* 2 2

0 1 2 y 3 0 4 5M T = μ  C  - C S n μ  C  - μ  C  - C                                                            
(18) 

3. Special Cases 

3.1. Case I: When there is Non-Response only at the First Occasion (Previous 

Occasion) 

When there is a presence of non-response, the proposed estimator T for population mean 

Y  changes to 

 θ

1 u mT  = φ T + 1- φ T
                                                                                                        

(19) 

where
 

 
2 2θ

u u

2 2

Z  - z u
T = y  exp

Z  + z u

 
  
 

 and mT is defined in equation (5) and  φ 0 φ 1  is a real 

constant to be determined so as to minimize the mean squared error of the estimator 1T . 
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In this case, the optimum value of fraction of sample drawn afreshand the minimum mean 

squared error of the estimator 1T  at the admissible value of μ̂ are derived respectively as 

    2

5 5 4 6 4 1μ̂ = D  ±  D  - D  D  D = μ say  

    1
opt.

* 2 2

1 1 6 7 y 3 1 8 9M T = μ  C  - C  S n μ  A  - μ  C  - C                                                         
(20) 

where
5 7 7 74 3 6 3 6 6 9 8 6 1 3 1 1 2 1 3D = A C ,  D = A C ,  D = C C  + C C ,  C =A A ,  C =f A A + A A  

8 3 1 2 1 1 9 1 1 1 1C = A + f A - f A  ,   C = f A   and   f = r n. 

3.2. Case II: When there is Non-Response only at the Second (Current) Occasion 

The estimator for population mean Y  at the current occasion in the presence of non-

response at current occasion is given by 

  θ

2 u mT  = ψ T + 1- ψ T
                                                                                                        

(21)           

where
*

θ * m
m n *

m

y
T =  x

x

 
 
 

,  

 
2 2*

m m

2 2

Z  - z m
y = y  exp ,

Z  + z m

 
  
 

 

 
1 1*

m m

1 1

Z  - z m
x = x  exp

Z  + z m

 
  
 

 

 
1 1*

n n

1 1

Z  - z n
x = x  exp

Z  + z n

 
  
 

and uT is defined in equation (2) and  ψ 0 ψ 1  is a real 

constant to be determined so as to minimize the mean squared error of the estimator 2T . 

In this case, the optimum value of fraction of sample drawn afresh and the minimum mean 

squared error of the estimator 2T  at the admissible value of μ̂ are derived respectively as 

    2

8 8 7 9 7 2μ̂ = D  ±  D  - D  D  D = μ say  

   
opt.

* 2 2

2 2 10 11 y 2 12 2 13 1M T = μ  C  - C S n μ  C  - μ  C  - A                                                     
(22) 

where 7 10 12 8 11 12 9 1 10 11 13 10 1 3 11 1 2 1 3D = C C ,  D = C C ,  D = A C  + C C ,  C =A A ,  C =A A + A A  

12 2 3 13 2 3 2 2 1 2 2C = f A ,   C = f A + f A  - A   and   f = r u.  
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4. Efficiency Comparison 

The percent relative loss in the efficiency of the proposed estimators T has been recorded 

to infer about the affect of incompleteness in the data over the occasions with respect to 

the estimator CRT (Priyanka and Mittal (2016)) under the same circumstances but for 

complete response over the occasions which is described as 

 θ θ

CR u mT = ξ T + 1- ξ T
                                                                                                        

(23) 

where θ

uT  and θ

mT  have been defined in equation (19) and (21) and  ξ 0 ξ 1  is a real 

constant to be determined so as to minimize the mean squared error of the estimator CRT . 

The optimum mean squared error for the estimator CRT  with respect to ξ  as well as μ is 

obtained as 

  
* * 2 *2 *

CR 1 2 y 3 3 1opt.
M T = μ G - G S n μ  B  - μ G - B                                                               

(24) 

where  * 2

2 2 1 3 1μ = H  ±  H  - H  H  H ,

1 3 1 2 3 2 3 1 1 2 3 1 1 3H = B G ,  H = B G ,  H = B G + G G ,  G = B B ,
 

 
22 1 2 1 3 3 3 2 1 1 yzG = B B  + B B ,   G = B  + B  - B ,     B  = 5 4 - ρ ,  

   
1 2 1 2 1 22 yx yz yz xz xz z zB  = 5 2  - 2 ρ + ρ - ρ - ρ + ρ - 1 2 ρ  

   
1 1 2 1 23 yx yz xz xz z zand  B = 2 ρ - ρ + ρ - ρ + 1 2 ρ - 5 4 . 

The percent relative loss in precision of the estimators 1 2T, T  and T with respect to the 

estimator CRT  under their respective optimality conditions are given by 
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* *

CRopt. opt.

0 *

opt.

* *

1 CRopt. opt.

1 *

1 opt.

* *

2 CRopt. opt.

2 *

2 opt.

M T -  M T
L =  ×100

M T

M T -  M T
L =  ×100                                              

M T

M T -  M T
L =  ×100    

M T












                                        

(25) 

5. Numerical Illustrations and Simulation 

5.1. Empirical Study 

Population Source: [Free access to the data by Statistical Abstracts of the United States] 

Empirical validation of theoretical results has been elaborated by means of a natural 

population. The population I consist of N=51 states of United States. Let 
iy  be net summer 

capacity during 2008 in the 
thi state of  U. S., 

ix  denote the net summer capacity during 

2000 in the 
thi state of  U. S., 

i1z  denote the residential consumption of electric power 

during 2000 and 
i2z denote the residential consumption of electric power during 2008. 

The empirical analysis of the proposed estimators has been shown in Table 1 for various 

choices for fraction of non-response over the successive occasions.  

Table 1: Empirical results when the proposed estimators 
1 2

T, T  and T have been compared 

to the estimator 
CR

T . 

1 2
t =0.30,    t =0.30  

*
μ  0

μ  
1

μ  
2

μ  0
L  

1
L  

2
L  

0.6773 0.6018 0.7347 0.4312 19.80 3.03 10.31 

1 2
t =0.20,    t =0.20  

*
μ  0

μ  
1

μ  
2

μ  0
L  

1
L  

2
L  

0.6773 0.6050 0.6968 0.5062 11.86 1.03 6.41 

1 2
t =0.25,    t =0.15  

*
μ  0

μ  
1

μ  
2

μ  0
L  

1
L  

2
L  

0.6773 0.6540 0.7158 0.5387 10.56 2.03 4.25 
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5.2. Generalization of empirical study  

A more generalized study has also been done to show the impact of the proposed 

estimators under different fractions of non-response and choices of correlation coefficients 

of study and auxiliary variables. The results obtained are shown in Table 2. Here for the 

sake of convenience, we have considered 
1 2

yz yz 1
ρ = ρ = ρ and 

1 2
xz xz 2

ρ = ρ = ρ .  

Table 2: Generalized empirical results while the proposed estimators 
1 2

T, T  and T have 

been compared to the estimator 
CR

T . 

 

1 2
t =0.10   and   t =0.10  

1 2
yx z z

ρ ρ,  0.5 0.6 

2
ρ  

1
ρ  *μ  0μ  

1μ  
2

μ  
0L  

1L  2L  
*μ  0μ  

1μ  
2

μ  
0L  

1L  2L  

0.4 

0.4 0.81 0.63 0.50 0.59 11.49 5.62 11.99 0.91 0.83 0.81 0.81 9.85 3.03 9.89 

0.5 0.78 0.58 0.49 0.54 12.54 6.88 13.34 0.87 0.68 0.65 0.65 1.93 4.83 11.21 

0.6 0.75 0.55 0.47 0.50 13.71 8.20 14.87 0.83 0.61 0.57 0.57 12.35 6.60 12.95 

0.5 

0.4 0.84 0.63 0.50 0.59 11.90 6.07 12.40 0.93 0.83 0.81 0.81 9.95 3.14 9.99 

0.5 0.81 0.58 0.49 0.54 13.14 7.51 13.93 0.89 0.68 0.65 0.65 11.18 5.09 11.46 

0.6 0.78 0.55 0.47 0.50 14.51 9.05 15.66 0.85 0.61 0.57 0.57 12.79 7.07 13.38 

0.6 

0.4 0.83 0.63 0.50 0.59 12.21 6.40 12.71 0.94 0.83 0.81 0.81 10.02 3.21 10.07 

0.5 0.83 0.58 0.49 0.54 13.59 7.99 14.37 0.90 0.68 0.65 0.65 11.36 5.28 11.63 

0.6 0.80 0.55 0.47 0.50 15.12 9.70 16.26 0.87 0.61 0.57 0.57 13.11 7.41 13.70 

0.7 

0.4 0.87 0.63 0.50 0.59 12.45 6.65 12.95 0.94 0.83 0.81 0.81 10.07 3.27 10.12 

0.5 0.85 0.58 0.49 0.54 13.94 8.36 14.72 0.91 0.68 0.65 0.65 11.49 5.43 11.77 

0.6 0.82 0.55 0.47 0.50 15.60 10.21 16.74 0.88 0.61 0.57 0.57 13.35 7.67 13.95 

1 2
t =0.25   and   t =0.20  

1 2
yx z z

ρ ρ,  0.5 0.6 

2
ρ  

1
ρ  

*μ  0μ  
1μ  

2
μ  

0L  
1L  2L  

*μ  0μ  
1μ  

2
μ  

0L  
1L  2L  

0.4 

0.4 0.81 0.81 0.58 0.75 18.83 4.13 18.92 0.91 ** 0.60 ** - 2.41 - 

0.5 0.78 0.74 0.57 0.66 18.72 4.87 19.66 0.87 0.90 0.59 0.87 18.85 3.73 18.93 

0.6 0.75 0.69 0.56 0.59 19.07 5.59 20.75 0.83 0.78 0.58 0.71 1902 4.94 19.59 

0.5 

0.4 0.84 0.81 0.58 0.75 18.91 4.58 19.30 0.93 ** 0.60 ** - 2.52 - 

0.5 0.81 0.74 0.57 0.66 19.27 5.52 20.21 0.89 0.90 0.59 0.87 19.08 4.00 19.16 

0.6 0.78 0.69 0.56 0.59 19.82 6.46 21.48 0.85 0.78 0.58 0.71 19.42 5.41 19.99 

0.6 

0.4 0.83 0.81 0.58 0.75 19.20 4.92 19.59 0.94 ** 0.60 ** - 2.60 - 

0.5 0.83 0.74 0.57 0.66 19.69 6.01 20.62 0.90 0.90 0.59 0.87 19.24 4.19 19.32 

0.6 0.80 0.69 0.56 0.59 20.39 7.13 22.04 0.87 0.78 0.58 0.71 19.72 5.76 20.29 

0.7 

0.4 0.87 0.81 0.58 0.75 19.42 5.18 19.81 0.94 ** 0.60 ** - 2.66 - 

0.5 0.85 0.74 0.57 0.66 20.01 6.39 20.94 0.91 0.90 0.59 0.87 19.36 4.34 19.44 

0.6 0.82 0.69 0.56 0.59 20.84 7.66 22.49 0.88 0.78 0.58 0.71 19.94 6.02 20.51 

Note: The values for 
*

0 1 2
μ , μ , μ  and μ have been rounded off up to two places of decimal for presentation. 
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5.3. Monte Carlo Simulation 

The population II comprise of N = 51 states of United States. Let 
iy be the net electric 

power generation during 2008 in the 
thi  state of U. S., 

ix be the net electric power 

generationduring 2000 in the 
thi  state of U. S., 

i1z denote the net summer capacity during 

2000 in the 
thi state of  U. S. and 

i2z denote the net summer capacity during 2008 in the 

thi state of  U. S.  

Monte Carlo simulation has been performed on population II, for better analysis 

considering different choices of 1 2t  and t .  

5.3.1. Simulation Algorithm 

(i) Choose 5000 samples of size n=25 using simple random sampling without replacement 

on first occasion for both the study and auxiliary variable. 

(ii) For 1f = 0.88 , choose 1r =22   responding units out of  n=25 samples units. 

(iii) Calculate sample mean
 1r  | kx  and  1 | k  1z r  for k =1, 2, - - -, 5000. 

(iv) Retain m=15 units out of each 1r =22  sample units of the study and auxiliary variables 

at the first occasion. 

(v) Calculate sample mean m | kx and  1 | kz m for k= 1, 2, - - -, 5000. 

(vi) Select u=10 units using simple random sampling without replacement from N-n=26 

units of the population for study and auxiliary variables at second (current) occasion. 

(vii) For 2f = 0.90 , choose 2r =9   responding units out of  u=10 samples units. 

(viii) Calculate sample mean
 2r  | ky ,   m | k  2 | ky , z m  and   2 | k  2z r for k = 1, 2, - - -, 5000. 

(ix) Iterate the parameter α  from 0.1 to 0.9 with a step of 0.2. 

(x) Iterate ξ  from 0.1 to 0.9 with a step of 0.1 within (ix). 
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(xi) Calculate the percent relative loss in efficiencies of the proposed estimator

1 2T, T and T  with respect to estimator CRT as 

   

 

5000 5000
 2  2

| k CR | k 1| k CR | k

k=1 k=1
15000 5000

 2  2

| k 1| k

k=1 k=1

5000
 2

2| k CR | k

k=1
2

 2

2| k

T - T T - T

            L T  =  × 100  ,                   L T =  × 100 

T T

T - T

and      L T =

T

      

      

  

  

 

 


5000

k=1

 × 100 ,    k=1, 2, ..., 5000.



 

Table 3: Simulation result when the proposed estimator T is compared with the estimator CRT when   

               non-response occurs on both the occasion 

 

   
ξ  

α  
SET 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

0.1 

I 46.05 60.81 66.92 59.37 39.65 16.81 -20.54 

II 31.76 49.12 55.63 47.74 21.70 -8.40 -59.24 

III 25.14 43.67 49.85 41.75 22.09 -25.97 -75.52 

0.2 

I 41.00 57.08 62.83 55.13 34.92 6.12 -35.84 

II 22.79 43.01 50.56 4.20 14.35 -24.41 -79.91 

III 14.44 36.58 42.69 33.62 7.15 -43.63 -82.36 

0.3 

I 38.96 54.47 60.92 52.37 31.50 1.25 -40.43 

II 17.24 40.30 47.62 36.94 9.23 -32.24 -91.28 

III 7.94 31.92 38.42 27.87 0.211 -54.25 -100.57 

0.4 

I 38.93 55.18 60.81 52.50 32.26 1.46 -41.78 

II 18.38 4.72 47.74 36.94 10.57 -30.64 -89.35 

III 7.79 31.61 38.07 27.43 -1.01 -54.23 -114.80 

0.5 

I 43.25 58.25 62.87 55.46 36.25 6.35 -33.20 

II 24.81 44.96 51.11 40.89 16.44 -22.26 -76.86 

III 11.57 35.99 42.22 31.33 4.43 -45.92 -106.78 

0.6 

I 49.73 62.25 66.09 59.91 42.63 15.98 -19.59 

II 33.26 51.74 56.74 47.77 25.91 -7.99 -57.18 

III 21.53 43.08 48.56 38.85 14.57 -29.38 -83.80 

0.7 

I 56.23 67.33 70.48 65.19 49.70 26.75 -4.89 

II 42.93 58.71 63.18 55.27 36.78 7.32 -34.08 

III 32.87 51.25 55.59 47.57 26.18 -10.55 -56.75 

0.8 

I 62.35 72.22 75.10 70.49 57.24 37.69 10.94 

II 52.18 65.42 69.19 62.50 46.56 22.27 -12.58 

III 43.92 59.27 62.51 56.31 38.34 8.08 -31.46 

0.9 

I 68.17 76.43 78.73 75.08 64.14 46.73 24.08 

II 60.26 71.02 74.18 68.56 55.75 35.10 6.61 

III 53.71 65.97 68.74 63.54 48.86 23.89 9.51 

                                 I: n=25,
1 2μ = 0.40, t =0.28, t =0.30 ,  II: n=25,

1 2μ = 0.40, t =0.16, t =0.20  

                                 III: n=25,
1 2μ = 0.40, t =0.12, t =0.10  
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Table 4: Simulation result when the proposed estimator 1T  is compared with the estimator CRT
 

                
when non-response occurs only on first occasion 

 

   
ξ  

φ  
SET 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

0.1 

I 50.48 62.74 66.33 60.63 42.76 22.14 -12.67 

II 39.01 52.59 58.29 50.28 32.93 5.16 -42.17 

III 15.55 38.43 46.11 35.20 13.02 -27.07 -78.92 

0.2 

I 42.35 57.49 62.20 55.69 38.16 12.18 -25.80 

II 27.35 47.05 51.74 45.44 23.25 -9.66 -63.11 

III 3.85 30.21 38.69 26.61 1.42 -46.30 -105.64 

0.3 

I 36.84 53.21 58.90 51.89 32.90 3.79 -39.54 

II 18.80 42.12 47.64 40.46 16.23 -21.37 -78.27 

III -4.81 23.70 33.18 19.94 -8.18 -57.58 -125.97 

0.4 

I 33.01 51.10 56.58 49.03 29.03 -1.88 -47.21 

II 15.93 39.76 44.81 37.29 12.45 -28.47 -86.36 

III -7.52 21.62 31.00 18.34 -11.53 -61.03 -132.10 

0.5 

I 31.89 50.84 55.96 48.63 28.12 -2.83 -48.72 

II 16.13 39.89 45.46 37.69 13.17 -27.62 -84.67 

III -3.76 24.78 33.62 21.69 -6.90 -55.47 -123.98 

0.6 

I 33.77 52.42 57.31 50.32 30.42 0.322 -43.88 

II 21.25 43.15 49.17 41.38 18.03 -20.40 -72.92 

III 5.63 32.18 39.17 29.47 2.71 -41.13 -102.72 

0.7 

I 38.97 56.08 60.54 54.01 35.32 7.75 -33.70 

II 29.43 49.05 54.49 47.50 26.19 -8.31 -55.78 

III 18.00 41.42 47.01 38.46 15.71 -23.19 -75.88 

0.8 

I 45.31 60.59 64.55 58.66 42.39 17.01 -19.92 

II 38.56 55.46 60.40 54.26 35.62 6.25 -35.71 

III 30.99 50.40 55.73 48.25 28.19 -3.87 -49.95 

0.9 

I 52.39 65.24 68.83 63.44 49.50 26.71 -5.54 

II 47.67 61.64 66.10 60.73 45.13 19.88 -15.94 

III 42.67 58.49 63.03 56.84 39.97 13.00 -24.82 

 

                               I: n=25,
1μ = 0.40, t =0.28  

                               II: n=25,
1μ = 0.40, t =0.16  

                               III: n=25,
1μ = 0.40, t =0.12  
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Table 5: Simulation result when the proposed estimator 2T  is compared with the estimator CRT when  

               non-response occurs only on second occasion 

 

     
ξ  

ψ  
SET 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

0.1 

I 38.23 54.22 59.08 51.01 31.01 -2.48 -45.26 

II 37.14 55.19 57.99 50.39 28.97 -4.50 -48.73 

III 35.67 52.66 59.41 49.95 27.97 -9.61 -49.80 

0.2 

I 39.89 54.99 59.63 51.74 30.71 -2.04 -45.18 

II 36.79 53.49 57.84 50.60 27.28 -3.92 -52.52 

III 33.84 51.31 58.05 49.13 24.82 -11.68 -54.67 

0.3 

I 42.86 57.14 61.30 53.45 34.87 5.06 -37.21 

II 38.89 54.70 59.65 53.00 30.58 -1.79 -46.86 

III 35.46 52.08 58.75 49.42 27.50 -8.13 -50.78 

0.4 

I 47.48 61.68 65.36 58.22 41.25 14.06 -24.02 

II 43.37 58.28 62.44 55.83 35.71 6.75 -33.67 

III 38.81 55.31 60.30 52.09 31.41 -1.52 -42.55 

0.5 

I 54.24 66.44 69.72 63.64 48.85 25.30 -7.38 

II 49.43 62.50 66.35 60.47 42.67 17.82 -19.20 

III 44.53 58.89 63.44 56.26 36.95 7.02 -30.51 

0.6 

I 60.24 71.03 74.16 68.86 55.69 35.86 6.91 

II 56.03 66.98 70.84 65.15 50.14 27.81 -3.87 

III 50.54 63.22 67.35 61.33 43.65 17.16 -16.55 

0.7 

I 66.19 75.94 77.92 73.60 62.46 45.13 21.03 

II 61.97 71.64 74.79 70.09 56.88 37.70 9.71 

III 56.78 67.76 71.62 66.20 51.09 27.81 -2.07 

0.8 

I 71.42 78.94 81.29 77.52 68.36 53.28 32.87 

II 67.38 75.91 78.11 74.32 63.25 46.35 22.38 

III 62.51 72.01 75.22 70.49 57.45 37.23 11.42 

0.9 

I 75.87 82.18 83.97 80.90 73.02 60.05 42.92 

II 71.87 79.38 81.26 78.08 68.50 53.63 33.36 

III 67.34 75.86 78.70 74.25 63.38 45.71 23.12 

                               I: n=25,
2μ = 0.40, t =0.40  

                               II: n=25,
2μ = 0.40, t =0.30  

                               III: n=25,
2μ = 0.40, t =0.20  
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9. Rendition of Results 

The performance of an estimator in successive sampling in the presence of non-response 

is generally judged on the basis of percent relative loss in efficiency (lesser is the loss 

better is the estimator) and in terms of optimum value of fraction of fresh sample to be 

drawn afresh on current(second) occasion which directly related to the cost of survey. 

Following interpretation can be drawn from Tables 1- 5, 

1) Results based on empirical study  

a) From Table 1 we can see that the values of 
0 1 2

μ μ μ, , and exist for various choices of 

fraction of non-response over two successive occasions which completely signifies the 

utility of a dynamic natured auxiliary character. 

b) Also from Table 1, we identify that percent relative loss 
0 1 2

L , L  and L  exist each 

combination of 
1 2

t  and t  and when non response occurs at both occasion the percent 

relative loss is more as compared to non-response on first or second occasion only. 

c)  We can also conclude from the Table 1 that, the percent relative loss in efficiency is 

not very much significant when the proposed estimators 
1 2

T, T  and T are compared to 

estimator
CR

T .  

2) Results extracted from the generalized study for various combinations of 

correlation coefficients 

a) In Table 2, we see that the values of 
0 1 2 0 1 2

μ , μ , μ , L , L  and L exist for almost every 

combination of coefficient of correlation of study and auxiliary characteristics considering 

various possibilities of non-response that can creep in a sample survey over successive 

occasions. 

b) We also see that the proposed estimators work efficiently when auxiliary character 

which is dynamic in nature conceives a moderate or low correlation with the study 

character over the successive occasions. 
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c) We also identify that as the amount of correlation between study and auxiliary character 

is increased, the proposed estimators intend to provide a lesser fraction of sample to be 

drawn afresh at current occasion. 

3) Results based on simulation study in Table 3, Table 4 and Table 5 

a) We can see that for fixed choice of ξ , percent relative loss first decreases and then 

increases with increasing value of α and φ respectively while for all fixed choices of ξ , 

percent relative loss  2
L T increases as ψ  increases. 

b) The percent relative loss      1 2
L T , L T  and L T , for fixed choice of α, φ and ψ

respectively, first increase as ξ  increases and then decreases with increasing value of ξ . 

(c) As we decrease the fraction of non-response in the sample on first and second occasion, 

the percent relative loss      1 2
L T , L T  and L T  decrease for all combinations of 

α, φ and ψ with ξ respectively. 

10. Conclusion 

The proposed estimators have been analysed considering a detailed study in the presence 

of non-response utilizing additional auxiliary information which is dynamic in nature over 

the successive occasions. Loss in efficiency is very much plebeian when non-response is 

encountered in the sample survey. Although percent relative loss is encountered for 

various fractions of non-response on two occasions using the proposed method of 

imputation while utilizing dynamic auxiliary character but a negative loss is also available 

for various choices of parameters. This signifies that the proposed estimators emerge to 

be better than the estimator due to Priyanka and Mittal (2016) for such combinations of 

parameters and hence the proposed method of imputation is fruitful to cope with the non-

response. The proposed imputation techniques prove to be worthy from the point of cost 

as well when correlation between study and auxiliary character is considered moderate or 

even low. Hence, it is observed that the proposed imputation methods deal the sour effect 

of non-response excellently, therefore, the proposed estimators may be recommended for 

encouraging their practical use by survey practitioners. 
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Scrambled Response Techniques in Two Wave 

Rotation Sampling for Estimating Population 

Mean of Sensitive Characteristics and its 

Applications 

 

1. Introduction 

             Analysis of sensitive issues like negligence of governmental rules, number of 

abortion before marriage, bribing for some entrance exam, sexual indulgence during 

teenage, status of extramarital relationship, employing child labourers, child-sexual abuse, 

voluntary prostitution, commencement of crime, honour killing, drug intake etc., usually 

lead to over or under reporting of the true facts due to social or moral inclinations and 

stigma. Thus a significant deviation occurs in the results owing to socially desirable 

answers which do not comply to real scenario subsisting in the society.  

 

             There are two approaches to estimate population proportion or population mean 

of a quantitative sensitive character. First approach is to reduce the stigma involved in 

answering such sensitive questions by providing certain privacy through a randomized 

response device following certain randomized response rule (Randomized Response 

Model). Warner (1965) was the first to provide such a randomizing model and later on 

extensive literature have been added by Horvitz et al. (1967), Greenberg et al. (1971), 

Gupta et al. (2002), Christofides (2003, 2005), Gupta and Shabbir (2004), Kim and Elam 

(2007), Wu et al. (2008), Yan et al. (2009), Arnab (2011), Dianna and Perri (2011),  Arnab 

et al. (2012), Singh and Sedory (2012) and Sihm and Gupta (2015) etc.  

All these authors have focused on estimation of population mean or proportion of sensitive 

characters using some randomised response models.  

 

           This approach becomes practically next to impossible when it comes to observe a 

very large sample since lifestyle has drastically changed and people are living a very fast 

life with certain time constraints so complete refusal to response is also encountered due 
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to time consuming procedure. In such situations, second approach known as Scrambled 

Response Technique (SRT) which was introduced by Warner (1971) but was left for 

exploration and very first attempts were made by Pollock and Bek (1976) and Eichhorn 

and Hayre (1983), works as saviour. This technique reduces the impossibility of 

conducting a survey having large sample size with a sensitive issue to be addressed. In 

this technique to estimate the population mean of sensitive character the respondent is 

asked to answer freely about the stigmatizing character by adding or multiplying a 

corrective scrambling factor to his/her response hiding real response from the interviewer. 

In this line a rich literature is available from Saha (2007), Gupta et al. (2006), Gupta et al. 

(2010, 2012), Koyuncu et al. (2014) and Hussain and Al-Zhrani (201) etc. 

 

               Moreover, these above said issues have been addressed through a single time 

survey in the literature available on sensitive character analysis; instead these issues are 

required to be monitored continuously over time, since doing so will reflect the change of 

social scenario related to the sensitive issues as well as changed level of sensitivity of 

issue with respect to time. For example, any government of a county may be interested to 

record the mean number of rape cases in the country at starting of their ruling period. After 

recording them one time the government may interest to decrease these for ensuring the 

better society. For this government can make stricter laws against the rapist, more 

awareness of such laws can be spread amongst the females, it may also increase the level 

of security for females at work place and so on. After such precautious measures 

government may wish to see the changed level of the society by recoding the mean number 

of rape cases at the end of their ruling tenure. 

  

              In order to monitor such a variable more than once, statistical tool generally 

recommended in literature is successive or rotation sampling. Jessen (1942) started the 

theory of rotation sampling by utilising all the information collected from previous 

occasion. His pioneer work in this line has been followed by Patterson (1950), Sen (1973), 

Feng and Zou (1997), Singh and Priyanka (2008a), Bandyopadhyay and Singh (2014), 

Priyanka and Mittal (2014, 2015a, 2015b), Priyanka et al. (2015) and many others.   
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             None of the above works in successive sampling analyses sensitive issues which 

change over time. Very few attempts namely Arnab and Singh (2013) and Yu et al. (2014) 

are found which dealt with sensitive issues on successive waves while using randomized 

response technique. As per our knowledge is concerned no attempt has been made to utilise 

a non-sensitive auxiliary variable to estimate a sensitive study variable on successive 

waves using scrambled response technique. Hence, motivated with this scope of study, the 

present article endeavours to propose two kinds of estimators to estimate population mean 

of a sensitive character, first is a modified Jessen’s estimator under scrambled response 

using all information from previous wave without any auxiliary information and second 

are four exponential ratio type estimators accompanying a non-sensitive stable auxiliary 

character correlated to the sensitive-study character over two successive waves. All the 

above said estimators are studied under additive scrambled response model (ASRM) as 

well as multiplicative scrambled response model (MSRM) and properties of proposed 

estimators including the optimum rotation rates have been derived upto first order of 

approximations. Discussion has been made regarding the distribution of scrambling 

variable. A numerical illustration has been made to compare both the scrambled response 

models. Also an empirical study has been worked out for the best suited scrambled 

response model on two successive waves by the means of a case study of drug usage by 

undergraduate students in a college for the real life application of the proposed estimators. 

Simulation studies are rationalized to show the feasibility of proposed estimators. Mutual 

comparisons of the proposed estimators have also been illustrated. The model for optimum 

total cost of the survey has also been designed and discussed.  

 

2. Survey Design and Analysis 

2.1. Sample Structure and Notations 

 

Let  1 2 N = , , ... ,      be the finite population of N units, which has been sampled over 

two successive waves. It is assumed that size of the population remains unchanged but 

values of units change over two successive waves. The sensitive character under study be 

denoted by x (y) on the first (second) waves respectively. It is assumed that information 

on non-sensitive auxiliary variable z , stable in nature over the successive waves with 
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completely known population mean Z , is readily available on both the successive waves 

and positively correlated to x and y respectively. Simple random sample (without 

replacement) of n units is taken at the first wave. A random subsample of m = nλ units is 

retained for use at the second wave. Now at the current wave, a simple random sample 

(without replacement) of u= (n-m) = nµ units is drawn afresh from the remaining (N-n) 

units of the population so that the sample size on the second wave remains the same. Let 

μ and  λ μ + λ=1  are the fractions of fresh and matched samples respectively at the second 

(current) successive wave. The following notations are considered here after: 

X, Y, Z  : Population means of the variables x, y and z  respectively. 

u m m n

* * * *

u m m nh h h h, g ,  g and g g,   , , , : Sample mean of sensitive variate based on sample sizes 

shown in suffice under additive scrambled response model and multiplicative scrambled 

response model respectively. 

u m nz , z , z : Sample mean of the auxiliary variate based on sample sizes shown in suffice. 

yx xz yz
ρ , ρ , ρ : Correlation coefficient between the variables shown in suffices. 

x y zC , C , C : Coefficient of variance of variables shown in suffices. 

2 2 2 2

x y z s
S , S , S , S : Population mean squared of variables x, y, z  and s  respectively. 

2.2. Additive Scrambled Response Model (ASRM) 

Pollock and Bek (1976) were the first to discuss scrambling through additive model. In 

this model the respondent is asked to add his/her sensitive response X (Y) into a random 

(scrambling) variable S (independent of X(Y)) from a completely known distribution. 

Hence the observed response is given by 

G = X + S   on the first wave , 

and H = Y + Son the second wave, 
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The scrambling variable S may follow any distribution and which has been discussed in 

detail in further sections.   If     2

sE S = S,    V S = S  then G = X + S,    H = Y + S, 

2 2 2

g x sS = S + S  2 2 2

h y sand S = S + S , Also under ASRM  hg yx hz yz gz xzρ = ρ , ρ = ρ  and ρ =ρ . 

2. 3. Multiplicative Scrambling Response Model (MSRM) 

Multiplicative scrambling was also first studied by Pollock and Bek (1976) but a deep 

discussion was made by Eichhorn and Hayre (1983). In this model respondent is asked to 

multiply his/her sensitive response X(Y) by a scrambling variable 
*S (independent of 

X(Y)) from a completely known distribution. So the observed response is given by  

* *G  = XS  on the first wave, 

* *H  = YS  on the second wave, 

   * * * *2 * * * * *2 2 *2 *2 2 2 *2

s g x s s xwhere E S =S , V S =S ,  G  =X S ,  H  =Y S , S = S S  + S X + S S  

 
2

*2 2 *2 *2 2 2 *2 2 * *

h y s s y s and S = S S + S Y + S S  such that = S  S  should be as small as possible. 

Also under MSRM  

      *2 *2 *2

yx y x s s xz x yz y

2 *2 2 *2 *2 2 *2 2 *2 *2 2 *2 2 *2 *2 2 *2 2 *2 *2

y s y s x s x s x s x s y s y s

* *

* * *

hg gz hz

ρ C C S + S + S ρ C S ρ C S  
ρ =  , ρ =  and  ρ = 

C S + C S + S C S + C S + S C S + C S + S C S + C S + S

 

2.4. Design of the Proposed Estimators 

Two kinds of estimators have been proposed to estimate population mean of sensitive 

characteristic on current wave under ASRM and MSRM. First is the modified Jessen’s 

estimator under scrambled response which utilizes information from previous wave but 

doesn’t accompany any auxiliary information on any non-sensitive character. 
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Table 1: The modified Jessen’s estimators for scrambled response on two successive 

waves under ASRM and MSRM are proposed as 

Estimator based on sample size u, drawn afresh at current wave 

Estimator Structure Under ASRM Structure Under MSRM 

 u

ˆ
¥  uh  

*

uh  

Estimator based on sample size m,  retained from previous wave 

Estimator Structure Under ASRM Structure Under MSRM 

 m

ˆ
¥   m n mh + k g - g   * * *

m n mh + k g - g  

 

The second kind of estimators are various exponential ratio type estimators which utilize 

information from previous wave as well as information on a non-sensitive auxiliary 

character which is stable over both the waves.  

Table 2: The exponential ratio type estimators on two successive waves  

Estimator based on sample size u, drawn afresh at current wave 

Estimator Structure Under ASRM Structure Under MSRM 

 1u Ť  u

u

Z
 h

z

 
 
 

 
*

u

u

Z
 h

z

 
 
 

 

 2u Ť  
u

u

u

Z - z
h  exp

Z + z

 
 
 

 
* u
u

u

Z - z
h  exp

Z + z

 
 
 

 

Estimator based on sample size m,  retained from previous wave 

Estimator Structure Under ASRM Structure Under MSRM 

 1m Ť  
n m

m

m m

g Z - z
h  exp 

g Z + z

   
   
   

 

*
* n m
m *

m m

g Z - z
h  exp 

g Z + z

   
   
   

 

 2m Ť  

n
m

m

g
h

g






 
 
 

 

where  
m

m m

m

Z - z
= h  exp 

Z + z
h  

 
 

 

m

m m

m

Z - z
= g  exp 

Z + z
g  

 
 

 

n

n n

n

Z - z
= g  exp 

Z + z
g  

 
 

 

 

†
† n
m †

m

g
h

g

 
 
 

 

where  
m† *

m m

m

Z - z
= h  exp 

Z + z
h

 
 
 

 

m

m

† *

m m

Z - z
= g  exp 

Z + z
g

 
 
 

 

n

n

† *

n n

Z - z
g  exp 

Z + z
g
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where 
M      for Multiplicative Scrambled Response Model

A       for Additive Scrambled Response Model



 


 

Hence, considering the convex combination of the estimators based on sample size u and 

sample size m, we have the final estimators of the population mean at the current wave 

from Table 1 and Table 2 as: 

Table 3: Final estimators of population mean of sensitive character at the current 

wave 

Estimator Structure Under ASRM Structure Under MSRM 

 ˆ
¥         u m

ˆ ˆ
ξ A  A  + 1- ξ A A  ¥  ¥         u m

ˆ ˆ
ξ M  M  + 1- ξ M M  ¥  ¥  

  ij i, j=1, 2Ť

 

       ijij iu jmA 1- AA + A     Ť Ť

 

       ijij iu jmM 1- M MM +      Ť Ť

 

 

 where        i j i jξ ξ 1; 0 ,  and  ; 0 1              
are suitably chosen weights so 

as to minimize the variance and mean squared errors of the estimators  

     i j

ˆ
and ; i, j=1, 2 ¥     Ť  respectively. 

2.5. Analysis of the proposed estimators 
 

2.5.1. Bias and Mean Squared Errors of the Proposed Estimators 

The properties of the proposed estimators are derived under the following large sample 

approximations 

           

 

       

u 0 m 1 m 2 n 3 u 4

n 6 i

* * * * * * * *

u 0 m 1 m 2 n 3

m 5h = H 1 + e ,  h = H 1 + e ,  g = G 1 + e , g = G 1 + e , z = Z 1 + e , 

and  z = Z 1 + e  such that |e | < 1  i = 0,...,6.

h = H 1 + ε ,  h = H 1 + ε ,  g = G 1 + ε , g = G 1 + ε ,  such that

z = Z 1 + e



i
 |ε | < 1  i = 0,...,3.

Here    i iE e =0  and   E ε =0 ;  i=1,...,6.  
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2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 h 1 h 2 g 3 g 4 z 5 z 6 z

2 3 2 5 gz g z 2

0 4 hz h z 1 2 hg h g 1 3 hg h g 1 5 hz h z

1 6 hz h z

2
g

 E e = αC , E e = βC , E e = βC , E e = γC , E e = αC E e = βC , E e = γC ,

E e e = γC E e e = βρ C C E e

E e e = αρ C C E e e = βρ C C E e e = γρ C C E e e = βρ C C

E e e = γρ C C , 

, 

, , 

, , , ,

   

   

6 gz g z 3 5 gz g z

3 6 gz g z 5 6

2
z

e = γρ C C E e e = γρ C C

E e e = γρ C C ,  E e e = γC ,

 , ,

 

           

         

 

2 2 2 2 2 2 2 2 * *

0 1 2 3 0 4 hz h z 1 2 hg gh h g g h

* * *

1 3 hg 1 5 hz z 1 6 hz z 2 3 2 5 gz zh g h h g

*

2 6 gz z 3g

* * * * *

* * * * * *

*

2

g

 E = αC , E = βC , E = βC , E = γC , E e = αρ C C E = βρ C C

E = γρ C C E e = βρ C C E e = γρ C C E = γC E = βρ C C

E e = γρ C C E

ε ε ε ε ε , ε ε , 

ε ε , ε , ε , ε ε , ε , 

ε , ε

e

   * *

5 gz z 3 6 gz zg g
* *e = γρ C C E e = γρ C C , , ε

2 2 2 2 2 2 2 2

g x s h y s

* * * * * *

2 2 2 2 2 2 2 2 2 2

x x y yg s s h s s

1 1 1 1 1 1
where α = - - - C = C +S X  C = C +S Y

u N m N n N

C C C C C C C C C C

, β = ,  γ = ,  , , 

.= + +  and = + + 

     
     
       

Table 4: Bias of the proposed estimators under ASRM  

Estimator Expression of  Bias 

 u

ˆ
A¥  0 

 m

ˆ
A¥  0 

 1u A  Ť  
002 011

2

1
H  - 

u Z H Z

 
 
 

 

 2u AŤ  
002 011

2

1 3 1
H  - 

u 8 Z 2 H Z

 
 
 

 

 1m A  Ť

 

200 002 110 011 101 110 200 101

2 22

1 3 1 1 1 1
 H  +  -  -  + +  -  - 

m 8 Z GH 2 HZ 2 GZ n GH 2 Z
 

G G G

    
    
    

 

 2m AŤ  
2 2

200 110 002 200 110 011

2
H + 

GH Z GH HZ

1 1 3 1
- - +

m G n 8 G 2
-
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Table 5: Bias of the estimators under MSRM 

Estimator Expression of  Bias 

 u

ˆ
M¥  0 

 m

ˆ
M¥  0 

 1u M  Ť  

* *

* 002 011

2 *

1
H   - 

u Z H  Z

 
 
 

 

 2u MŤ  

* *

* 002 011

2 *

1 3 1
H   - 

u 8 Z 2 H  Z

 
 
 

 

 1m M  Ť  *2

* * * * * * * *

200 002 110 011 101 110 200 101

*2 * * * * * * *

*

2
Z

1 3 1 1 1 1
 H   +  -  -  + +  -  - 

m G 8 Z G H 2 H Z 2 G Z n G H G 2 G
 

    
    

    
 

 2m MŤ  
*2 *2

* * * * * *

* 200 110 002 200 110 011

* * 2 * * *
H + 

G G H Z G G H H Z

1 1 3 1
- - +

m n 8 2
-

    
    

    
 

 

where       
r t q

rtq i i i= E g - G h  - H z  - Z 
  

 and      
r t q* * * * *

rtq i i i= E g - G h  - H z  - Z 
  

;

 r, t, q 0 . 

Since  u

ˆ
¥  and  m

ˆ
¥  are unbiased for population mean hence the estimator  ˆ

¥  is 

also unbiased for population mean. The bias of the estimators    i j ; i, j=1, 2Ť  to the 

first order of approximations are obtained as 

            i j i j iu i j jmB    B  + 1 -  B            Ť Ť Ť ; (i, j=1, 2),       (1) 

 

 

 

 

 



  282 

 

Table 6: Variance and mean squared errors of the estimators  ˆ
¥  and 

   i j ; i, j=1, 2Ť  

Estimator 
Expression of  variance/ mean 

squared errors under ASRM 

Expression of  variance/ mean squared 

errors under MSRM 

 u

ˆ
¥  

2

1 H
1

A  
u

 
* *2

1 H
1

A  
u

 

 m

ˆ
¥  

2

2 3 H
1 1

 A  +   A  
m n

 
 
 

 
* * *2

2 3 H
1 1

 A  +   A  
m n

 
 
 

 

 1u Ť  
1

21
 B  H

u
 

* *2

1

1
 B  H

u
 

 2u Ť  2

2 H
1

 B  
u

 
* *2

2 H
1

 B  
u

 

 1m Ť  2

3 4 H
1 1

 B  +   B  
m n

 
 
 

 
* * 2

3 4 H
1 1

 B  +   B  
m n

 
 
 

 

 2m Ť  2

5 6 H
1 1

 B  +   B  
m n

 
 
 

 
* * 2

5 6 H
1 1

 B  +   B  
m n

 
 
 

 

 

Hence final expression of the variance and mean squared errors of the estimators  ˆ
¥  

and    i j ; i, j=1, 2Ť  are obtained as 

                     
2

2

m u mu

ˆ ˆ ˆ
V  ξ  V  + V + 2 ξ  Cov , 

ˆ ˆ
1 - ξ 1 - ξ         

   
¥ ¥ ¥¥ ¥     (2) 

                   
2

2

i j i j iu jmi j iu i j jm i j
M  M + M + 2 Cov , 1 - 1 -                         Ť ŤŤ Ť Ť   

                                                                                                                                         (3) 

where    * * *

2 2 2 2 2 * 2 * *2 2 * *2 2

1 h 2 hg h 3 hg h 1 2 hg 3 hgh h h
A = C ,   A = 1- ρ C ,   A = ρ C ,   A = C ,  A = 1- ρ C , A = ρ C ,  

2 2

h z1 hz h zC + CB = - 2ρ C C , 2 2

h z2 hz h z

1

4
C + CB = - ρ C C ,

2 2 2

h g z3 hg h g hz h z gz g z

1

4
C + C + CB = - 2ρ C C - ρ C C + ρ C C ,

2 2 2 2 2

4 hg h g g gz g z 5 h g hg h g 6 z g hg h g hz h z

1

4
B = 2ρ C C - C - ρ C C , B = C + C - 2ρ C C , B = C - C + 2ρ C C - ρ C C   and  
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* * * * * * * * * *

2 2 * 2 2 * 2 2 2 * * *

z hz z hz z hg hz gzh h h g

* * *

1 z 2 z 3 z zh h h g h g

1 1

4 4
C + C ρ C + C ρ C + C + C ρB = - 2 C C ,  B = - C C ,  B = - 2ρ C C - ρ C C + C C ,

* * * * * * * * * * * *

* * 2 * * 2 2 * * 2 2 * *

4 hg gz z 5 hg 6 z hg hz zh g g g h g h g g h g h

1

4
B = 2ρ C C - C - ρ C C , B = C + C - 2ρ C C , B = C - C + 2ρ C C - ρ C C ,  

         
u m iu jm

ˆ ˆ
, Cov Cov , =0=0 and  .   ¥ ¥  Ť Ť  

2.5.2. Minimum Variance and Mean Squared Errors of the Proposed Estimators 

Since the variance and mean squared errors of the estimators obtained in equation (2) and 

equation (3) are the functions of unknown constants      i jξ  and ; i, j = 1, 2   , 

therefore, they are minimized with respect to    i jξ   and     respectively and 

subsequently the optimum values of      i jξ  , ; i, j = 1, 2    so obtained are given as 

Table 7: Optimum values of       i jξ  and  ; i, j = 1, 2    

   i jξ /    Optimum value under ASRM Optimum  value under MSRM 

 
opt.

ξ   
  

 
3 2 3

3 3 2 1 1

2

 A  - + A

A  - χ + A  - A  - A

χ  χ A

χ A  
 

  
  2

* * * * *

3 2 3

* * * * *

3 3 2 1 1

 A  - + A

A  - χ + A  - A  - A

χ  χ A

χ A
 

 11 opt.
   

  
 

11 11 4 3 4

2

11 4 11 3 4 1 1

μ μ  B  - B + B

μ  B  - μ B + B  - B  - B  

 
 

 

* * * * *

11 11 4 3 4

*2 * * * * * *

11 4 11 3 4 1 1

μ μ  B  - B + B

μ  B  - μ B + B  - B  - B

  

  

 

 12 opt.
   

  

 
12 12 6 5 6

2

12 6 12 5 6 1 1

μ μ  B  - B + B

μ  B  - μ B + B  - B  - B  
 

 
 

* * * * *

12 12 6 5 6

*2 * * * * * *

12 6 12 5 6 1 1

μ μ  B  - B + B

μ  B  - μ B + B  - B  - B

  

  

 

 21 opt.
   

  
 

21 21 4 3 4

2

21 4 21 3 4 2 2

μ μ  B  - B + B

μ  B  - μ B + B  - B  - B  

 
 

 

* * * * *

21 21 4 3 4

*2 * * * * * *

21 4 21 3 4 2 2

μ μ  B  - B + B

μ  B  - μ B + B  - B  - B

  

  

 

 22 opt.
   

  
 

22 22 6 5 6

2

22 6 22 5 6 2 2

μ μ  B  - B + B

μ  B  - μ B + B  - B  - B  
 

 
 

* * * * *

22 22 6 5 6

*2 * * * * * *

22 6 22 5 6 2 2

μ μ  B  - B + B

μ  B  - μ B + B  - B  - B
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Table 8: Optimum values of       i j
 V and  M i, j=1, 2

ˆ
for        

¥ Ť  

 Optimum value under ASRM Optimum  value under MSRM 

 
opt.

V
ˆ
 

 
¥  

 4 5

2

3 6 1

χ A  - A1

n χ  A  - χ A  - A  

 
*2

* * *

4 5

* * * *

3 6 1

χ  A  - A1

n χ  A  - χ  A  - A

  

  
 

  11 opt.
M Ť  

 11 1 2

2

11 4 11 3 1

μ  C  - C1

n μ  B  - μ  C  - B  

 

* * *

11 1 2

*2 * * * *

11 4 11 3 1

μ  C  - C1

n μ  B  - μ  C  - B

  

  
 

 12 opt.
M   Ť  

 12 4 5

2

12 6 12 6 1

μ  C  - C1

n μ  B  - μ  C  - B  

 

* * *

12 4 5

*2 * * * *

12 6 12 6 1

μ  C  - C1

n μ  B  - μ  C  - B

  

  

 

 21 opt.
M   Ť  

 21 7 8

2

21 4 21 9 2

μ  C  - C1

n μ  B  - μ  C  - B  

 

* * *

21 7 8

*2 * * * *

21 4 21 9 2

μ  C  - C1

n μ  B  - μ  C  - B

  

  

 

 22 opt.
M   Ť  

 22 10 11

2

22 6 22 12 2

μ  C  - C1

n μ  B  - μ  C  - B  

 

* * *

22 10 11

*2 * * * *

22 6 22 12 2

μ  C  - C1

n μ  B  - μ  C  - B

  

  

 

                 

Where 

   4 1 3 5 1 2 3 6 2 3 1

* * * * * * *
54 1 3 1 2 3A =A A ,  A =A A + A ,  A =A + A - A ,   A =A A ,   A =A A + A ,  

   1 1 4 2 1 3 4 3 3 4 1 4 1 6 5 1 5 6

* * * *
6 2 3 1 = B ,  C = B  + A ,  C = B  + B  - B ,  C = B ,  C = B  + B ,A =A + A  - A ,  C B B B B

   6 5 6 1 7 2 4 8 2 3 4 9 3 4 2 10 2 6 11 2 5 6
= B  + B  - B ,  C = B ,  C = B  + B ,  C = B  + B  - B ,  C = B = B  + B  ,C B B B ,  C B

   * * * * * * * * * * * * * * * * * *

12 5 6 2 1 1 4 2 1 3 4 3 3 4 1 4 1 6 5 1 5 6
C = B  + B  - B = B ,  C = B  + A ,  C = B  + B  - B ,  C = B ,  C = B  + B ,,  C B B B B

   * * * * * * * * * * * * * * * * * * * * * *

6 5 6 1 7 2 4 8 2 3 4 9 3 4 2 10 2 6 11 2 5 6
= B  + B  - B ,  C = B ,  C = B  + B ,  C = B  + B  - B ,  C = B = B  + BC B B B ,  C B ,

   * * * *

12 5 6 2 i j

*

ijC = B  + B  - B  ,   μ i, j = 1, 2  and   μ i, j = 1, 2  are the fractions of the sample drawn 

afresh at the current(second) wave under ASRM and MSRM respectively. 

 

2.5.3. Optimum Rotation Rate for the Proposed Estimators 

Since the mean squared errors of the proposed estimators      i j

ˆ
and ; i, j=1, 2 ¥    Ť  are 

the functions of the  *

i j i jμ  and  μ ; i, j = 1, 2  which are nothing but the rotation rates or the 

fractions of sample to be drawn afresh at current wave. Since less the sample need to be 
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drawn afresh, less is the total cost of survey, hence to estimate population mean with 

maximum precision and minimum cost, the variance and mean squared errors of the 

estimators  ˆ
and   ¥    i j ; i, j=1, 2Ť  respectively obtained in Table 8 have been 

optimized with respect to  *

i j i jμ  and μ ;  i, j = 1, 2  respectively. Hence optimum rotation 

rates have been obtained for each of the estimators      i j

ˆ
 and ; i, j=1, 2 ¥    Ť

 
 and are 

given as: 

Table 9: Optimum Rotation Rate for the Proposed Estimators 

     i j

ˆ
 and ; i, j=1, 2 ¥    Ť  

 
Optimum Rotation Rates 

under ASRM 
 

Optimum Rotation Rates 

under MSRM 

χ̂  
2

8 8 7 9

7

A  ±  A  - A  A

A
 

*
χ̂  

*2

8

* * *

8 7 9

*

9

A  ±  A  - A  A

A
 

11μ̂  
2

2 2 1 3

1

D  ±  D  - D  D

D
 

*

11
μ̂  

*2

2

* * *

2 1 3

*

1

D  ±  D  - D  D

D
 

12μ̂  
2

5 5 4 6

4

D  ±  D  - D  D

D
 

*

12μ̂  
*2

5

* * *

5 4 6

*

4

D  ±  D  - D  D

D
 

21μ̂  
2

8 8 7 9

7

D  ±  D  - D  D

D
 

*

21μ̂  
*2

8

* * *

8 7 9

*

7

D  ±  D  - D  D

D
 

22μ̂  
2

11 11 10 12

10

D  ±  D  - D  D

D
 

*

22μ̂  
*2

11

* * *

11 10 12

*

10

D  ±  D  - D  D

D
 

 

where  

* * * * * * * * * * *

9 9 4 1 5 6 8 3 5 7 3 45 5 74 1 6 8 3 3 4A =  A =A A + A A ,  A =A A ,   A =A AA A + A A ,  A =A A ,  A =A A ,   

1 4 1 2 4 2 3 1 1 2 3 4 6 4 5 6 5 6 1 4 5 6D = B C ,  D = B C ,  D = B C + C C ,  D = B C ,  D = B C ,   D = B C + C C  

7 4 7 8 4 8 9 2 7 8 9 10 6 10 11 6 11 12 2 10 11 12D = B C ,  D = B C ,  D = B C + C C ,  D = B C ,  D = B C  and  D = B C + C C .  

* * * * * * * * * * * * * * * * * * * * * *

1 4 1 2 4 2 3 1 1 2 3 4 6 4 5 6 5 6 1 4 5 6D = B C ,  D = B C ,  D = B C + C C ,  D = B C ,  D = B C ,   D = B C + C C  
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* * * * * * * * * * * * * * * * * * * * * *

7 4 7 8 4 8 9 2 7 8 9 10 6 10 11 6 11 12 2 10 11 12D = B C ,  D = B C ,  D = B C + C C ,  D = B C ,  D = B C  and  D = B C + C C .
 

Substituting the optimum values  * *

i j i j
ˆ ˆχ  χ ˆ ˆ , , μ  and μ ; i, j = 1, 2  in the minimum variance 

and mean squared errors of the estimators    i j

ˆ
 and ¥    Ť  obtained in Table 8, the 

optimum values of the variance and mean squared errors of the estimators 

     i j

ˆ
and ; i, j = 1, 2 ¥      Ť  respectively with respect to    i jξ  and    as well as

 *

i j i jμ  and μ ; i, j = 1, 2
 
have been obtained and are given as 

Table 10: The optimum variance and mean squared errors of the estimators  ˆ
¥

and     i j ; i, j = 1, 2Ť  

 
Optimum variance/mean squared 

errors under ASRM 

Optimum variance/mean squared 

errors under MSRM 

 
*

opt.

V
ˆ
 

 
¥  

(0)

4 5

(0)2 (0)

3 6 1

χ  A  - A1

n χ  A  - χ  A  - A

  

  
 

*(0)
2

*(0) * *

4 5

* *(0) * *

3 6 1

χ  A  - A1

n χ  A  - χ  A  - A

  

 
 

 

 
*

11 opt.
M   Ť  

(0)

11 1 2

(0) 2 (0)

11 4 11 3 1

μ  C  - C

n μ  B  - μ  C  - B

  

  

 2

*(0)

11 1 2

*(0) *(0)

11 4 11 3 1

μ  C  - C

n μ  B  - μ  C  - B

  

 
 

 

 
*

12 opt.
M   Ť  

(0)

12 4 5

(0) 2 (0)

12 6 12 6 1

μ  C  - C

n μ  B  - μ  C  - B

  

  

 2

*(0)

12 4 5

*(0) *(0)

12 6 12 6 1

μ  C  - C

n μ  B  - μ  C  - B

  

 
 

 

 
*

21 opt.
M   Ť  

(0)

21 7 8

(0) 2 (0)

21 4 21 9 2

μ  C  - C

n μ  B  - μ  C  - B

  

  

 2

*(0)

21 7 8

*(0) *(0)

21 4 21 9 2

μ  C  - C

n μ  B  - μ  C  - B

  

 
 

 

 
*

22 opt.
M   Ť  

(0)

22 10 11

(0) 2 (0)

22 6 22 12 2

μ  C  - C

n μ  B  - μ  C  - B

  

  

 2

*(0)

22 10 11

*(0) *(0)

22 6 22 12 2

μ  C  - C

n μ  B  - μ  C  - B

  

 
 

 

 

3. Modelling the Total Cost for the Survey 

When a survey, constituting sensitive issues, is deigned, the focus is centred to the total 

cost of the survey. Hence the model for total cost including design and analysis over two 

successive waves is proposed as: 

       T p r dC = nc + mc + uc    ,                                                                                    (4) 
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where 
M      for Multiplicative Scrambled Response Model

A       for Additive Scrambled Response Model



 


 

 TC  : The total cost of sample survey at current (second) wave; 

 pc  : The average per unit cost of investigating and processing data at previous (first) 

wave, 

 rc  : The average per unit cost of investigating and processing retained data at current 

wave, 

 dc  : The average per unit cost of investigating and processing freshly drawn data at 

current wave. 

Remark 3.1:      p r dc < c < c   , When a survey is conducted on successive waves, the 

cost of investigating a single unit involved in the survey sample should be greater than 

before (at previous wave) since as time passes by different commodities (software) and 

services (human resources, daily wages and conveyance) become expensive so the cost 

incurring at second wave increases in a considerable amount. Also the average cost of 

investigating a retained unit from previous wave should be lesser than investigating a 

freshly drawn sample unit since survey investigator has some experiences from the 

previous wave and hence the investigator can trace the retained sample units easily as 

compared to freshly drawn sample units which reduces the cost in investigating but on the 

other hand due to time lag between the successive waves, cost of investigating a retained 

sample unit rises as compared to the previous wave. 

Theorem 3.1: The optimum total cost for the proposed estimators    i j

ˆ
and ; ¥    Ť  

 i, j=1, 2  are obtained as 

              (0)

p s r sT A A A Aχ
ˆ

A = n c + c + 1- c - cC      
¥                                       (5) 

              *(0)

p s r sT M M M Mχ
ˆ

M = n c + c + 1- c - cC      
¥                                 (6) 
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             (0)

T i j p s ij r s
A A A A AC = n c + c + 1- μ c - c   i, j=1, 2     Ť                  (7)     

             *(0)

T i j p s ij r s
M M M M MC = n c + c + 1- μ c - c   i, j=1, 2     Ť              (8)       

Remark 3.2: The optimum total costs obtained in equation (5) to (8) are dependent on the 

value of sample size (n). Therefore, if a suitable guess of sample size is available, it can 

be used for obtaining optimum total cost of the survey by above equation. However, in 

the absence of suitable guess, sample size may be estimated by following Cochran (1977). 

4. Efficiency Comparison 

4.1. Estimator    i j

ˆ
 and¥     Ť  versus Estimator  n

h   

To evaluate the performance of the proposed estimators, the estimators    i j

ˆ
and ¥     Ť

 

at optimum conditions, they are compared with the scrambled sample mean estimator 

 n
h  , when there is no matching from previous wave. Since the scrambled sample mean 

estimator  n
h  is unbiased for population mean, so variance of the estimator  n

h  is 

given by 

   2 2

n y s

1
V h A  = S + S

n
   ,                       (9) 

   2 *2 *2 2 2 *2

n y s s y

1
V h M  = S S + S Y + S S

n
                                                                              (10) 

The percent relative efficiencies 
1

1 i jE ( ) and E ( )  of the estimator    i j

ˆ
and ¥     Ť  

(under optimum conditions) with respect to  nh   are given by 

 
  

 
*

opt.

n

1

V

    V

h

ˆ
E ( )=  × 100






 
 
¥

                                                                                             (11) 
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*

opt.

n

i j

1

i j

V

    M

h
E ( )=  × 100






  Ť
;  (i, j=1, 2).                                                                      (12) 

4.2. Estimator   i j Ť  versus Estimator  ˆ
¥  

The percent relative efficiencies 
2

ijE ( ) of the estimator  i j Ť  (under optimum 

conditions) with respect to  ˆ
¥  are obtained as 

 

 

*

opt.

*

opt.
i j

2

i j

    M

ˆ
V

E ( )=  × 100






 
 

  

¥

Ť
                                                                                      (13) 

5: Choice of the Distribution of Scrambling Variable 

5.1. Scrambling variable under ASRM 

Pollock and Bek (1976) did not lay down certain assumption for choosing the distribution 

of the scrambling variable S, since S has to be generated before conducting the survey for 

collecting the response to ensure the privacy of the respondents. Additive scrambled 

response model still provides us certain freedom to apply it practically. For a quantitative 

sensitive character, response may either be positive or zero. If response is some positive 

quantity then adding a scrambling variable would not alter the response when the 

scrambling variable follows some certain prior known distribution. Even if the response 

is zero then also additive scrambled response model would be good to go as mean and 

variance of the scrambling variable is known and should have been chosen in such a way 

that the mean value of scrambling variable would not make a huge impact on mean value 

of sensitive character. So for applying an additive scrambled response model it should be 

kept in consideration that mean and variance of distribution of scrambling variable should 

not alter the mean value of sensitive character provided that the respondents agree to 

answer truthfully. So while conducting a survey related to the drug usage of undergraduate 

students of a college, we have assumed that scrambling variable S follows normal 

distribution with mean zero and variance 1.  Here considering mean value of scrambling 
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variable zero makes least impact on the mean value of the sensitive variable as mentioned 

above. 

5.2. Scrambling variable under MSRM 

When the multiplicative scrambled response model was first studied by Pollock and Bek 

(1976), no assumptions were set for generating distribution of scrambling variable but 

when Eichhorn and Hayre (1983) studied this model in depth they provided certain 

specifications to be followed for the generating the scrambling variable. They suggested 

that, to estimate the population mean of the sensitive character X(Y) > 0  the scrambling 

variable 
*

S 0  with    * * * *2

sE S =S ,  V S =S  should be chosen such that * *

s=S  S is as 

small as possible. Also it has been shown reasonable that  *median S 1≈ . The numerical 

illustration done in the next section assumes the scrambling variable 
*S a normal variate 

with mean one and variance 0.36 this makes 0.6  which a small value. Various 

methods have also been suggested when the scrambling variable assumes negative and 

zero values, Eichhorn and Hayre (1983) may be cited for detailed procedures. 

6. Numerical Illustrations and Monte Carlo Simulation 

6.1. Empirical study 

For practicing the use of the proposed estimators under two different scrambled response 

model namely ASRM and MSRM over two successive waves, numerical illustration has 

been worked out for a completely known population with following population 

parameters: 

2 2 2

x y z

6 6 6

yx xz yzρ ρ ρ

N=51, n=20, S =4.3451×10 S =4.1604×10 , S =4.2152×10 , X=1923.3, Y=1947.8,  Z=1923.3,, 

=0.7, =0.7,  =0.7.
 

And also hypothetical input costs were considered to get an idea about the optimum total 

cost of the survey. 
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For using the ASRM it has been assumed that the scrambling variable  S N 0,1~  and 

using MSRM, it has been considered that scrambling  *S  N 1, 0.6~ . Hence the results 

obtained have been represented in Table 11, Table 12 and Table 13. 

Table 11: Variance of estimators  n

ˆ
h and ¥    under ASRM and MSRM. 

Estimator Variance under ASRM Variance under MSRM 

 n
h   6

4.1604×10  
7

1.2115×10  

 ˆ
¥  6

3.5658×10  
6

9.7583×10  

 

Table 12: Empirical results when the proposed estimators 

     i j

ˆ
 and ; i, j=1, 2 ¥    Ť have been compared to the scrambled sample mean 

estimator.  

Under ASRM Under MSRM 

Estimators 

Optimum 

rotation 

rate 

Percent 

relative 

efficiency 

Optimum 

Total cost 
Estimators 

Optimum 

rotation 

rate 

Percent 

relative 

efficiency 

Optimum 

Total cost 

 ˆ
A¥  0.5834 116.67 ₹2258.30  ˆ

M¥  0.6207 124.14 ₹2262.10 

 
11

AŤ  0.5511 150.30 ₹2255.10  
11

MŤ  0.5313 130.76 ₹2253.10 

 
12

AŤ  # - -  
12

MŤ  0.5651 136.65 ₹2256.50 

 
21

AŤ  0.4370 159.99 ₹2243.70  
21

MŤ  0.5591 132.45 ₹2255.90 

 
22

AŤ  0.4837 177.11 ₹2248.40  
22

MŤ  0.5843 138.42 ₹2258.40 

Note: “ # ” represents that the optimum rotation rate does not exist. 

 

Table 13:  Empirical results when the proposed estimators    i j ; i, j=1, 2 Ť  have 

been compared to the Estimator  ˆ
¥  

Under ASRM Under MSRM 

Estimators 
Optimum 

rotation rate 

Percent relative 

efficiency 
Estimators 

Optimum 

rotation rate 

Percent relative 

efficiency 

 
11

AŤ  0.5511 128.81  
11

MŤ  0.5313 105.33 

 
12

AŤ  # -  
12

MŤ  0.5651 110.07 

 
21

AŤ  0.4370 137.12  
21

MŤ  0.5591 106.68 

 
22

AŤ  0.4837 151.80  
22

MŤ  0.5843 111.50 

Note: “ # ” represents that the optimum rotation rate does not exist. 
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From the results obtained in Table 11, it is observed that scrambles sample mean estimator 

under ASRM is better than the scrambled sample mean estimator under MSRM. Also the 

modified Jessen’s estimator under scrambled response under ASRM is better than the 

same estimator under MSRM. Also in Table 12 and Table 13, the proposed estimators 

   i j ; i, j=1, 2Ť  have an enhanced performance in terms of optimum rotation rate, 

optimum total cost of the survey and percent relative efficiency with respect to scrambled 

sample mean estimator and modified Jessen’s estimator under scrambled response. It has 

also been seen in section 5 that applying ASRM is easier as compared to MSRM on 

successive waves due to less complication and restrictions involved in the selection of 

scrambling variable for ASRM. Also the above empirical results suggest that beside the 

conveniences in the application of ASRM, it is reasonably better in terms of cost and 

precision. Also any quantitative sensitive character may assume a zero value at any time, 

in such a situation MSRM involves many complexities which again turns time consuming. 

So to make a survey involving large size and zero valued sensitive responses, less time 

consuming for the respondents, Application of additive scrambled response is suggested.   

Therefore, to validate the theoretical results, a case study has been carried out to deal with 

a sufficiently sensitive issue where fake response is quit prone, hence, an attempt has been 

made to apply additive scrambled response approach to handle that. 

 

6.2. Case Study: Usage of Drugs (Cigarette, Alcohol, Gutkha, Paan Masala etc.)  

For practicing the literal feasibility of the proposed estimators    i j
A i, j=1, 2;Ť , a case 

study has been designed for two waves and real data have been collected from 315 under 

graduate students of a College (University of Delhi), India through a survey conducted on 

two successive waves. For convenience 315 random numbers (S) have been generated 

assuming  S N 0,1∽  to retain the mean value of population mean unaffected from mean 

value of scrambling variable while ensuring the privacy of the respondents. The 

respondents were presented a bag, full of ball with random number written on them, the 

respondent had to pick a ball and then he/she had to add his/her answer to that random 

number which was completely unknown to the interviewer. In this way the interviewer 
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received scrambled response from each respondent. Followings are the sensitive and non-

sensitive variables of the interest: 

ix : Average monthly expenditure on drug usage in July, 2015, by the ith student. 

iy : Average monthly expenditure on drug usage in April, 2016, by the ith student. 

iz : Average monthly pocket money from all sources in July, 2015 of the ith student. 

And hence the scrambled response was collected from the respondents in the form of 

G= X + S  and  H= Y + S with S = 0which makes  G = X  and  H = Y . 

Therefore, the optimum rotation rate, percent relative efficiencies of the proposed 

estimators    i j
A i, j=1, 2;Ť  with respect to scrambled sample mean estimator and 

modified Jessen’s estimator under scrambled response under ASRM and optimum total 

costs of the survey have been obtained and shown in Table 14. The optimum bias of each 

proposed estimator has also been calculated and shown in Table 15. Following are the 

different costs incurred in conducting the survey at two different waves: pc = ₹ 50.00, rc

= ₹ 60.00 and sc = ₹ 65.00. 

 

Table 14: Empirical results when the proposed estimators  i j AŤ  have been  

                  compared to estimators     n A A
ˆ

h and ¥    . 

 

Estimator  
ij

(0)μ i, j=1, 2   1

ijE A   2

ijE A    T i jC AŤ  

 11 AŤ  0.7236 182.11 131.90 ₹5112.8 

 12 AŤ  0.7269 184.16 133.39 ₹5113.5 

 21 AŤ  0.6487 162.42 117.64 ₹5096.0 

 22 AŤ  0.6563 164.32 119.02 ₹5097.7 
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Table 15: Optimum absolute bias of the estimators    i j A ; i, j=1, 2Ť . 

  i jB AŤ  n=35 n=45 n=50 

  
11

B AŤ  22.36 17.39 15.65 

  
12

B AŤ  21.14 16.44 14.80 

  
21

B AŤ  18.59 14.46 13.01 

  
22

B AŤ  17.21 13.38 12.05 

 

 

6.2.1. Monte Carlo Simulation Study 

For the above said survey data, detailed simulation study has been carried out and thus the 

simulation results obtained are shown in Table 16.  

 

6.2.1.1. Simulation Algorithm 

(i) Choose 5000 samples of size n=45 using simple random sampling without replacement 

on first wave for both the study (sensitive character) and auxiliary variable (non-sensitive) 

out of 315. 

 

(ii) Calculate sample mean
n | kg  and 

n | kz  for k =1, 2, - - -, 5000. 

(iii) Retain m=33 units out of each n=45 sample units of the study and auxiliary variables 

at the first wave. 

 

(iv) Calculate sample mean m | kg
 
and m | kz for k= 1, 2, - - -, 5000. 

(v) Select u=12 units using simple random sampling without replacement from N-n=270 

units of the population for study and auxiliary variables at second (current) wave. 

 

(vi) Calculate sample mean u | kh ,  m | kh  and  u | kz for k = 1, 2, - - -, 5000. 
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(vii) Iterate the parameter    i j A ; i, j=1, 2  from 0.1 to 0.9 with a step of 0.1. 

(viii) Calculate the percent relative efficiencies of the proposed estimators

   i j A ; i, j=1, 2Ť  with respect to the scrambled sample mean estimator  nh A  as 

 

 
 

 

5000
 2

n|k

k=1

5000
 2

i j | k

k=1

h A - H

E ij  =  × 100 ;  (i, j=1, 2);  k=1, 2, ..., 5000.

A - H

 
 

 
 



 Ť

 

To exhibit the performance of the proposed estimators    i j A ; i, j=1, 2Ť , Monte Carlo 

simulation has been performed for three different sets which are quoted below:  

SET I: n=45, u=12, m=33, SET II: n=45, u=18, m=27, SET III: n=45, u=27, m=18.  

Following above simulation algorithm, simulations results have been obtained for all the 

above three mentioned sets. 

Table 16: Monte Carlo simulation results when the proposed estimators 

   i j A ; i, j=1, 2Ť are compared to the scrambled sample mean estimator. 

 

         ij A
 

SET
 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

I 

 E 11  125.27 129.99 130.44 126.34 119.26 110.00 ** ** ** 

 E 12  131.73 136.41 136.98 132.36 124.22 113.89 101.91 ** ** 

 E 21  125.64 130.66 131.59 128.01 121.04 111.71 100.82 ** ** 

 E 22  132.09 137.08 138.20 134.11 126.07 115.66 103.76 ** ** 

II 

 E 11  101.71 113.80 125.54 136.03 144.43 149.49 150.06 145.89 137.01 

 E 12  118.73 132.03 144.56 154.92 162.21 165.38 163.42 156.57 145.11 

 E 21  101.88 113.89 125.27 135.06 142.30 146.01 144.97 139.41 129.54 

 E 22  118.89 132.01 144.00 153.40 159.24 160.80 157.10 148.87 136.55 

III 

 E 11  139.02 149.37 160.47 170.54 176.95 179.21 177.40 170.11 159.56 

 E 12  148.96 159.35 170.32 180.44 186.42 187.49 184.41 175.71 163.89 

 E 21  139.41 149.51 159.63 168.04 171.98 171.31 166.29 156.21 143.94 

 E 22  149.37 159.45 169.31 177.54 180.83 178.76 172.35 160.86 147.40 

Note: “**” represents no gain in the percent relative efficiency. 
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7. Mutual Comparison of the estimators    i j A ; i, j=1, 2Ť  

The performances of the proposed estimators    i j A ; i, j=1, 2Ť  have been elaborated 

empirically as well as through simulation studies in above section 6 and the results 

obtained are presented in Table 14 to Table 16. In this section the mutual comparison of 

the four proposed estimators has been elaborated pictorially given in Figure 7.1. 

 

Figure 7.1:  Mutual comparison of the proposed estimators    i j A ; i, j=1, 2Ť  for set 

III. 

 

 

8. Rendition of Results 

1) From the numerical illustration of completely known population in Section 6.1, it has 

been observed that ASRM is better than MSRM under the standard supposition for the 

distribution of scrambling variables. ASRM is better than MSRM for scrambled sample 

mean estimator and also for the proposed estimators      i j

ˆ
A and A i, j=1, 2;¥     Ť  in terms 

of total cost of the survey and precisions of estimates.  

 

2) It has also been noted that the proposed estimators    i j A ; i, j=1, 2Ť  under ASRM are 

the best suited estimators over the scrambled mean estimator and the modified Jessen’s 

estimator under scrambled response in terms of cost and precision. The proposed estimator 

   21 A ; i, j=1, 2Ť  is the best performing estimator over the estimators    n

ˆ
h A Aand ¥  
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3) Results from the Empirical Study based on Case Study 

a) From Table 14, we see that    
ij

(0)
Aμ ; i, j=1, 2  exist for each proposed estimators and 

21

(0)μ  is the least. 

 

b)  All the four proposed estimators    i j A ; i, j=1, 2Ť  are efficient over the estimators

   
n

ˆ
A andh A    ¥  and the estimator  12

AŤ  is most efficient over the estimators

   
n

ˆ
A andh A    ¥  . This justifies that using a positively correlated non-sensitive auxiliary 

character is highly rewarding in terms of efficiency. 

 

c) The optimum total cost of the survey conducted on two successive waves has also been 

calculated while using all four proposed estimators    i j A ; i, j=1, 2Ť . The optimum total 

cost of survey is least for the estimator  21 AŤ . The estimators    21 22A A and Ť Ť  

provide approximately same optimum total cost for the survey. 

 

d) From Table 15, it is clear that the estimator  22 AŤ  is least biased amongst all other 

proposed estimators and also it is vindicated that for increasing size of sample (n), the bias 

of all proposed estimators decreases. 

 

2) Results extracted from Monte Carlo simulation Study  

a) In Table 16, it can be seen that all the proposed estimators    i j A ; i, j=1, 2Ť  are 

efficient over the estimator   
n

Ah . All though for first set, for some choices of  ij A , 

all proposed estimators are not efficient. 

 

b) While choosing the different sets for simulation study the empirical results have been 

taken care of, since empirically the optimum rotation rates have been suggested more than 

50% for freshly drawn fraction of sample which has been clearly demonstrated by the 

simulation results. As the fraction of sample drawn afresh is increased gradually up to 

60%, the performance of the proposed estimators has been enhanced. 
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c) There is no fixed pattern to choose that which one of the four estimators is best in terms 

of the efficiency but with a minute observation it can be understood that when the choice 

of  ij Aμ is stretched near to their empirically optimum    (0)

ij Aμ ; i, j=1, 2 , the estimator 

 22 AŤ  is most consistent amongst all the others. 

 

3) Results from graphical mutual comparison 

a) In Figure 7.1 it is clear that the estimator  22 AŤ  is most consistent and efficient over 

all other proposed estimators. 

 

8. Ratiocination 

The rendition of results leads the authors to conclude by assuring from section 5 and 6.1 

that over two successive waves, use and application of additive scrambled response model 

is more feasible and beneficial in terms of cost and precision over the multiplicative 

scrambled response model. From Section 6 it is quite clear that two types of estimators; 

one which utilize a non-sensitive auxiliary information and second which doesn’t utilize 

any non-sensitive auxiliary information, both are tremendously better than the scrambled 

sample mean estimator under ASRM as well as MSRM but since ASRM techniques 

prevails over MSRM hence further case study has been designed using ASRM approach.  

 

The all four proposed estimators    i j A ; i, j=1, 2Ť  are good enough to be practiced 

practically over the estimators    
n

ˆ
A andh A    ¥  while observing a sensitive character. 

From empirical results of the case study the estimator  12 AŤ  is best in terms of efficiency 

over    
n

ˆ
A andh A    ¥  and the estimator  21 AŤ  provides the least fraction of sample to be 

drawn afresh at current wave. This signifies that use of a non-sensitive auxiliary 

information is appreciable in enhancing the precision of estimates and cost of the survey 

while estimating population mean of sensitive character while using the ASRM. Here the 

estimators    21 22A A and Ť Ť  provide approximately same optimum total cost of the 
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survey and also    (0) (0)

21 22A Aμ  and μ  do not share a big difference in optimum values. The 

optimum bias of the estimators    i j A ; i, j=1, 2Ť  has also been computed and the 

estimator  22 AŤ  comes out be the least biased estimator amongst the others that is may 

be due to the more utilization of non-sensitive auxiliary information and exponential 

structure as well, but  21 AŤ  is approximately equally biased as estimator  22 AŤ . In 

simulation study at closer values of optimum  ij Aμ , estimator  22 AŤ  is consistent 

enough to be considered over other proposed estimators in terms of efficiency. So looking 

at the overall performance of the estimators, the estimators    21 22A A and  Ť Ť  seems to 

outperform all other estimators in terms of bias, freshly drawn fraction sample of sample 

and optimum total cost, since for minimal advantage in precision, the cost of the survey 

cannot be put on stake in successive sampling while dealing with a sensitive issue. Hence 

the proposed estimators    i j A ; i, j=1, 2Ť , especially the estimators    21 22A A and  Ť Ť  

while accompanying a non-sensitive auxiliary variable, are recommended to survey 

statisticians for their practical use in surveys indulging sensitive issues pertaining large 

sample sizes. 
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Conclusions and Future Scope 

 

1. Conclusions 

 

Entire work is stretched over four units on basis of population parameter to be 

estimated under different circumstances over two occasion successive sampling. The first 

unit deals with the estimation of population median. The second unit deals with estimation 

of population mean. Third unit proposes estimators to estimate population mean under 

non-response of respondents. Forth unit focuses on estimating population mean of 

sensitive characters where false response is plebeian due to sensitivity of the character to 

be addressed. 

 

In the first unit an attempt has been made to propose new and different estimators 

to estimate population median of the study character in two occasion successive sampling 

since there is not large literature available for the estimation of population median of the 

study character in two occasion successive sampling.  

 

In Chapter-1, MVLU estimator of population median has been suggested with the 

aid of completely known auxiliary information available over both occasions. It has been 

seen that the proposed estimator comes to be better with respect sample median estimator 

as well as the estimator utilizing no additional auxiliary information. The role of using an 

extra information has certainly been signified in enhancing the performance of proposed 

estimator in estimating the population median. 
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Chapter-2, makes an attempt to work out a factor type estimators to estimate 

population median without using any extra information on an auxiliary variable. It has 

been seen that the proposed factor type estimator with input parameter “d” becomes ratio 

type, product type and dual to ratio type in nature for different values of input parameter 

d. It has bias and mean squared error asymptotically equal to ratio type estimator for lager 

value of “d” over two successive waves. Also, it is better than the sample median 

estimator, ratio type estimator, product type estimator and dual to ratio type estimator at 

the optimum value of “d” in terms of efficiency and cost. 

 

Bahl and Tuteja (1991) have shown that exponential ratio type estimators are better 

than the ratio type estimators and regression estimator at certain assumptions, hence an 

attempt has been made to work out exponential ratio type estimator in two occasion 

successive sampling. Therefore, four exponential ratio type estimators have been proposed 

utilizing information on a completely known stable auxiliary information, readily 

available over both the occasions. Also the proposed estimators turns better in terms of 

cost and efficiency with respect to the estimator due to Singh et al. (2007) for second 

quantile and the sample median estimator. Also a mutual comparison of the four proposed 

exponential ratio type estimators has also been done and it has been found out that the 

estimator 
22

T  is best in terms of cost and efficiency while estimating population median. 

 

In chapter-4, a multivariate generalization of the best performing estimator 
22

T  has 

been done and in the availability of several auxiliary information. The increased level of 

precision has been shown by comparing the proposed estimator with respect to sample 
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median estimator and estimator due to Singh et al (2007). Also it has been shown 

theoretically that increasing the number of auxiliary information lead to increased level of 

efficiency and it reduces the cost of survey as well. 

In chapter-5, a possibility has been explored when the auxiliary information may 

not sustain to be stable and in such a case the four proposed exponential type estimators 

have been compared to sample median estimator and estimator due to Singh et al (2007) 

for second quantile and found to be dominant over the above said.  

 

Further, by studying the increased level of precision of the four proposed 

exponential ratio type estimator in Unit –I, Unit-II has been devoted to the estimation of 

population mean. For this, four exponential ratio type estimator have been suggested while 

utilizing a stable and completely known auxiliary information available on both the 

occasions, to estimate population mean in chapter 6. It has been found out the proposed 

estimators also behave enormously better while estimating population mean. Their 

dominance has been shown by comparing them with respect to sample mean estimator 

and general successive sampling estimator due to Jessen (1942).  

 

A multivariate generalization has been illustrated in chapter-7 for the estimator 

22
T  while utilizing p- auxiliary information which are stable over two successive 

occasions and easily available on both the occasions. The multivariate weighted estimator 

has been shown dominant over two well-known recent estimators, Singh (2005) and Singh 

and Priyanka (2008a). It has been vindicated that the precision gradually increases as the 

number of auxiliary information is increased. 
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In chapter-8, the four exponential ratio type estimators for estimating population 

mean have been proposed while accompanying a dynamic auxiliary over two successive 

waves. The proposed estimators have been compared and shown to be better with respect 

to sample mean estimator and estimator due to Jessen (1942).  

 

The Unit-III has been devoted to the estimation of population mean in the presence 

of non-response. An attempt has been made for the treatment of non-response in sampling 

over two successive occasions while using the technique of imputation. In chapter-9, 

methods of imputations have been proposed while using the above said estimator 
22T  

utilizing stable auxiliary information over two successive occasions. The proposed 

estimator has been classified according to the presence of non-response at only first 

occasion, presence of non-response at only second and presence of non-response at both 

the occasions. Percent relative loss has been computed for above three possibilities of 

nonresponse as compared to the estimators proposed in chapter 6. It has been seen that the 

amount of loos is not significant in the presence of non-response. Hence the utilization of 

proposed estimators has been recommended to the survey statisticians under non-response 

while estimating population mean. 

 

Chapter 10 crusades a multivariate weighted exponential ratio type estimator 

accompanying several auxiliary information in the presence of non-response for 

estimating population mean. Percent relative loss has been computed with respect to 

estimator proposed in chapter 7 when there is no non-response at any occasion and the 
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amount of percent relative loss is found to be minimal in the presence of non-response. 

Also it is observed that more loss is observed when the non-response occurs at both the 

occasions. 

 

In chapter 11, the estimator has been proposed under non-response while 

estimating the population mean of the study character and the auxiliary information tends 

to be dynamic due a large gap between the two successive occasions. The estimator has 

been compared to the estimator proposed in chapter 8 when there is no non-response at 

any occasion and the percent loss turns to be non-significant. 

 

There is less literature available in the field of successive sampling while 

estimating any population parameter of a sensitive study character on successive 

occasions. In the available literature, the population parameter of sensitive character has 

been estimated using certain randomized response technique whose application turns next 

to impossible in large sample surveys since they may be time consuming and the new age 

fast life put constraints to the respondents  of time. This leads to complete refusal also. So 

in Unit-IV an alternative approach known as scrambled response technique for estimating 

population mean of the sensitive character while utilizing a non-sensitive auxiliary 

information has been illustrated. 

The scrambled response technique has been illustrated under two scrambled 

response models namely additive scrambled response model (ASRM) and multiplicative 

scrambled response model (MSRM). Various estimators have been proposed under 

ASRM and MSRM and they are compared with scrambled sample mean estimator under 
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ASRM and MSRM respectively. A comparison of two scrambled response models 

suggests that ASRM is plausibly better than MSRM in application over two successive 

occasions as well as increased precision and total cost of survey dealing a sensitive issue. 

Also it has been found that the estimators utilizing a non-sensitive auxiliary information 

(exponential ratio type estimators) out performs Jessen’s estimator for scrambled response 

and scrambled sample mean estimator.  

 

Hence looking at the consistent application of exponential type estimators under 

diverse situations as surveys troubling non-response, surveys having chances of false 

response and surveys having different population parameters to be estimated, the proposed 

exponential ratio type estimators are recommended to the survey statisticians for their 

practical applications in real time scenario.  

 

2. Future Scope of Study 

 Survey sampling is vast area to be indulged in to. More and more possibilities are 

always hidden in the issue to be handled. The present work concerns sampling over two 

successive occasions using simple random sampling without replacement and considering 

all assumptions of SRSWOR. These work may be explored under many other sampling 

schemes like Stratified random sampling, Varying probability sampling, Double 

sampling, Cluster Sampling, Two stage sampling, or a ramification of any of them. The 

proposed estimators may also be tested under multiple other imputation techniques when 

the non-response occurs either considering successive sampling or any of the above said. 
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A wider range of experimentation includes the estimation of other population parameters 

using the same estimators and that too may include any sampling scheme.  

 

Another field of possibility includes the testing of proposed estimators using 

various randomized response technique already available in literature. These estimators 

may also be worked out with different scrambled response models with a variety of 

assumption on the distribution of the scrambling variable.  
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