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SYNOPSIS

Nature permits certain changes in different real life phenomenon such as social,
economic, agricultural, medicinal, financial and even vital statistics related to life span of
human being etc. with the change of time. To study these changes with the change of time,
the different real life phenomenon need to be observed more than once since single time
observation contains the subsisting situation of the study variable but not the change, over
the time period. So observation need to be made at several occasions. Such a design of
observations is known as Successive sampling or rotation sampling in statistical surveys
which is considered a very strong statistical tool for analyzing change occurred in the

phenomenon over a span of time.

The work done focuses on searching effective rotation patterns for the estimation
of different population parameters like population mean and population median on
successive occasions in two occasion successive sampling. The entire work has been
divided in six units, in each unit population parameter has been estimated under certain

set of assumption, underlying the situations for survey has been conducted.

The First unit has been devoted to the estimation of population median at current
occasion in two occasion successive sampling. Various estimators have been proposed
under different chapters and they have been compared to some of well-known estimators

existing in the literature of successive sampling.

In chapter-1, the work deals with the problem of estimation of population median at
current occasion in two-occasion successive sampling. Best linear unbiased estimators
have been proposed by utilizing additional auxiliary information which is stable in nature
and readily available on both the occasions.

Chapter-2 deals with the problem of estimation of finite population median at

current occasion, in two occasion successive (rotation) sampling. A class of estimators



has been proposed for the estimation of population median at current occasion, which

includes many existing estimators as a particular case.

Chapter-3 is an attempt to explore the rotation patterns using exponential ratio type
estimators for the estimation of finite population median at current occasion in two

occasion rotation sampling.

Chapter-4 makes an attempt to explore the analysis on longitudinal surveys in
which same units are investigated on several occasions. Multivariate exponential ratio
type estimator has been proposed for the estimation of finite population median at current
occasion in two occasion longitudinal surveys. Information on several additional auxiliary
variables which are stable over time and readily available on both the occasions has been

utilized.

In chapter-5, the problem of estimation of finite population median at current
occasion in two occasion successive sampling has been considered using the additional

auxiliary variate which is dynamic over time and is readily available at both the occasions.

Looking at the effective gain in precision of the estimates and decreased cost of
the survey by using the exponential ratio type estimators in two occasion successive
sampling, Unit-11 has been devoted to the estimation of population mean by utilizing the
exponential ratio type estimators since these are least utilized estimators in two occasion

successive sampling.

Chapter-6 considers the problem of longitudinal analysis of population mean in
two occasion successive sampling. The usefulness of exponential type estimators in
enhancing the working efficiency of different ratio type estimators for population mean,
when embedded with auxiliary information which is stable over time in two occasion

successive sampling have been explored.

Chapter-7 deals with the problem of estimation of the population mean in presence
of multi auxiliary information in two occasion rotation sampling. A multivariate
exponential ratio type estimator has been proposed to estimate population mean at current
(second) occasion using information on p-additional auxiliary variates which are

positively correlated to study variates and are stable in nature over successive occasion.



The key and fundamental purpose of sampling over successive waves lies in the
varying nature of study character, it so may happen with ancillary information if the time
lag between two successive waves is sufficiently large. Chapter-8 consumes the varying
nature of auxiliary information and modern approaches have been proposed to estimate
population mean over two successive waves. Four exponential ratio type estimators have
been designed. Cost models have also been worked out to minimize the total cost of the

survey design over two successive waves.

Unit-111 carry forward the idea of estimating population mean at current occasion
in two occasion successive sampling but here one more aspect of surveys has been taken
in to consideration that some-times in surveys, some units or the whole sample tends to
be non-informative or non-responding due to any of the reason. The reason of non-
response may include the absence of sample unit at said place, refusal to response or lost
information etc. In such a situation, analysis of real state of facts is troubled. Unit-11I
explores the exponential ratio type estimators in the presence of non-response in two
occasion successive sampling with the application of technique of imputation to deal with

non-response.

Chapter-9 takes in consideration that while sample surveys are conducted, prompt
chances of non-response of sample units leads to incompleteness of data and analyzing
such data may result in false inference of facts. So utilizing the method of imputation with
the aid of a completely known auxiliary character correlated to the study character and is
stable in nature over the occasions, an affective estimation procedure has been suggested
to deal with non-response for estimating population mean in two occasion successive
sampling. A vast study has been done to elaborate the properties of the proposed estimator
through theoretical and empirical entails considering that (i) non-response may arise on
both occasions, (ii) it may occur only at first occasion or (iii) it may occur only at second
occasion while comparing the proposed estimator with the same estimator having

complete response for all sample units at each occasion.

In chapter-10, it has been discussed that the occurrence of non-response is very
much plebeian in surveys, which troubles the analysis and hence an inappropriate

inference is left out. To counterbalance the sour effects of the incompleteness, fresh



imputation techniques have been proposed with the aid of multi-auxiliary variates for the

estimation of population mean on successive waves.

Chapter-11 considers that encountering non-response is quite prone in sample surveys
however smart be the design, which sours the analysis and hence the results. An effort has
been made to exploit the non-response by using a completely fresh approach of imputation
technique to estimate the population mean in two occasion successive sampling, utilizing
completely known auxiliary information which is dynamic in nature and pronto over the

occasions.

Unit-111 provides a tool to negotiate with the non-response of sample units due to
sensitivity of issue, although non-response may creep due to many reasons. What if non-
response is due to stigmatizing character of study variable? In such surveys there is a
possibility that in place of non-response, respondent simply under or over response the
real facts due to social desirability and inclination. If a certain privacy level is ensured to
the respondents then they may respond truthfully. Such a technique known as scrambled

response technique has been explored to estimate population mean of a sensitive character.

The work done in chapter-12 is an attempt to use non-sensitive auxiliary character
and scrambled response techniques to estimate population mean of a sensitive character.
Various estimators using Scrambled Response Techniques (SRT) to estimate the
population mean of a sensitive character have been proposed in sampling over two
successive waves. Two models; Additive (ASRM) and Multiplicative (MSRM) scrambled
response model have been used and the estimators have been discussed under both the
models. Further pros and cons for two models in successive sampling have been
illustrated. The model for optimum total cost of the survey has also been designed and

discussed.

Unit-V illustrates the findings of the work done in the previous four units and
makes recommendations of the work done in previous chapters on basis of requirement of

survey design.



It also illustrates the further scopes for present work to be explored in future through

different other survey sampling techniques.

Unit-V1 show cases all the literature available in survey sampling which has been refereed

to carry out the work done in this study.
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UNIT -1

SEARCH OF GOOD ROTATION PATTERNS
FOR ESTIMATION OF
POPULATION MEDLAN AT CURRENT
OCCASION



CHAPTER - T°

Effective Rotation Patterns for Median
Estimation in Successive Sampling

* Following is the publication based on the work of this chapter:--

1. Priyanka, K. and Mittal, R. (2014): Effective Rotation Patterns for Median
Estimation in Successive Sampling. Statistics in Transition-new series, Vol. 15,
No. 2, 197-220.



Effective Rotation Patterns for Median
Estimation in Successive Sampling

1. Introduction

When the value of study character of a finite population is subject to change
(dynamic) over time, a survey carried out on a single occasion will provide information
about the characteristics of the surveyed population for the given occasion only and will
not give any information on the nature of change of the characteristic over different
occasions and the average value of the characteristic over all occasions or the most recent
occasion. To meet these requirements, sampling is done on successive occasions that
provide a strong tool for generating the reliable estimates at different occasions. The
problem of sampling on two successive occasions was first considered by Jessen (1942),
and latter this idea was extended by Patterson (1950), Narain (1953), Eckler (1955),
Gordon (1983), Arnab and Okafor (1992), Feng and Zou (1997), Singh and Singh (2001),
Singh and Priyanka (2008a), Singh et al.(2012), Bandyopadhyay and Singh(2014) and
many others.

All the above studies were concerned with the estimation of population mean or variance

on two or more occasion.

There are many problems of practical interest which involves variables with
extreme values that strongly influence the value of mean. In such situations the study
variable is having highly skewed distributions. For example, the study of environmental
issues, the study of social evil such as abortions, the study of income, expenditure etc. In
these situations, the mean may offer results which are not representative enough because
it moves with the direction of the asymmetry. The median, on the other hand is unaffected

by extreme values.

Most of the studies related to medians have been developed by assuming simple

random sampling or its ramification in stratified random sampling (Gross (1980),



Sedransk and Meyer (1978), Smith and Sedransk (1983) and considering only the variable
of interest without making explicit use of auxiliary variables. Some of the researchers
namely Chambers and Dunstan(1986), Kuk and Mak (1989), Rao et al. (1990), Rueda et
al.(1998), Allen et al. (2002), Singh and Solanki (2013) etc. make use of auxiliary

variables to estimate the population median.

It is to be mentioned that a large number of estimators for estimating the population
mean at current occasion have been proposed by various authors, however, only a few
efforts (namely Martinez-Miranda et al. (2005), Singh et al. (2007) and Rueda et al.
(2008)), Gupta et al. (2008) have been made to estimate the population median on the
current occasion in two occasions successive sampling. It is well known that the use of
auxiliary information at the estimation stage can typically increase the precision of
estimates of a parameter. To the best of our knowledge, no effort has been made to use
additional auxiliary information readily available on both the occasions to estimate

population median at current occasion in two- occasion successive sampling.

Motivated with the above arguments and utilizing the information on an additional
auxiliary variable, readily available on both the occasions, the best linear unbiased
estimators for estimating the population median on current occasion in two-occasion
successive sampling have been proposed. It has been assumed that the additional auxiliary
variable is stable over the two-occasions.

The work is spread over ten sections. Sample structure and notations have been
discussed in section 2. In section 3 the proposed estimator has been formulated. Properties
of proposed estimators including variances are derived under section 4. Minimum
variance of the prosed estimator is derived in section 5. Practicability of the proposed
estimator is also discussed. In section 6 optimum replacement policies are discussed.
Section 7 contains comparison of proposed estimator with the natural sample median
estimator, when there is no matching from the previous occasion and the estimator when
no additional auxiliary information has been used. Practicability of the estimator A is
also discussed. In section 8 simulation studies have been carried out to investigate the

performance of the proposed estimators. The results obtained as a result of empirical and

4



simulation studies have been elaborated in section 9. Finally the conclusion of the entire

work has been presented in section 10.
2. Sample Structures and notations

Let U = (U, Uy, - - -, Un) be the finite population of N units, which has been
sampled over two occasions. It is assumed that the size of the population remains
unchanged but values of unit change over two occasions. The character under study be
denoted by x (y) on the first (second) occasions respectively. It is further assumed that
information on an auxiliary variable z (with known population median) is available on
both the occasions. A simple random sample (without replacement) of n units is taken on
the first occasion. A random sub sample of m = n A units is retained (matched) for use on
the second occasion. Now, at the current occasion a simple random sample (without
replacement) of u= (n - m) = nu units is drawn afresh from the remaining (N - n) units of
the population so that the sample size on the second occasion is also n. A and p, (A+ p =1)
are the fractions of matched and fresh samples respectively at the second (current)
occasion. The following notations are considered for the further use:

M., M, M, : Population median of x, y and z respectively.

A

w0 My My M «my» My, - Sample median of the respective variables

of the sample sizes shown in suffices.

y(u)' " z(n)?

Pyx» Pxzs Py, - The Correlation coefficient between the variables shown in suffices.

3. Formulation of Estimator

To estimate the population median l\/lyon the current (second) occasion, the

minimum variance linear unbiased estimator of |\/|y under SRSWOR sampling scheme

have been proposed and is given as

T:{“1My<u>+“2My(m)}+{°‘3Mx<m>+“4Mx<n>}+{“SMzw)+°‘6Mz(m>+°‘7Mz(n>+°‘st} 1)



where o; (i=1, 2, - - -, 8)are constants to be determined so that

Q) The estimator T becomes unbiased for |\/|y and

(i) The variance of T attains a minimum

For unbiasedness, the following conditions must hold

(o, +a,)=1, (03+0,)=0 and (o5t agt o+ 05)=0.

Substituting 0,= ¢, 0,;=P; and 0= -(05+ o+ 0, ) in equation (1), the estimator T takes

the following form

A

T= {0l + (1-0) My | + By Mgy - My + {% (Mg -
+ 0, (Mz(m)- Mz)+ 0, (Mz(n)' M, )}
=g {My<u)+ ky (Mzw)' M, )} +(1- ‘Pl){Mvm)* k, (Mxm)' MX<”)) "

Ko (W0 0y M) + Ky (M - MZ)}

T =T + (1' (Pl) T @)

where T1:I\7Iy(u)+ k, (l\?lz(u)- MZ) is based on the sample of size u drawn afresh at current

occasion and the estimator

TZ:{My(m)+ K, (I\?IX(m)- Mx(n))+ k3(|\7lz(m)- Mz)+ K, (I\?IZ(H)- I\/IZ)} is based on the sample

of size m matched form previous occasion

k=% k= B, k= K,

a .
: L and ¢, are the unknown constants to be determined
6, 1-, 1-o,

1-q,

S0 as to minimize the variance of estimator T.

Remark 3.1: For estimating the median on each occasion, the estimator T, is suitable,

which implies that more belief on T, could be shown by choosing ¢, as 1 (or close to 1),

6



while for estimating the change from one occasion to the next, the estimator T could be

more useful so ¢, be chosen as O(or close to 0). For asserting both the problems
simultaneously, the suitable (optimum) choice of ¢, is required.
4. Properties of the estimator T

The properties of the proposed estimator T are derived under the following assumptions:

(1) Population size is sufficiently large (i.e. N—o0), therefore finite population corrections

are ignored.

(i1) As N—oo, the distribution of bivariate variable (a, b) where a and b e {X, Y, Z} and a #

b approaches a continuous distribution with marginal densities f, (-) and f, () foraand

b respectively, see Kuk and Mak (1989).
(iii) The marginal densitiesf, (-), f, (-) and f, (") are positive.

(iv) The sample medians M ., M are

x(n)? Tix(m)?
consistent and asymptotically normal (see Gross (1980)).

y(m)’

(v) Following Kuk and Mak (1989), let P,, be the proportion of elements in the population

such that a<M,and b <M where aand be{x,y, z} and a #b.

(vi) Following large sample approximations are assumed:

~ A ~

My, =M, (1+e;), My =M, (14e,), M, m =M, (L+e;), M, =M, (1+e;),
I\A/Iz(u)zMZ (1+e,), I\A/Iz(m):MZ (1+e,) and I\A/Iz(n)=MZ (1+e,) suchthat |&]|<1Vi=0,1,2,
3,4,5,6.

The values of various related expectations can be seen in Allen et al. (2002) and
Singh (2003). Under the above transformations, the estimator T, and T, takes the

following forms:



T,=M, (1+e, )+ kM.e, (3)
TzzMy(l'l' e1)+ kzMx (ez'e3)+Mz(k3e5+ k4e6) 4)
Thus we have the following theorems:

Theorem 4.1: T is unbiased estimator of I\/Iy )

Proof: Since T, and T, are difference and difference-type estimators, respectively so they

are unbiased for |V|y. The combined estimator T is a convex linear combination of

T, and T,, hence it is also an unbiased estimator of M, .

Theorem 4.2: Ignoring the finite population corrections, the variance of T is

V(T) =0 V(T) + (1-0.) V(T;) (5)
where V/(T,) =%§l (6)
a v(T)=2 e (Ll L, G

&=AT kf A,+ 2k A, §=AT k§A2+ 2k,A;, & :k§A4+ 2k,Aqt 2k kA,

£,=k2A,+ 2k, A + 2k kA, Alzi{fy (M)}, AZ:%{fZ (M),
A=(R,-0x25)]f, (My)}'l (£, (M)}, A4:%{fx (M),
A=(P, -0><25){fy (My)}'l (£, (M)} and A,=(P, -0x25){f, (M)} {f, (M)}

Proof: The variance of T is given by

V(T)=E(T-M,)’ :E[(Pl(Tl - My) + (1- (Pl)(TZ' My)]z



:(Pf V(T1) + (1 - (Pl)ZV(Tz) + o, (1 - (P1) COV(TlaTz) (8)
where V(T,)=E(T, - M, ) and V/(T,)=E(T,-M,)’".

As T, and T, are based on two independent samples of sizes u and m respectively, hence

cov (T, T,)=0.

Now, substituting the expressions of T, and T, from equations (3) and (4) in equation (8),

taking expectations and ignoring finite population corrections, we have the expression for

variance of T as in equation (5).

5. Minimum Variance of the Estimator T

Since, the variance of the estimator T in equation (5) is the function of unknown

constants kl, kz, k31 k4 and ¢,, therefore it is minimized with respect to kl, kz, k3| k4

and o, and subsequently the optimum values of Ky, K,, K3, K, and ¢, are obtained as
ki=—= 9)

o AAA- AA A,

(10)
TOA(AA-AY)
K= DAY AR, (11)
(A2A4 - As )
k: — AsAezs - A2A5AZ‘6 (12)
A, (AA,-AY)

Proe T/ (1) + V(T

Using the optimum values of K's (izl, 2,3, 4)in equation (6) and (7), we get the

optimum variances of T, and T, as



V(T,) 1A

opt. 7

(14)

V(T2 )opt. =

1 1 1
As + [_ - _jAg + _Alo (15)

1
m m n n

where A=A+ K A+ 2KA,, A=A+ KA, +2KA,, A=K A, + 2GA, + 2K KA,

and A=K A, + 2KA, + 2KKA, .

Further substituting the values of V/(T,) and V(T, )Opt_ from equations (14) and (15) in

opt.

equation (13), we get the optimum values of ¢y, with respect to kf's (i=1, 2,3, 4) as

o _ V(TZ)opt.
" V(M) V(T

(16)

opt. opt.

Again substituting the value of (pIopt. from equation (16) in equation (5), we get the

optimum variance of T as

V(Mo V(T2 )

V(T),, = (%)1 V(T (17)

Further, substituting the value from (14) and (15) in equation (16) and (17), we get the

simplified values of ¢y, and V(T),, @

x n(A,+ HA
(Plopt 2 ( = 2 12) (18)
AL+ W AT A;
V(T),, = Ao (But bhy) (19)

n (H2A12+ HA+ A7)

where A11=A8+ AlO! AlZ :Ag_ AlO! A13:A11_ A7 and “ is the fraction of fresh Sample at

current occasion for the estimator T.

10



5.1 Estimator T in practice

The main difficulty in using the proposed estimator T defined in equation (2), is

the availability of k,'s (i=1,2,3,4) as the optimum values of ks (i=1, 2, 3)

depends on the population parameters P,,, P,,, P, f, (M, ), f, (M, ) and f,(M,). If these

yz! ' xz0 Ny
parameters are known, the proposed estimator can be easily implemented. Otherwise,
which is the most often situation in practice, the unknown population parameters are

replaced by their respective sample estimates. The population proportions

Px: P, and P, are replaced by the sample estimates P,, P, and P,, respectively and

the marginal densities f,(M, ), f, (M,) and f,(M,) can be substituted by their kernel

estimator or nearest neighbour density estimator or generalized nearest neighbour density
estimator related to the kernel estimator (Silverman (1986)). Here, the marginal densities

f,(M,), f,(M,) and f,(M,) are replaced by fy(My(m)),fx(Mx(n)) and fZ(MZ(n))

X

respectively, which are obtained by the method of generalized nearest neighbour density

estimation related to the kernel estimator.

Remark 5.1.1: To estimatef, (M, ), by the generalized nearest neighbour density

estimator related to the kernel estimator, following procedure has been adopted:

Choose an integer h ~ n’2and define the distance d(x,, X,) between two points on the

line to be|x,-X,| .

For M, define dl(Mx(n))Sdz(Mx(n)>S'"ﬁdn(mx(n)) to be the distances,

arranged in ascending order, from I\7Ix(n) to the points of the sample.

The generalized nearest neighbour density estimate is defined by

c $ l\A/Ixn_xi
K| )

d )=t S| e
R T e EY Y (2‘”

11



where the kernel function K, satisfies the condition _[ K(x) dx=1.

—00

1.
Here, the kernel function is chosen as Gaussian Kernel given by K(x):zie (2 ]
T

Similarly, the estimate of f, (M, ) and f, (M, )can be obtained.

Remark 5.1.2: For estimating fy(My), P, and P, we are having two independent

samples of sizes u and m respectively at current occasion. So, either of the two can be

used, but in general for good sampling design in successive samplingu <m. So, in the
present work f, (My), P, and P, are estimated from sample of size m, matched from first
occasion.

Therefore, under the above substitutions of the unknown population parameters by

their respective sample estimates, the estimator T takes the following form:

T =yT+(1-y) T, (21)
where T;= M, , + ki" (K, - M, | (22)
and Tg:{Wm)* K (M= My K5 (M- M (N - MZ)} (23)
o D AAA S AAAL e AAHAA ALAL- ALALA,

l_A*’Z_ - * % %2 y N3 T * % %2 ! 4 = N - 2\’

> Al (A2A4 A ) (A2A4 A ) AZ(A2A4 A )

A= 1{ 1?y('\A/Iy(m))}-z’ ;:%{ f, (MZ(”))} 2’
A=( P.-025) 1?y('\A"yon))}l{ fz(mz<n>)}l’ Z:%{ fx(mx<n>)}2'

12



v, is an unknown constant to be determined so as to minimize the mean square error of

the estimator T".

Remark 5.1.3: The proposed estimator T is difference-type estimator so, after replacing
the unknown population parameters by their respective sample estimates it becomes
regression-type estimator. Hence, up to the first order of approximations the estimator T~
will be equally precise to that of the estimator T (see Singh and Priyanka (2008a)).

Therefore, similar conclusions are applicable for T"as that of T.

6. Optimum Replacement Policy

To determine the optimum value of u (fraction of sample to be taken afresh at

second occasion) so that M, may be estimated with maximum precision, we minimize

y

V(T)opt. .in equation (19) with respect to p and hence we get the optimum value of p as

2
_S, %S} -SS, =1, (say) “

Mopt.* B S
1

where, 31:A122, S,=A,A,, and S3,:A11A13 B A7A12-

From equation (24), it is obvious that the real value of W, exists if S§ -SS5;20. For
certain situation, there might be two values of [, satisfying the above condition, hence
to choose a value of U, , it should be remembered that 0 < Hop, < 1. All other values of
Ko are inadmissible. In case if both the values of ., are admissible, we choose the
minimum of these two asll, . Substituting the value of L., from equation (24) in (19) we

have

:E A, (A11+ MoAlz)
n (HSAlz_" HoAgst A7)

V(T)opt.* (25)

where V(T)opt, is the optimum value of T with respect p.
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7. Efficiency Comparison
To study the performance of the estimator T, the percent relative efficiencies of T
with respect to (i) l\7|y(n), the natural estimator of I\/Iy , when there is no matching and (ii)

the estimator A, when no additional auxiliary information is used at any occasion, have
been computed for two natural population data. The estimator A is defined under the same
circumstances as the estimator T, but in the absence of information on additional auxiliary

variable z on both the occasions and is proposed as

A={5,N1,, +8,M )} + {8\ +84Mx(n)} (26)

x(m)

whered, (=1, 2, 3, 4)are constants to be determined so that

Q) The estimator A becomes unbiased for My and

(i)  The variance of A attains a minimum.

For unbiasedness, the following conditions must hold
(8,+8,)=1 and (8;+8,)=0.

Substituting 512 0, and 532 Bz in equation (26), the estimator A takes the following

form

A:{‘szyw) +(1- ‘Pz)My(m} B (Mx(m i Mx(n))
= (PZMy(u)+ (1 - (pz){My(m) kg (Mx(m)_ Mx(n))}
A=A+ (1-9,)A, (27)

where, the estimator A ;= My(u) is based on the fresh sample of size u and the estimator

B,
(1' (Pz)
and ¢, are the unknown constants to be determined so as to minimize the variance of

14

A2={My(m)+ | & (Mx(m)- Mx(n))} is based on the matched sample of size m, ky=



estimator A. Following the methods discussed in Sections 4, 5 and 6, the optimum value
of ks, My (Optimum value of fraction of fresh sample for the estimator A), variance of
M

y(n) and optimum variance of A ignoring the finite population corrections are given by

k;:":—j (29)
T A AA11(4A1+ Au) W (say) (29)
V(I\A/Iy(n))zﬁAl (30)
V(A),,. _IAA A (31)

2
where AM:% .
4

The optimum values of |1, ., and percent relative efficiencies g, and E, of the estimator
T with respect to the estimator I\7Iy(n) and A are computed for two natural populations and

results are shown in Tabe-2, where

V(a)

V(M .
Elzwxloo and EZZW)OPLX].OO

opt”. opt”.

7.1 Estimator A in practice

The main difficulty in using the proposed estimator A defined in equation (27), is
the availability of k5 , as the optimum values of k5 depends on the population parameters
P T, (My) and f, (M, ) . If these parameters are known, the estimator A can easily be

implemented otherwise the unknown population parameters are replaced by their

15



respective sample estimates as discussed in subsection 5.1. Hence, in this scenario the

estimator A takes the following form:

A=y, A+ (1 - \l’z)A; (32)

*

where AZZ{My(m)+ k;*(MX(m)- I\A/[X(n))}1 k= 'AAE and , is the unknown constants to be

4

determined so as to minimize the mean squared error of the estimator A*.

Remark 7.1.1: Since, A" is regression-type estimator corresponding to the difference-
type estimator A, hence up to the first order of approximations similar conclusions are

applicable to A”as that of A (See Singh and Priyanka (2008a)).

Remark 7.1.2: For simulation study the proposed estimator T~ and A" are considered

instead of the proposed estimators T and A respectively.

8. Monte Carlo Simulation

Empirical validation can be carried out by Monte Carlo Simulation. Real life

situations of completely known two finite populations have been considered.
Population Source: [Free access to the data by Statistical Abstracts of the United States]

The first population comprise of N = 51 states of United States. Let y, represent the
number of abortions during 2007 in the i" state of U. S., x, be the number of abortions
during 2005 in the i" state of U. S. and z, denote the number of abortions during 2004

in the i" state of U. S. The data are presented in Figure 1.

Similarly, the second population consists of N=41 corn producing states of United States.

We assume y. the production of corn (in million bushels) during 2009 in the i" state of
U.S., x, be the production of corn (in million bushels) during 2008 in the i state of U.

S. and z, denote the production of corn (in million bushels) during 2007 in the " state of

U. S. The data are represented by means of graph in Figure 2.
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Figure 1: Number of abortions during 2004, 2005 and 2007 versus different states of US
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Figure 2: Production of corn during 2007, 2008 and 2009 versus different states of US
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The graphs in Figurel and Figure 2 show that the number of abortions and the production
of corn in different states are skewed towards right. One reason of skewness for the
population-1 may be the distribution of population in different states, that is the states
having larger population are expected to have larger number of abortion cases. Similarly
for population-Il, the states having larger area for farming are expected to have larger
production of corn. Thus skewness of data indicates that the use of median may be a good

measure of central location than mean in these situations.

For performing the Monte Carlo Simulation in the considered population-I, 5000 samples
of n=20 states were selected using simple random sampling without replacement in the

year 2005. The sample medians I\A/Ix(n)‘k and M k=1, 2, - - -,5000 were computed and

z(n)k?
the parameters f, (M, ), f,(M,)and p,, were estimated by the method given in Remark
5.1.1. From each one of the selected samples, m=17 states were retained and new u=3

states were selected out of N — n =51 — 20 = 31 states using simple random sampling

without replacement in the year 2007. From the m units retained in the sample at the

current occasion, the sample medians M _ M,y @d M,k =1, 2,- - - 5000

(m)k Jk?

were computed and the parameters f, (My) Pyz and p_were estimated. From the new

unmatched units selected on the current occasion the sample medians I\A/Iy(u)‘k and I\A/Iz(u)‘k

,k =1, 2,---,5000 were computed. The parameters v, and vy, are selected between 0.1

and 0.9 with a step of 0.1.

The percent relative efficiencies of the proposed estimator T~ with respect to

M,,, and A”are respectively given by:

5000 n 2 5000 . 2
k=1 My(n)‘k ] My k=1 [Ak ] My
Erim= 500 * ) x100 and  Eyn= e . 2 x100
[Tk-lvly [Tk-lvly]
k=1 k=1

For better analysis, this simulation experiments were repeated for different choices of .
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Similar steps are also followed for Population-I1. The simulation results in Table 3, Table

4 and Table 5 show the comparison of the proposed estimator T with respect to the

estimators I\A/Iy and A’respectively. For convenience the different choices of p are

(n)
considered as different sets for the considered Population-1 and Population-11, which are

shown below:

Sets Population-I Population-Il

I n=20; u=0.15 (m =17, u =3) n=15; 1 =0.13 (m =13, u=2)

1 n=20; u=025m=15u=5) | n=15;u=0.20 (m=12,u=3)
1l n=20; u=035(m=13,u=7) | n=15; u=0.30 (m= 10, u=5)

IV | n=20; u=0.50 (m=10,u=10) | n=15; p=0.40 (m = 9, u =6)

Table 1: Descriptive statistics for Population-1 and Population-1I

Population-I Population-11
Abortions | Abortions | Abortions | Production of | Production of z:‘oc(:jg?r??:
2004 2005 2007 Corn in 2007 | Corn in 2008
@ ) ) @) x) 2009
v)
M“’é‘fj?;‘n 23963.14 | 23651.76 | 23697.65 317997 294918.2 319313.7
Standard 11010.00 10410.00 9600.00 83740 66650 79730
Deviation 38894.81 38487.71 39354.65 565641.6 530483.7 563103.3
Kurtosis 12.02669 12.39229 14.42803 6.838888 6.492807 6.036604
SKEWNess 3.275197 3.310767 3.527683 2.638611 2.595704 2.499771
Minimum 80 70 90 2997 2475 2635
Maximum 208180 208430 223180 2376900 2188800 2420600
Count 51 51 51 41 41 41

19



Table 2: Comparison of the proposed estimator T (at optimal conditions) with respect to

the estimators I\7Iy(n) and A (at optimal conditions)

Population - | Population-11
I, 0.5411 0.6669
W 0.6800 0.7642
E, 1407.5 1401.3
E, 1034.9 916.80

Table 3: Monte Carlo Simulation results when the proposed estimator T~ is compared to

M,,, for population-1 and population-I1

Population-I Population-II

Set | 1 1] \Y | | Il v
\Ifl ‘L Elsim Elsim Elsim Elsim Elsim Elsim Elsim Elsim
0.1 |338.42 | 285.75 | 294.74 | 191.46 | 762.21 | 747.03 | 127.19 | 321.48
0.2 |330.71 | 291.82 | 320.22 | 238.4 | 860.29 | 644.25 | 140.93 | 364.51
0.3 | 315.85 | 288.81 | 333.44 | 254.30 | 971.34 | 536.15 | 154.84 | 397.27
0.4 | 282.71 | 288.70 | 326.08 | 276.75 | 1097.6 | 427.33 | 166.51 | 420.99
0.5 | 248.64 | 268.90 | 322.70 | 295.47 | 1219.7 | 340.46 | 172.53 | 413.40
0.6 | 210.41 | 249.90 | 299.55 | 301.46 | 1377.0 | 262.76 | 175.98 | 413.49
0.7 |178.81 | 220.94 | 269.87 | 304.12 | 1529.3 | 206.40 | 172.93 | 398.24
0.8 | 152.05 | 194.11 | 245.61 | 297.46 | 1707.7 | 166.72 | 166.51 | 369.96
0.9 |127.19 | 168.82 | 216.58 | 289.94 | 1855.9 | 136.86 | 161.50 | 336.32
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Table 4: Monte Carlo Simulation results for Population-1 when the proposed estimator

T is compared to A"

wd| w,» | 01| 02| 03| 04 | 05 | 06 | 07 | 08 | 09
| | 329.1 | 470.4 | 707.2 | 1017.2 | 1590.3 | 2211.0 | 2869.2 | 4255.0 | 5490.3
01 | E. | 1| 2694|2726 | 2914 | 4248 | 6810 | 7527 | 10233 | 15118 | 17909
' 2im | 111 | 285.6 | 233.2 | 273.0 | 320.1 | 430.9 | 624.4 | 770.1 | 1126.7 | 1353.6
IV | 205.2 | 188.5 | 168.7 | 168.4 | 198.1 | 230.3 | 318.0 | 419.5 | 559.2
| | 3403 | 456.3 | 714.2 | 1078.2 | 16853 | 2268.1 | 3064.6 | 4227.3 | 5437.1
02 | E. |11 |2858|2827 3126 | 4613 | 6781 | 8249 | 1150.8 | 1600.8 | 2034.9
' 2im | |11 | 295.9 | 251.1 | 279.7 | 3443 | 457.5 | 636.8 | 831.4 | 1126.8 | 1428.8
IV | 242.3 | 199.2 | 177.2 | 182.9 | 222.9 | 269.7 | 3515 | 483.4 | 6316
| | 3259 | 440.9 | 688.6 | 1071.6 | 1547.1 | 2158.4 | 2979.3 | 4060.1 | 5145.1
03 | E. | Il |2886 2854|3363 | 4753 | 6772 | 839.5 | 11876 | 16434 | 19834
' 2im | [1] | 298.7 | 264.8 | 287.5 | 358.9 | 456.2 | 642.1 | 8529 | 1159.3 | 1466.2
IV | 261.4 | 216.4 | 192.2 | 198.1 | 247.3 | 294.9 | 3915 | 529.6 | 6816
| [ 2982 | 411.3 | 624.7 | 967.3 | 1430.2 | 1975.9 | 2648.7 | 3594.8 | 4721.6
04 | E. | 1| 2849|2823 (3208 | 454.1 | 6504 | 8424 | 11521 | 1600.3 | 19465
' 2im | |11 | 289.6 | 265.6 | 284.4 | 3412 | 460.3 | 635.6 | 857.8 | 1142.6 | 1440.9
IV | 279.6 | 231.6 | 204.9 | 212.9 | 2635 | 314.2 | 4195 | 559.7 | 739.3
| | 2626 | 3582 | 548.2 | 883.8 | 1247.1 | 1709.9 | 22384 | 3128.2 | 4213.1
05 | E. || 2667|2637 | 3127 | 430.3 | 6207 | 7898 | 1072.8 | 14686 | 1775.0
' 2im | || | 274.8 | 251.4 | 270.1 | 327.9 | 442.0 | 616.1 | 820.8 | 1111.1 | 1404.6
IV | 296.9 | 246.8 | 219.2 | 222.8 | 273.9 | 331.8 | 440.8 | 586.7 | 765.7
| | 230.1 | 310.8 | 4636 | 754.2 | 1078.0 | 1509.3 | 2016.2 | 2669.3 | 3583.8
06 | E. | Il [2488|244.8 | 2833 | 4039 | 5658 | 730.9 | 10048 | 13365 | 16738
' 2im | [1] | 249.3 | 238.5 | 253.4 | 3146 | 412.2 | 5743 | 7753 | 1016.9 | 1336.2
IV | 303.9 | 256.0 | 226.1 | 231.7 | 283.7 | 343.1 | 456.8 | 600.3 | 783.1
| | 1945 | 257.1 | 396.7 | 625.2 | 9204 | 1275.6 | 1753.0 | 2249.7 | 2955.3
07 | E. | 11 [2260|2167 | 2529 | 3527 | 5124 | 656.3 | 9076 | 11820 | 14739
' 2im | |11 | 226.1 | 214.6 | 226.1 | 2859 | 382.3 | 532.1 | 706.8 | 898.9 | 1208.2
IV | 305.8 | 258.3 | 227.1 | 2355 | 284.2 | 346.9 | 459.8 | 599.8 | 788.4
| | 159.8 | 221.7 | 341.1 | 5234 | 757.4 | 1095.9 | 1515.0 | 1960.0 | 2478.9
0g | E. | 11|1934|190.9 | 2287 | 3202 | 4381 | 5806 | 8256 | 10375 | 132822
' 2im | |11 | 201.6 | 194.7 | 205.2 | 265.1 | 347.7 | 481.8 | 628.9 | 800.2 | 1082.0
IV | 299.9 | 256.9 | 223.5 | 233.7 | 283.7 | 341.6 | 453.7 | 589.5 | 7725
| | 1365 | 186.4 | 289.7 | 440.6 | 6359 | 939.3 | 1269.8 | 1663.2 | 2125.0
09 | E. | M| 1729|1659 | 2026 | 2887 | 373.1 | 5143 | 7098 | 8943 | 1160.4
' 2im | 11 | 182.2 | 167.1 | 185.0 | 234.8 | 309.8 | 4186 | 552.9 | 722.3 | 930.8
IV | 293.8 | 245.8 | 216.8 | 2253 | 272.8 | 329.7 | 4383 | 574.2 | 7427
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Table 5: Monte Carlo Simulation results for population-11 when the proposed estimator

T" is compared to A

v | v, 0.1 0.2 03 | 04 0.5 0.6 0.7 0.8 0.9
| | 1126.40 | 28605 | 5849.0 | 9978.9 | 14402.0 | 22607.0 | 30230.0 | 40853.0 | 46469.0
01 | Ezim| Il | 96119 | 1757.9 | 3077.6 | 5323.8 | 7930.8 | 11637.0 | 148050 | 208470 | 26905.0
' Il | 274.83 | 264.72 | 298.76 | 362.76 | 515.77 | 742.68 | 1006.7 | 1174.6 | 1320.8
IV | 448.87 | 445.82 | 537.81 | 641.19 | 1000.5 | 1320.8 | 1757.2 | 2256.2 | 3038.8
| | 87359 | 21983 | 4489.6 | 7729.9 | 11800.0 | 17466.0 | 22954.0 | 31590.0 | 3644.3
02 | Exim| Il | 83199 | 14722 | 25452 | 4305.6 | 6678.7 | 9960.1 | 13156.0 | 172500 | 23024.0
' I | 302.79 | 284.98 | 314.11 | 406.01 | 562.11 | 821.52 | 995.42 | 1259.0 | 1522.1
IV | 49559 | 481.24 | 567.79 | 708.65 | 1010.5 | 1426.0 | 1852.1 | 2354.0 | 3098.0
| | 621.89 | 159420 | 3184.1 | 5627.4 | 8573.0 | 12582.0 | 16513.0 | 22385.0 | 27277.0
03 | Ezsm| I | 68277 | 1160.0 | 2044.1 | 34053 | 5386.4 | 77703 | 103730 | 13378.0 | 179780
' Il | 328.74 | 312.90 | 338.97 | 448.28 | 617.43 | 8951 | 1079.6 | 13333 | 1719.8
IV | 528.81 | 521.64 | 667.01 | 761.28 | 1069.9 | 1502.1 | 1953.7 | 26454 | 3251.4
| | 44133 | 1136.90 | 2342.9 | 4039.8 | 6230.6 | 8970.8 | 11971.0 | 16010.0 | 20221.0
04 | Ezsm| Il | 54036 | 90532 | 1585.1 | 2637.0 | 4066.8 | 5938.0 | 8098.8 | 10354.0 | 137080
' Il | 349.27 | 334.32 | 366.96 | 469.80 | 658.16 | 909.27 | 11315 | 14551 | 1817.1
IV | 557.80 | 535.90 | 625.09 | 792.63 | 1111.7 | 15342 | 20223 | 2703.7 | 3360.2
| | 325.32 | 829.35 | 1693.8 | 2954.8 | 4550.0 | 6503.2 | 8647.7 | 11725.0 | 14875.0
05 | Exim| Il | 42309 | 68555 | 12051 | 20620 | 3128.3 | 44917 | 6008.1 | 78438 | 10477.0
' Il | 358.42 | 347.77 | 382.11 | 498.04 | 683.40 | 938.99 | 11726 | 1524.7 | 1908.0
IV | 552.30 | 537.56 | 627.89 | 796.60 | 1104.7 | 1536.0 | 2036.20 | 2690.1 | 33716
| | 247.94 | 628.85 | 1282.4 | 2233.8 | 3406.2 | 4921.7 | 66124 | 88695 | 11284.0
06 | Ezm| Il | 32645 | 53146 | 95437 | 1614.8 | 2416.2 | 34491 | 47208 | 61524 | 80219
' 11l | 369.80 | 356.29 | 390.36 | 507.65 | 697.08 | 953.09 | 11939 | 15535 | 1966.7
IV | 545.08 | 519.34 | 607.57 | 778.51 | 1081.1 | 1486.7 | 1976.3 | 2607.6 | 3256.7
| | 191.82 | 481.70 | 989.78 | 1738.2 | 2659.8 | 3832.4 | 51615 | 6844.7 | 8705.7
07 | Ezsim| I | 25624 | 42116 | 747.44 | 1246.6 | 1864.4 | 27961 | 3789.1 | 48362 | 6404.1
' Il | 368.09 | 357.34 | 391.04 | 507.07 | 692.18 | 943.99 | 1198.0 | 1548.7 | 1972.1
IV | 523.74 | 448.94 | 569.41 | 738.38 | 1020.9 | 1405.1 | 1886.9 | 2452.8 | 3067.3
| | 154.29 | 383.89 | 790.48 | 13855 | 2112.4 | 3041.20 | 4114.9 | 53769 | 69495
0g | Ezim| Il | 20636 | 33556 | 604.62 | 1004.1 | 15075 | 22837 | 30623 | 3868.2 | 5119.9
' Il | 361.45 | 347.49 | 391.04 | 490.64 | 667.61 | 915.93 | 1161.0 | 1510.2 | 1915.8
IV | 488.89 | 463.14 | 526.20 | 689.27 | 941.81 | 1304.0 | 1735.1 | 22544 | 2837.2
| | 12489 | 31043 | 635.21 | 1100.2 | 17141 | 24584 | 33025 | 43623 | 56012
09 | Ezim| Il | 16907 | 27188 | 498.12 | 826,69 | 12454 | 18556 | 24935 | 3160.4 | 42116
' Il | 346.69 | 330.68 | 379.63 | 469.72 | 629.28 | 869.77 | 11142 | 14380 | 1843.1
IV | 445.87 | 41345 | 477.73 | 615.16 | 848.82 | 1179.9 | 1569.1 | 2032.7 | 2622.9
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9. Analysis of Empirical and Simulation Results

1. From table 2, it is visible that the optimum values of p (fraction of fresh sample to be
drawn at current occasion) exist and this value for the estimator T is less than that of the
estimator A for both the considered populations. This indicates that the use of additional

auxiliary information at both the occasion reduces the cost of the survey.

2. Appreciable gain is observed in terms of precision indicating the proposed estimator T

(at optimal condition) is preferable over the estimators |\7Iy(n) and A (at optimal condition).

This result justifies the use of additional auxiliary information at both the occasions in

two-occasion successive sampling.
3. The following conclusion may be observed from Table 3 and Figure 3:

(i) For Set-1 of Population-I, the value of E, decreases as the value of v, increases. This

1sim
result is expected as for Set-1, the value of p is very less, however for Set-1 of Population-

Il, E, increases with the increasing value of v, .

1sim

(i) For Set-11, 111 and 1V, of the Population-I, the value of E,_first increases and then

1sim
start decreasing with the increasing value of v, , however no specific pattern is observed

for set I1, 111 and 1V of Population-II.
25



(iii) For all the considered combinations appreciable gain in precision is observed when
the proposed estimator is compared with sample median estimator. Hence, the use of

additional auxiliary information at both the occasions is highly justified.
4. The following points may be noted from Table 4, Table 5 and Figures 4, 5, 6 and 7:

(i) For fixed value of v, and v, ,the value of E,_ decreases with the increasing value of

2sim
u, except for few combinations of v, and y, for Population-1, however, no specific

pattern is observed for Population-II.

(if) For fixed value of w, and pn and increasing value of wv,,the value of E also

2sim

increases, except for few combinations.

(iif) For fixed value of v,, and lower value of p, the value of E, decreases with

2sim

increasing value of y, however for higher value of p, the value of E,, increases with

2sim

the increasing value of , except for few combinations.
(iv) Tremendous gain in precision is obtained for all the considered cases.

10. Conclusion

From the analysis of empirical and simulation results it can be concluded that the
proposed estimator T is favourable in terms of efficiency with respect to the standard
sample median estimator, where there is no matching from previous occasion. The
estimator T also proves to be much better than the estimator A, when no additional
auxiliary information is used at any occasion. Therefore, the use of additional auxiliary
information at both the occasions in two occasion successive sampling for estimating
population median at current occasion is highly rewarding in terms of precision and
reducing the total cost of survey. Hence, the proposed estimators may be recommended

for further use by survey practitioners.
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CHAPTER - 2°

A Class of Estimators for Population Median

In Two Occasion Rotation Sampling

* Following is the publication based on the work of this chapter:--
Priyanka, K. and Mittal, R. (2015): A Class of Estimators for Population Median in

Two Occasion Rotation Sampling. HIMS, Vol. 44, No. 1, 189 — 202.
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A Class of Estimators for Population Median
In Two Occasion Rotation Sampling

1. Introduction

When both, the characteristic and the composition of the population change over
time, then the cross-sectional surveys at a particular point of time become important. The
survey estimates are therefore time specific, a feature that is particularly important in some
context. For example, the unemployment rate is a key economic indicator that varies over
time, the rate may change from one month to the next because of a change in the economy
(with business laying off or recruiting new employees). To deal with such kind of
circumstances, sampling is done on successive occasions with partial replacement of the

units.

The problem of sampling on two successive occasions was first considered by
Jessen (1942), and latter this idea was extended by Patterson (1950), Narain (1953), Eckler
(1955), Gordon (1983), Arnab and Okafor (1992), Feng and Zou (1977), Singh and Singh
(2001), Singh and Priyanka (2008a), Singh et al. (2012) and many others. All the above
efforts were devoted to the estimation of population mean or variance on two or more

occasion successive sampling.

Often, there are many practical situations where variables involved, consists of
extreme values and resulting strong influence on the value of mean. In such cases the
study variable is having a highly skewed distribution. For example, the study of
environmental issues, the study of income as well as expenditure, the study of social evils
such as abortions etc...In these situations, the mean as a measure of central tendency may
not be representative of the population because it moves with the direction of asymmetry

leaving the median as a better measure since it is not affected by extreme values.
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Most of the studies related to median have been developed by assuming simple
random sampling or its ramification in stratified random sampling (Gross (1980),
Sedransk and Meyer (1978), Smith and Sedransk (1983)).

As noted earlier, a large number of estimators for estimating the population mean
at current occasion have been proposed by various authors, but only a few efforts (namely
Martinez-Miranda et al. (2005), Singh et al. (2007) and Rueda and Munoz (2008)) have
been made to estimate the population median on current occasion in two occasion

successive sampling.

The present work develops a one-parameter class of estimators that estimate the
population median on the current occasion in two-occasion successive sampling. The
proposed class of estimators includes some of the estimators proposed by Singh et al.

(2007) for second quantile as particular cases.

Asymptotic expressions for bias and mean square error including the asymptotic
convergence of the proposed class of estimators are derived. The optimum replacement
strategies are discussed. The proposed class of estimators at optimum conditions is
compared with sample median estimator when there is no matching from the previous
occasion as well as with some of the estimators due to Singh et al. (2007) and few other
members of its class. Theoretical results are justified by empirical interpretation with the

help of some natural populations.

2. Sample Structure and Notations

Let U= (U,U,,..,U,) be the finite population of N units, which has been sampled

over two occasions. It is assumed that size of the population remains unchanged but values
of units change over two occasions. The character under study be denoted by x (y) on the
first (second) occasions respectively. Simple random sample (without replacement) of n
units is taken on the first occasion. A random subsample of m = nX units is retained for
use on the second occasion. Now at the current occasion a simple random sample (without

replacement) of u= (n-m) = nu units is drawn afresh from the remaining (N-n) units of the
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population so that the sample size on the second occasion is also n.pand A, (H + x=1) are

the fractions of fresh and matched samples respectively at the second (current) occasion.

The following notations are considered for the further use:

M,, M, : Population median of the variables x and y respectively.

M, (n),M, (m), M, (m), M, (u) : Sample medians of the respective variables shown in
suffices and based on the sample sizes given in braces.

f, (MX) f (I\/Iy) . The marginal densities of variables x and y respectively.

Ty
3. Proposed Class of Estimators

To estimate the population median M, on the current (second) occasion, two independent

estimators are suggested. One is based on sample of the size u= nu drawn afresh on the

current (second) occasion and which is given by

T,=M,(u) (1)
Second estimator is a one-parameter class of estimators based on the sample of size

m = nA common to the both occasions and is defined as

(A+C)M,(n) +fBM,(m)
(A+fB)M,(n) +CM,(m)

~

Ty (d) =M, (m)

2)

A= (¢-1)(0-2), B= (d-2)(c4), C= (d-2)(d-3)(c4) and f=—
where d is a non-negative constant, identified to minimize the mean square error of the
estimator T, (d).
Now considering the convex linear combination of the estimators T, and T,,(d), a class
of estimators for M is proposed as

Ty =0T,+(1-9) T,(d) ©)
where ¢ is an unknown constant to be determined so as to minimise the mean squared

error of the class of the estimators T, .
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Remark 3.1: For estimating the median on each occasion, the estimator T, is suitable,

u
which implies that more belief on T, could be shown by choosing ¢ as 1 (or close to 1),
while for estimating the change from occasion to occasion, the estimator T, (d) could be
more useful so ¢ might be chosen 0 (or close to 0). For asserting both problems
simultaneously, the suitable (optimum) choice of ¢ is desired.

Remark 3.2: The following estimators can be identified as a particular case of the
suggested class of estimators fd to estimate population median on the current occasion in
two occasion successive (rotation) sampling for different values of the unknown
parameter ‘d ’:

(i) . =0, T, + (1-¢,) T, (1); (Ratio type estimator)

m

(i) T,=¢, T, + (1-¢,) T,(2); (Product type estimator )

m

(i) T,=0¢, T, + (1-9,) T,(3); (Dual to Ratio type estimator

m

T, (3) = My(m){” '\7'x(_n) -I\[;X'\;/'g(m)}

m)M, (n)

and ¢, (i=1, 2, 3) are unknown constants to be determined so as to minimize the mean

squared errors of the estimators T, (i=1, 2, 3).

Remark 3.3: The Ratio and Product type estimators, proposed by Singh et al. (2007) for
second quantile become particular cases of the proposed family of the estimators 'i'd for

d=1and 2 respectively.
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4. Properties of the Proposed Class of Estimators

The properties of the proposed class of estimators 'i'd are derived under the following
assumptions:

(i) Population size is sufficiently large (i.e. N — oo), therefore finite population
corrections are ignored.

(i) AsN — oo, the distribution of the bivariate variable (x, y) approaches a continuous

distribution, which depend on population under consideration with marginal densities

f.(.) and f,(.) respectively, (see Kuk and Mak(1989)).

(iii) The marginal densities f, (.) and f, (.) are positive.

(iv)The sample medians M, (u), M, (m), M, (m)and M, (n) are consistent and
asymptotically normal (see Gross (1980)).

(V) Following Kuk and Mak (1989), P,, is assumed to be the proportion of elements in the

population such that x < I\A/IX and y < My.

(vi)The following large sample approximations are assumed:

A

M, (u) = M,(1+e), M,(m)=M,(1+e), M, (m)=M,(L+e,), M (n) = M,(1+e,)
such that|e,|<1Vvi=0,1,2 and 3.

The values of various related expectations can be seen in Allen et al. (2002) and Singh

(2003). Under the above transformations, the estimators T, and T, (d) takes the

following forms:

T, :My(1+e0) 4)
T,(d) =M [1+e +de, +de, -dqe; -dse, -dd.e; -dd,ee, -d,dsee,

- d2d4e§ + d§e§ + dieg +2d,d,ene, + (dl' d3)e1e3 + (dz' d4)e1e2]

A+C _ fB __A+fB . C
A+fB+C ? A+fB+C ° A+fB+C " A+fB+C’

where d, =
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Thus we have the following theorems:

Theorem 4.1: The bias of the estimator 'T'd to the first order of approximation is obtained

B(1,) = (2-0) B {1, (4) ®
where B{T, ()} = = Q, + = Q, (7)
v (d,-d,)(P, _0'25){fY(My|&:{|\f/|XX(MX)}1
and  Q,=(-d,d, + di)%
A _0_25){fy(Myh)j:{hfﬂxx(Mx)}'l |

Proof. The bias of the estimator 'i'd is given by
B{T,} =€ {T,-M™,}
=B {T,} + (1-9)B {T,(d)} ®)
Since, the estimator T, is unbiased for M, and T, (d) is biased for M, , so the
bias of the estimator T, (d)is given by
B {T, (&)} =E {Tu(d) -M,
Now, substituting the value of T, (d) from equation (5) in the above equation we get the
expression for bias of T, (d) as in equation (7).
Finally substituting the value of B{T, (d)} in equation (8), we get the expression for the

B{T’d} as in equation (6).
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Theorem 4.2: The mean square error of the estimator 'T'd is given by

M('i’d) =’ V(T,) + (1-90)* M (Ta(d)),, (9)
f 2
where V(T,) = %—{ y(';/ly)} (10)
1 1 1) . .
and M(Tm(d))opt‘ = At (H - Hj{a A, +20A, (11)

e, = ORI 00

4 7 4

As

1
—~
O
X
1
o
N
(6]
~—
—_——
—r
<
—~
<
N—
——
—~—
—
X
—
x
N—"
——
[uN
1
<
I

fB-C

-d,)=————and d, is the opti
(dy -dy) Arrprcd do is the optimum

o = [a]d:do , a=(d, -d,) =
value of d.

Proof: The mean square error of the estimator fd is given by

M(T,) =€ [T-M, ] =E [0 (T, -M,) + (1-0){T, (d) -M,} |’

=¢’ V(T,) + (1-9)’M[T,(d)] +2¢ (1-¢) Cov(T,, T, (d)) (12)
where V (T,) = E[T, -M, ] (13)
and M [T, (d)]=E[T,(d)-M,]’ (14)

As T, and T, (d) are based on two independent samples of sizes u and m respectively,

hence Cov(T,, T, (d))=0. Now, substituting the values of T, and T, (d) from equations
(4) and (5) in equation (13) and (14) respectively, taking expectations and ignoring finite
population corrections we get the expression for V(Tu)as in equation (10) and mean

square error of T, (d)is obtained as

M [T, (d)] = F A, + (i - lj{azAz +2 aAs}}

m m n



A, = (pyx-0.25){fy(|v|y)}'l{fx(Mx)}_l{%}

fB-C

ando = (d2 -d4) = (ds -dl):m
The mean square error of the T, (d)is a function of o, which in turns is a function of d,

hence it can be minimized for d, and therefore we have

o{M[T, (d)]}

od
This gives a=—2 , assuming % # 0 which in turns yields a cubic equation in ‘d’
2
given by
z,d*+z,d*+z,d+2,=0 (15)
wherez, = [ﬁ -1}22 = (F+9) + 25(f-8),2, = (-5f-26) + 23(23-5F)
AZ A2 2
— A3
andz, = (4f+24) + —=2(41-22).

2

Now for given values of M, M,,f (M,) andf, (My) one will get the three optimum

y! X
values of d for which M[Tm (d)] attains the minimum value. The possibility of getting

negative or imaginary roots cannot be ruled out. However, Singh and Shukla (1987) has

pointed out that for any choice of f, M _, M

y?! X

f,(M,) andf, (M, ), there exists at least
one positive real root of the equation (15) ensuring that M [Tm (d)] attaints its minimum

within the parameter space (0, «). Since, there may exist at most three optimum values

of d, a criterion for suitable value of optimum d may be set as follows: “Out of all possible

values of optimum d, choose d =d,as an adequate choice, which makes ‘B[Tm(d)]‘

smallest”.
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Hence, the minimum mean square error of T, (d) is given by

1 1 1
M[Tm (d):lop'[. = E A+ (E - H] A, (16)
2
f (M
where A, = M’ A, = a*zAz +20'A,, and o = [a]d:do .

4
Further, substituting the expression for V(Tu) and M [Tm (d):lopt. in equation (12) we get

the expression for M ('i’d) as in equation (9).

Remark 4.1: The cubic equation (15) depends on the population parameters

P T, ( I\/Iy) and f, (M, ). If these parameters are known, the proposed estimator can be

easily applied. Otherwise, which is the most often situation in practice, the unknown
population parameters are replaced by their sample estimates. The population proportion
P,, can be replaced by the sample estimate Pyx and the marginal densities
f, (My) and f, (M, ) can be substituted by their kernel estimator or nearest neighbour
density estimator or generalized nearest neighbour density estimator related to the kernel
estimator (Silverman (1986)). Here, the marginal densities fy(My) and f, (M, )are
replaced by f, (I\A/Iy (m)) and fx (I\A/IX (n)) respectively, which are obtained by method of

generalized nearest neighbour density estimation related to kernel estimator.

To estimatefy(My) and f, (M,), by generalized nearest neighbour density estimator
related to the kernel estimator, following procedure has been adopted:
Choose an integer h =~ n’2 and define the distance 8(xy, x,) between two points on the
line to be|x, - X,|.

For M, (n) , define 81(1\7[X (n))sSZ(MX (n))S- .- <3, (MX (n)) to be the distances,

arranged in ascending order, from I\A/IX (n) to the points of the sample.

The generalized nearest neighbour density estimate is defined by
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f(n,(n)) =

1
nd, (M, (n)) = |8, (M, (n))
where the kernel function K, satisfies the condition j K(x)dx=1.

1.,
. . : 1 -3~
Here, the kernel function is chosen as Gaussian Kernel given by K(x) = o € (2 ]
T

The estimate of fy(My) can be obtained by the above explained procedure in similar
manner.
Theorem 4.3: The estimator'i'd, its bias and mean square error are asymptotically
convergent to the estimator 'i’l, its bias and mean square error respectively for large d.
Proof: Taking limit as d — oo in equation (3) we get

limT, =9 T, + (1-¢)limT, (d)
Since,d # 0, dividing numerator and denominator of the second term in R.H.S. of above
equation by d*and taking limitas d — oo, we have

limT, =T, + (1-9)T,(1) =T,
This is the ratio type estimator to estimate population median in two occasion rotation
sampling as given in Remark 3.2. Similarly, using the expressions of bias and mean square
error of the estimator T, , it is easy to see that

lims{T,} =B{T)
and

imwa{7,} = m{t}
Thus the proposed class of estimators converges to a well-defined estimator even if one
chooses arbitrary, a larger value of the unknown parameter d. The bias and mean squared
error also tends asymptotically to that of ratio type estimator to estimate finite population

median. There is no need to bother about the existence of the estimator while choosing a

larger value of d.
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5. Minimum Mean Squared Error of the Proposed Class of Estimators T

Since, mean squared error of 'T'd in equation (9) is function of unknown constant¢,
therefore, it is minimized with respect to ¢ and subsequently the optimum value of ¢ is

obtained as

M (T, (d)],,.

oo =y (T,) +M {T, (d)}om

(17)

and substituting the value of ¢, from equation (17) in equation (9), we get the optimum

mean square error of the estimator T, as

A _ V(TU)' M {Tm (d)}opt.
T ARTAT)

(18)

opt.
Further, by substituting the values from equation (10) and equation (11) in equation (18),

we get the simplified value of M('i‘d) as

A _ Al[Al + HA4]
M(Td )opt. - n |:A1 + H2A4:| (19)

where u(z u/n) is the fraction of fresh sample drawn on the current (second) occasion.
Again M ('i'd) derived in equation (19) is the function of u. To estimate the population
opt.

median on each occasion the better choice of p is 1(case of no matching); however, to
estimate the change in median from one occasion to the other, pshould be O(case of
complete matching). But intuition suggests that an optimum choice of p is desired to

devise the amicable strategy for both the problems simultaneously.
6. Optimum Replacement Policy

The key design parameter affecting the estimates of change is the overlap between
successive samples. Maintaining high overlap between repeats of a survey is operationally

convenient, since many sampled units have been located and have some experience in the
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survey. Hence to decide about the optimum value of p (fraction of sample to be drawn

afresh on current occasion) so that M, may be estimated with maximum precision, we
minimize M('i'd) in equation (19) with respecttop .
opt.

The optimum value of p so obtained is one of the two roots given by

-A LA (A +HA
W= 1 1( 1 4) (20)
A4

The real value of p exists, iff A, (A,;+A,)>0. For any situation, which satisfies this

condition, two real values of p may be possible , hence in choosing a value of p, care
should be taken to ensure that 0<[1 <1 , all other values of p are inadmissible. If both
the real values of p are admissible, the lowest one will be the best choice as it reduces the
total cost of the survey. Substituting the admissible value of p say p, from equation (20)

in equation (19), we get the optimum value of the mean square error of the estimator fd
with respect to ¢ and p both as

- Al[Al * o A4]
@ N I:Al + Mg A4]

M(T,)

7. Efficiency Comparison

To evaluate the performance of the estimator T, , the estimator T, at optimum conditions

~

is compared with respect to the estimator M, (n)(the sample median), when there is no

matching from previous occasion. Since, I\7Iy(n) is unbiased for population median, its

variance for large N is given by

-2

V[l\?ly(n)] — %{fY('\jY)} (21)
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The percent relative efficiency of the estimator 'T'd (under optimal condition) with respect

to M, (n) is given by

A V| M, (n
PRE. (T, M,(n)) = M x 100 (22)
M(T,

opt.
The estimator 'i'd (at optimal conditions) is also compared with respect to the estimators

T,, T, and T, respectively. Hence for large N, the expressions for optimum mean squared

errors of T,, T, and T, are given by

Sy A[A A £) = AudA T A
)opt.* B n l[ All + “112 A:] ' M (T2 >opt.* - n 1[All + H:ZA:}
_ Al[Al * U A7]

n

|:A1 + H32A7]

where s, = A 2 A A A, LA E A A A,

A5 > o = AG
-2
_ 'Ali\/Alz"'Al A, A= {fy(My)}
Hs™ A ) 1= 4—>
7
f Y f
A=A, -2A, A=A,+2A, and A, = (mj A, +2(mjA3.
fx(Mx) B MZ -1 1| M
WherEAz - { 4 } |:|\/|§:| and A3 = (PYX_O'ZS){fY(MY)} {fx(Mx)} l|:M_Z:|

The percent relative efficiencies of fd at optimum conditions with respect to the
estimators T, for i=1, 2 and 3 at optimum conditions are given by
M |:T' :|opt,*

M (-i-d )opt.*

PRE. (T, T)= x 100 for i=1,2 and 3
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8. Numerical Illustrations

The various results obtained in previous sections are now illustrated using two natural
populations.

Population Source: [Free access to the data by Statistical Abstracts of the United States]

In the first case, a real life situation consisting N=51 states of United States has been
considered. Let y, represent the number of abortions during 2007 in the i state of U.S.
and x, be the number of abortions during 2005 in the i" state of U.S. The data are

presented pictorially in Figure 8.1 as under:

2.4E5

—e— 2005
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—8— 2007

2E5

1.8E5

1.6E5

1.4E5
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Figure 8.1 Number of Abortions during 2005 and 2007 versus different states of U.S.

Similarly in the second case, the study population consist of N=51 states of United States

for year 2004. Let y, (study variable) be the percent of bachelor degree holders or more in
the year 2004 in the i" state of U.S. and x; be the percent of bachelor degree holders or

more in the year 2000 in the i" state of U.S. The data are represented pictorially in Figure

8.2 as under:
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Figure 8.2 Percent of Bachelor Degree Holders or More during 2000 and 2004 versus Different
States of U.S.

The graph in Figure 8.1 shows that the distribution of number of abortions in different
states is skewed towards right. Similar graph is obtained for population-11 as indicated in
Figure 8.2. One reason of skewness may be the distribution of population in different
states, that is, the states having larger populations are expected to have larger number of
abortion cases and the larger percent of bachelor degree holders or more for the second
case as well. Thus skewness of the data indicates that the use of median may be a good
measure of central location than mean in such a situation.

Based on the above description, the descriptive statistics for both populations have been
computed and are presented in Table 1.
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Table 1 Descriptive Statistics for Population-1 and Population-I1

Population-1 Population-11

Number of Number of % of Bachelor % of Bachelor

Abortions in | Abortions in Degree Holders Degree Holder

2005 2007 or more in 2000 | or more in 2004
Mean 23651.76 23697.65 27.19 27.17
Standard Error 5389.35 5510.75 0.65 0.75
Median 10410.00 9600.00 24.60 25.50
Standard 38487.71 39354.65 4.66 5.40

Deviation

Kurtosis 12.39 14.42 0.29 1.67
Skewness 3.31 3.52 0.40 0.89
Minimum 70.00 90.00 15.30 15.30
Maximum 208430.00 223180.00 30.30 45.70

For the two populations under consideration, the cubic equation (15) is solved for d for

some choices of “f”. The optimum mean square errors of the proposed class of estimators
are found to be same for all the three values of “d” obtained. So, using the criteria set in

the proof of theorem 4.1, Table 2 shows the best choice of the optimum value of “d” for

different choices of “f” for both, Population-1 and Population-II.

Table 2: Best choice of d for Population-1 and Population-I1, for different choices of f

Population-I Population-I1
; d |Bias| d, d |Bias| d,
10.0002 3.6526 22.8356 0.1419
0.9800 24170 0.3097 2.4170 2.3533 0.1089 2.3553
1.4705 4.1206 1.2030 0.1467
10.7520 1.8948 2.5878 1.3940
0.1960 2.6449 1.2919 2.6449 25.5834 0.0702 25.5834
1.3740 2.1515 1.1537 0.0748
11.5280 1.3005 11.5280 28.3715 0.0486 28.3715
0.2941 2.8115 1.5131 2.7621 0.1526
1.3146 1.4675 1.1244 0.0504
12.3230 0.9984 12.3230 31.1885 0.0367 31.1885
0.3922 2.9414 1.5271 2.8979 0.1562
1.2729 1.1168 1.1047 0.0381
13.1327 0.8141 13.1327 34.0268 0.0296 34.0268
0.4902 3.0462 1.4584 3.0070 0.1532
1.2417 0.9026 1.0905 0.0306
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Table 3: Optimum value of p and percent relative efficiencies of 'T'd at optimum conditions

With respect to M, (n) and T, for i=1, 2 and 3 at optimum conditions

Population-I Population-11
f 0.9800 0.9800
d, 2.4170 2.3553
K, 0.6800 0.6271
P.RE. (T, M, (n)) 136.00 125.41
PRE. (T, T,) 103.33 100.16
PRE. (T, T,) 206.73 173.48
PRE. (T, T,) 128.93 120.81

9. Interpretation of Results and Conclusion
(i) From Table 2, it can clearly be seen that the real optimum value of d always exists for

both the considered populations. This justifies the feasibility of the proposed class of

estimators T, .

(if) From Table 3, it can be seen that the optimum value of p also exist for both the

considered populations. Hence, it indicates that the proposed class of estimators 'i'd is quite

feasible under optimal conditions.

(iii) Table 3 indicates that the proposed class of estimators fd at optimum conditions is
highly preferable over sample median estimator I\A/Iy (n) It also performs better than the
estimators 'i'l and 'i'2 which are the estimators proposed by Singh et al. (2007) for second

quantile. It also proves to be highly efficient than the estimator t which is a Dual to Ratio

type estimator, a member of its own class.
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Hence, it can be concluded that the estimation of median at current occasion is

certainly feasible in two occasion successive sampling. The enchanting convergence
property of proposed class of estimators 'i'djustifies the incorporation of unknown
parameter in the structure of proposed class of estimators, since the optimum value of the
parameter always exists. Hence the proposed class of estimators 'T'd can be recommended

for its further use by survey practitioners.
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CHAPTER - 3°

Searching Effective Rotation Patterns for
Population Median using Exponential Type
Estimators in Two-Occasion Rotation
Sampling

* Following is the publication based on the work of this chapter:--

1. Priyanka, K. and Mittal, R. (2016): Searching Effective Rotation Patterns for
Population
Median using Exponential Type Estimators in Two-Occasion Rotation Sampling.
Communication in Statistics (Theory and Methods), DOI:
10.1080/03610926.2014.944661.
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Searching Effective Rotation Patterns for
Population Median using Exponential Type
Estimators in Two-Occasion Rotation
Sampling

1. Introduction

When both, the characteristic and the composition of the population change over time,
then the cross-sectional surveys at a particular point of time become important. The survey
estimates are therefore time specific, a feature that is particularly important in some
context. For example, the unemployment rate is a key economic indicator that varies over
time, the rate may change from one month to the next because of a change in the economy
(with business laying off or recruiting new employees). To deal with such kind of
circumstances, sampling is done on successive occasions with partial replacement of the

units.

The problem of sampling on two successive occasions was first considered by
Jessen (1942), latter this idea was extended by Patterson (1950), Narain (1953), Singh
and Priyanka (2008a), Singh et al. (2013a) and many others.

All the above efforts were devoted to the estimation of population mean or
variance on two or more occasion successive sampling while there are many practical
situations where variables involved, consists of extreme values and resulting strong
influence on the value of mean. In such cases the study variable is having highly skewed
distribution and mean may offer the result not enough to be representative because it
moves with the direction of asymmetry. The median, on the other hand does not suffer

from extreme values.

Most of the studies related to median have been developed by assuming simple
random sampling or its ramification in stratified random sampling (Gross (1980),
Sedransk and Meyer (1978), Smith and Sedransk (1983)) considering only the variable of
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interest without making explicit use of auxiliary variables. It is well known that the use of
auxiliary information at the estimation stage can typically increase the precision of

estimates of a parameter.

Exponential type estimators also play a vital role in increasing the precision of the
estimates. Bahl and Tuteja (1991) was the first to propose the exponential ratio and

product type estimators for the estimation of finite population mean.

Motivated with their work, the present work develops more effective and relevant
estimators using exponential ratio type estimators for population median at current
occasion in two occasion successive sampling. Properties of the proposed estimators are
discussed. Optimum replacement strategies are elaborated for the proposed estimators.

Proposed estimators at optimum conditions are compared with the sample median
estimator when there is no matching from the previous occasion as well with the ratio type
estimator proposed by Singh et al. (2007) for second quantile, when no additional
auxiliary information was used at any occasion. The behaviours of the proposed estimator
are justified by empirical interpretations and validated by the means of simulation study
with the help of some natural populations.

2. Sample Structure and Notations

Let U= (U,U,, .., Uy) be the finite population of N units, which has been sampled over

two occasions. It is assumed that size of the population remains unchanged but values of
units change over two occasions. The character under study be denoted by x (y) on the
first (second) occasions respectively. It is assumed that information on an auxiliary
variable z, whose population median is known and stable over occasions is readily
available on both the occasions and highly correlated to x and y respectively. Simple
random sample (without replacement) of n units is taken on the first occasion. A random
subsample of m = n)X units is retained for use on the second occasion. Now at the current
occasion a simple random sample (without replacement) of u= (n-m) = np units is drawn

afresh from the remaining (N-n) units of the population so that the sample size on the

second occasion is also n.pand A(p +A=1) are the fractions of fresh and matched samples
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respectively at the second (current) occasion. The following notations are considered for
the further use:

M,, M,, M, : Population median of the variables x, y and z respectively.

|\7|y(u), M, (u): Sample median of variables y and z based on the sample size u.

M, (m), |\7|y(m), M, (m): Sample median of variables X, y and z based on the sample size
m.

M, (n), M, (n): Sample medians of variables x and z based on the sample size n.

f.(M,), f, (My), f,(M,): The marginal densities of variables X, y and z respectively.

3. Proposed Estimators T;; (i, j =1, 2)
To estimate the population median M, on the current (second) occasion, two sets of

estimators have been proposed utilizing the concept of exponential ratio type estimators.

First set of estimators (7, T,,} is based on sample of the size u= np drawn afresh on the

current

(second) occasion and the second set of estimators (T, T, ! is based on sample size

m = nA common to the both occasions. The two sets of the proposed estimators are given

.
o) ’
— exp(%] 2

ahere i (m)= . () expmz; “&((TnUM(m) i, (m) ep[:ﬂ”“”ﬂ((?)j
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and K% (n)= NI, (n) exp[ I\/Iz-l\zlz(n)}

M,+ M, (n)
Considering the convex linear combination of the two sets of estimators T, (i = 1, 2) and

T,m(i=1,2), we have the final estimators of population median M, on the current
occasion as

Ti=o,T, +(1'(Pij) Jm’(lj_l 2) )
where o, (i,j=1,2) are the unknown constants to be determined so as to minimise the

mean squared error of the estimators T;;(i, j=1, 2).

Remark 3.1: For estimating the median on each occasion, the estimators T, ( =1, 2)
are suitable, which implies that more belief on T, could be shown by choosing
0;; (i,j =1, 2)as 1 (or close to 1), while for estimating the change from occasion to

occasion, the estimators T, (j=1, 2) could be more useful so ¢;; might be chosen as 0 (or

close to 0). For asserting both problems simultaneously, the suitable (optimum) choices

of ¢,; are desired.

4. Properties of the Proposed Estimators T;; (i, j =1, 2)
4.1. Assumptions

The properties of the proposed estimators T, (i, j =1, 2) are derived under the following

assumptions:

(i) Population size is sufficiently large (i.e. N — o), therefore finite population

corrections are ignored.

(ii) AsN — oo, the distribution of the bivariate variable (a, b) where aand be{x,y, z}
and a = b approaches a continuous distribution with marginal densities f,(.) and f,(.)

respectively, (see Kuk and Mak (1989)).
(iii) The marginal densities f, (.), f,(.) and f,(.) are positive.
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(iv) The sample medians M, (u), M, (m), M, (m), M, (n), M, (u), M, (m) and M, (n)

are consistent and asymptotically normal (see Gross (1980)).

(v) Following Kuk and Mak (1989), let P, be the proportion of elements in the population

such thata<m, and b<M, where aandbe{x,y,z} and a = b.

(vi) Following large sample approximations are assumed:

M, (u) = M (1+e,), M,(m) = M,(1+e,), M (m) = M, (L+e,),M,(n) = M, (1+e,)
M,(u) = M,(1+e,),M,(m) = M,(L+e;) and M,(n) = M, (1 +e,) suchthate|<1
vi=0,1,2345and6.

The values of various related expectations can be seen in Allen et al. (2002) and Singh
(2003).

4.2. Bias and Mean Square Error of the Estimators T;; (i, j =1, 2)

The estimators T, and T, (i, j=1, 2) are ratio, exponential ratio, ratio to exponential ratio
and chain type ratio to exponential ratio type in nature respectively. Hence they are biased
for population median M, . Therefore, the final estimators T, (i, j =1, 2) defined in equation
(5) are also biased estimators of M, . Bias B(.) and mean square errors M(.)of the
proposed estimators T;, (i, j =1, 2)are obtained up to first order of approximations and thus

we have following theorems:

Theorem 4.2.1.Bias of the estimators T; (i,j =1, 2) to the first order of approximations

are obtained as

B(T;) =, B(T.) + (1-9;) B(Tn): (i, j=1,2) (6)
where B(T,,) = % [fz('\:llz'\)/ll'z M, (4 P, - 1)[fy (4|\/|'\j|)] 1 I:fZ(Mz):I 1 o
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a7, - 1 F[fz 01w, (45600 T 0] J ®
B(T.)= L {[fx(Mx)TMy L 3R(M)] "™, (4 Py - Y[R MO][F, ()]
™ m 4 M2 32 M? 4M,
(@RI M)] TR M)]" | (ep, -1)[fx<Mx>]'l[fz(Mz)TMy}
8M, 8M, M,
; 1{(4 P DL (MO (M) (4P D[F(M)]'[£.(M)] "M,
n 4M, 8M, M,
] [fx('\jx&]i' 'V'y} )
oty A [T M, (4P 38 (MOT'E ()] a8 [r (M) M,
(Ten) = 31 4M? ) 4M, n 32 M?

+

(42, - )LL) (M)] [ (M)]7 M, (4 P”'1)[fy(My)ﬁfZ(MZ)TJ W)

4M 4 M2 8 M,

X

Proof: The bias of the estimators T, (i, j =1, 2)are given by
B(Tij) = EI:Tij - My:l = Q5 B(Tiu) + (1 '(Pij)B(ij)
where B(T,,) =E[T,, -M, | and B(T;,,) =E[T;,, - M, |

Using large sample approximations assumed in Section 4.1 and retaining terms upto the
first order of approximations, the expression for B(T,,) and B(ij)are obtained as in
equations (7) - (10) and hence the expression for bias of the estimators T, (i, j =1, 2) are
obtained as in equation (6).
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Theorem 4.2.2.Mean square errors of the estimators T, (i, j =1, 2) to the first order of

approximations are obtained as

M(Tij) :(Pizj M(Tlu) + (1 _(Pij)zM(ij)+2(Pij(1 '(Pij)COV(Tiua ij); (i,j=12) (11)

where M(T,,) = % A, (12)
1
M(T,,) = S A, (13)
1 1
M(Tlm):EA3+ A, (14)
1 1
M(T2m) = E Ag + H As (15)

+

4 4 M2 2M,

[f.(m)]°M; (4P, -1>[fy<My)]sz(MJ]‘lMy},

4 16 M? 4M,

a0 () g (s, -1>[fy<My>J1[fz<mz>m},

as {[fy(My)T VA A A L AL U

4 4M: 16 M? 2M,

4M, 4M, M,

(4P ()] T (MO ™, (4P, -1>[fx(Mx>]'l[fz<Mz>]‘lMi}

A= {@1 Py -6 ()] 'T6 ()] M, (4R, -9 ()] [ (M)] M

2M 4AM, M,

X

_ [fxwx)TMi} |

4 M2

X
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-1

A- [6,(m)] [E(M)]* M2 (4R, - 2)[f (M)] ', (M,)] M,

4 4 M2 2M,
and
o [ [ ()] "M (4P - (M)T 6 (M)] M,
° 16 M? 4 M2 2M,

(4P, -1)[f,(M,)] " [F.(M,)]" M,

4M

z

Proof: The mean square errors of the estimators T, are given by
2
M (T,) =E [T M, " =E [y (T, -M,) + (1-0;){Tip - M,
=g/ M (T,) + (-0 M[T;n ] +2 0 (L-9;) Cov(T,. Ty )
where M (T,,) = E[T,, - M, [andM [T, ] =E[T,, - M, ] (i.j=1,2)
The estimators T,, and T, are based on two independent samples of sizes u and m

respectively, henceCov(Tiu,ij) =0; (i,j=1, 2).Using large sample approximations

assumed in section 4.1 and retaining terms upto the first order of approximations, the

expression for M(T;,) and M(ij)are obtained as given in equations (12) - (15) and

hence the expressions for mean square error of estimators T, (i, j =1, 2) are obtained.

Remark 4.2.1: The mean square errors of the estimators T, (i, j=1,2) in equation (11)
depend on the population parametersP,, P, P,,, f,(M,),f (M,) andf,(M,). If these

parameters are known, the properties of proposed estimators can be easily studied.
Otherwise, which is the most often situation in practice, the unknown population

parameters are replaced by their sample estimates. The population proportions P, , P, and

P,,can be replaced by the sample estimate P, Py. and Px. and the marginal densities
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f,(M,).f,(M,) andf,(M,)can be substituted by their kernel estimator or nearest

neighbour density estimator or generalized nearest neighbour density estimator related to

f

the kernel estimator (Silverman (1986)). Here, the marginal densities f, (My), . (MX ) and

f,(M,) are replaced by fy(My(m)), fx (I\A/IX (n)) and f2 (M, (n)) respectively, which are

obtained by method of generalized nearest neighbour density estimation related to kernel

estimator.

To estimatefy(My) f.(M,) andf,(M,), by generalized nearest neighbour density

estimator related to the kernel estimator, following procedure has been adopted:
Choose an integer h ~ n’? and define the distance d(x,, x,) between two points on the
line to be|x, - X,|.

For N1, (n) , define d,(M, (n))<d,(M,(n))<--- <d,(M,(n)) to be the distances,
arranged in ascending order, from M, (n) to the points of the sample.

The generalized nearest neighbour density estimate is defined by

(i, (m) = =3 K [—Qfx((”) ;J

ndh(l\7lx(n)) = M, (n

where the kernel function K, satisfies the condition J' K(x) dx =1.

—00

1.,
Here, the kernel function is chosen as Gaussian Kernel given by K(x) = zi e {5 ]
T

The estimate of f, (My) and f, (M, ) can be obtained by the above explained procedure

in similar manner.

5. Minimum Mean Square Errors of the Proposed Estimators T;; (i, j =1, 2)

Since the mean square errors of the estimators T;; (i, j=1, 2)given in equation (11) are the
functions of unknown constants ¢; (i,j =1, 2) , therefore, they are minimized with respect
to ¢;; and subsequently the optimum values of ¢;; are obtained as
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M(T;)

jm

M(T, )+M(ij)

Pij, = (1,j=1,2) (16)

u

Now substituting the values of o, o in equation (11), we obtain the optimum mean square

errors of the estimators T;; (i, j =1, 2) as

M(T,)),p, = I\'\A/'((TT_iu))J-r'\'\/'/l((?jm)); (i,i=1,2) 17)

u m

Further, substituting the values of the mean square error of the estimators defined in

equation (12) to equation (15) in equation (16) and (17), the simplified values Pie and

1)

M(T")opt. are obtained as

Mg [Uu A, - (A3+ A4)]

Py = (18)
Hon Hfl Ay -y (A3+ Ay - Al) - Al]

0 Mo I:l’l12 - (A +A )] (19)
e [le lllz A +tAs-A ) - A }

0, = Moy [Hzl A, - (A3+ A, ):I (20)
Hon |:u§1 Ay -y (As+ A, - Az) - Az}

0, = Moo [sz Ag - (A57L Ag ):' (21)
o [ng Ag - Hy, (A5+ Ag - Az) - Az]

opt n [Hn - Uy C3 Al:l
1 C,-C
M(T), = b e G @)

n [”122 Ag -y, G - Al]

M(T21) 1 [u21 C7 - CB] (24)

Pon [Hgl Ay -ty G - Az:l
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M(Tzz) — 1 [H22 C10 - Cll] (25)
*on [“22 Ag -y Cpp - Az:l

where

C=AA, C,=AA,+AA, C,=A,+A,-A, C,=AA, C.=AA, +AA,
C.=A, +A, -A, C=AA, C=AA +AA, C=A +A, -A, C,=AA,
Cu=AA +AA; ,C,=A; +A,-A, and p;;(i,j=1,2) are the fractions of the

sample drawn afresh at the current(second) occasion.

Remark 5.1: m(T,) derived in equation (22) - (25) are the functions of p;; (i,j=1,2)
opt.

. To estimate the population median on each occasion the better choices of p;; (i,j=1,2)

are 1(case of no matching); however, to estimate the change in median from one occasion

to other, p;; (i,j =1, 2) should be O(case of complete matching). But intuition suggests

that the optimum choices of p;; (i,j =1, 2) are desired to devise the amicable strategy for

both the problems simultaneously.

6. Optimum Replacement Strategies for the Estimators T (i, j =1, 2)

The key design parameter affecting the estimates of change is the overlap between
successive samples. Maintaining high overlap between repeats of a survey is operationally

convenient, since many sampled units have been located and have some experience in the

survey. Hence to decide about the optimum value of w;; (i, j =1, 2) (fractions of samples

to be drawn afresh on current occasion) so that M, may be estimated with maximum

precision and minimum cost, we minimize the mean square errors M(Ti,-) l(i,j =1,2) in
opt.

equation (22) to (25) with respect toy,; (i, j = 1, 2) respectively.

The optimum value of ;; (i,j=1,2) so obtained is one of the two roots given by

D, +./D?-D, D, 26)

Dl

My =
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My = D, 27)
2 -

Mo = D; + [I;B 5 D, (28)
7
2

i, = D, £ \ Dy, -Dy, D, (29)
Do

where
Dl: A4Cl’ D2: A4C2’ D3: A1C1+ CZC3’ D4: A6C4’ D5: A6C5 1 DG = AIC4 + CSCS
D,=A,C;, D8: A4C8’ D9: AC,+ C8C9, DlO: A6C10' D,= A6C11 and D= A2C10+ CiuCop.

The real values of p,;(i,j=1,2) exist, iff D?-D, D,>0, D? - D, D, >0, D? - D, D, >0,
andD?, - D,, D,, >0. For any situation, which satisfies these conditions, two real values
of p;(i,j=1,2) may be possible , hence to choose a value of ;; (i, j = 1, 2), it should be
taken care of that 0 <p,;; <1 , all other values of ; (i,j =1, 2) are inadmissible. If both
the real values of p;; (i,j=1,2) are admissible, the lowest one will be the best choice as
it reduces the total cost of the survey. Substituting the admissible value of ;; say
n? (i,j=1,2) from equation (26) to (29) in equation (22) to (25) respectively , we get
the optimum values of the mean square errors of the estimators T (i, j=1, 2) with respect

to ¢;;as well asp;; (i, j = 1, 2)which are given as

©
- [Hn C - CZ]
M(Tll)opt, - nl:lvl](_(:)]_)z A4 _ I’Li(]).) C3 - Al:l (30)
©)
- I:le C, -CS:I
M(T;),, = n[h02 A, u0 C, - A,] (31)
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* [H(zol) G _CS:I

M(T. = 32
Tk ST - G, ) ()
(0)
* [P«zz Cyp - Cll]
M(T. = 33
T T A, - € ) ()

7. Efficiency Comparison
To evaluate the performance of the proposed estimators, the estimators T, J.(i,j =1, 2)at
optimum conditions are compared with respect to (i) the sample median estimator I\A/Iy (n)

, When there is no matching from previous occasion and (ii) the ratio type estimator A
proposed by Singh et al.(2007) for second quantile, where no additional auxiliary

information was used at any occasion and is given by
. . M, (m
A=y M, (u) + (1-y)M, (n)(ﬁ] (34)

where v is an unknown constant to be determined so as to minimise the mean square
error of the estimator A. Since, I\?Iy(n) IS unbiased and Ais biased for population
median, so variance of m (n)and mean square error of the estimator A at optimum

conditions are given as

-2

) f,(M
V[N, (n)] = %M (35)
* [HA J, 'Jz]
and M(A), . = (36)
( )pt' n[“i Iy - py 1 _II:I
where
2 -
= H, £y H, HlH3Jﬂ=JJp}g=Jgp}g=1gﬁagg,L=Lg,%=|Jg+|g,%=|f+g-h

Hl

-1

LT M) 0Tt e (80 T ()],

' 4 ’ 4 4M/ 2M

X
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(4P DL ] 'H, ()] M, 1, (M)]" M2

and 1,=
: 2M, 4M?

The percent relative efficiencies E) and E? of the estimatorsT, (i, j = 1, 2) (under their

respective optimum conditions) with respect to & (n)and A are respectively given by

*

V| M M(A
EY = [(—y()n)} x100 and EQ = ﬂ x100; (i,j=1,2).  (37)
M(T

15/ opt. i1/ opt.

8. Empirical lllustrations and Monte Carlo Simulation
Empirical validation can be carried out by Monte Carlo Simulation. Real life situations of
two completely known finite populations have been considered.

Population Source: [Free access to the data by Statistical Abstracts of the United States]

The first population comprise of N = 51 states of United States. Let y.represent the
number of abortions during 2007 in the i" state of U. S., x, be the number of abortions
during 2005 in the i" state of U. S. and z, denote the number of abortions during 2004 in

the i" state of U. S. The data are presented in Figure 8.1.

Similarly, the second population consists of N=41 corn producing states of United States.

We assume 'y, the production of corn (in million bushels) during 2009 in the i" state of
U. S., x, be the production of corn (in million bushels) during 2008 in the i" state of U.

S. and z, denote the production of corn (in million bushels) during 2007 in the i" state of

U. S. The data are represented by means of graph in Figure 8.2.
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Figure 8.1: Number of abortions during 2004, 2005 and 2007 versus different states
of US
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Figure 8.2: Production of corn during 2007, 2008 and 2009 versus different states of
us

The graphs in Figure 8.1 and Figure 8.2 show that the number of abortions and the
production of corn in different states are skewed towards right. One reason of skewness
for the population-1 may be the distribution of population in different states, that is the
states having larger population are expected to have larger number of abortion cases.
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Similarly for population-Il, the states having larger area for farming are expected to have
larger production of corn. Thus skewness of data indicates that the use of median may be

a good measure of central location than mean in these situations.

For both the considered population-I and population-II, the optimum values of p,;
(i, j = 1, 2) defined in equation (26) to (29) and percent relative efficiencies gwand E®
defined in equation (37) of T;;(i, j =1, 2) (under their respective optimality conditions)

with respect to m, (n) and A have been computed and are presented in Table - 1.

To validate the above empirical results, Monte Carlo simulation have also been

performed for Population-1. 5000 samples of n=20 states were selected using simple
random sampling without replacement in the year 2005. The sample medians |\7|x|k (n)and
M, (n), k =1, 2,- - -,5000 were computed. From each one of the selected samples, m=17

states were retained and new u=3 states were selected out of N — n =51 — 20 = 31 states
using simple random sampling without replacement in the year 2007. From the m units

retained in the sample at the current occasion, the sample medians M, (m) , M,, (m)and
|\7|Z|k (m),k =1,2,---,5000 were computed. From the new unmatched units selected on
the current occasion the sample medians M, (u)and M, (u), k =1, 2,- - -,5000 were also

calculated. The parameters ¢ and ware selected between 0.1 and 0.9 with a step of 0.1.

The percent relative efficiencies of the proposed estimators T;; with respect to m, (n) and

Aare obtained as a result of above simulation and are respectively given as:

5000 . ) 5000 5
Z[Mylk(n)' My] Z[AK_MV]

Eij(l = k:15000 > x 100 and Eij(2 25(;‘0:01—2 x 100 ; (i,j=1, 2)
Z[Tijk' My] Z[Tijk' My]

k=1 k=1

For better analysis, the above simulation experiments were repeated for different choices

of .
For convenience the different choices of p are considered as different sets for the

considered Population-1 which is shown below.

Set I: n=20, p=0.15, (m=17,u=3), Setll: n=20, u=0.50, (m =10, u = 10).
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The simulation results obtained are presented in Table-2 to Table-6.

Table 1: Comparison of the proposed estimators T;; (at optimum conditions) with respect
to the estimators M, (n)and A (at their respective optimum conditions)

Population-1 Population-11
Wy * *
2 - -
ud) 0.4114 0.4838
s 0.5120 0.6140
el : :
Y : :
EW 276.78 301.34
EY 344.45 382.46
ER : :
Y : :
E® 210.30 204.34
EY 261.72 259.35

Note: *’ indicates that ui(‘}); (i,j =1, 2) do not exist.

Table 2: Monte Carlo Simulation results when the proposed estimator T;;is compared to

I\A/Iy (n) for population-I

¢ | Set E,@ E,, @ E,.@ E,@®
01 | 146.57 182.32 147.48 183.81
' 1] 152.15 277.81 158.07 290.87
02 | 157.43 202.46 157.47 202.78
' 1] 176.69 314.47 185.67 331.56
03 | 174.39 222.62 172.98 220.84
' 1] 194.98 340.08 205.89 357.25
04 | 196.19 249.36 192.56 244.13
' 1] 212.07 360.70 221.46 368.06
05 | 216.80 275.64 208.53 263.21
' 1] 227.82 371.52 232.33 362.74
06 | 273.65 301.04 222.86 278.43
' 1] 238.87 371.67 235.29 342.79
07 | 258.19 324.78 232.99 286.78
' 1] 246.92 364.42 229.20 310.11
08 | 279.56 348.26 241.00 291.20
' 1] 247.70 345.58 216.75 275.50
0.9 | 299.13 368.28 244.26 289.30
' 1] 239.84 316.58 197.88 238.58

63



Table 3: Monte Carlo Simulation results when the proposed estimator T,, is compared
to the estimator A

\) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Q| seT
o1 275.77 | 739.50 | 1352.8 | 2741.3 | 3748.7 | 6016.6 | 1259.1 | 1627.7 | 2732.2
S 122.06 | ** *x *x 114.67 | 152.51 | 231.31 | 285.69 | 409.32
L 311.36 | 800.20 | 1550.8 | 2970.1 | 4415.9 | 6193.2 | 1301.5 | 1660.5 | 2696.9
o 136.60 | 108.52 | ** 110.30 | 130.21 | 177.99 | 249.99 | 319.31 | 445.29
03 336.01 | 869.20 | 1704.0 | 3157.5 | 4685.7 | 6430.9 | 1295.6 | 1713.7 | 2500.3
o 150.41 | 121.14 | 109.03 | 121.10 | 147.42 | 199.15 | 271.42 | 355.96 | 480.84
04 341.73 | 922.40 | 1776.5 | 3149.9 | 4884.8 | 6744.8 | 1250.5 | 1660.5 | 2175.2
NI 165.02 | 131.26 | 120.39 | 132.37 | 160.10 | 218.71 | 295.47 | 384.84 | 522.78
05 L 349.01 | 934.0 | 1803.6 | 3196.6 | 4899.7 | 6821.9 | 1147.7 | 1517.8 | 1846.1
I 178.11 | 143.36 | 128.95 | 142.49 | 171.74 | 234.26 | 317.05 | 415.93 | 561.37
06 346.37 | 910.2 | 1770.9 | 3149.9 | 4895.8 | 6740.3 | 1045.2 | 1370.2 | 1518.8
I 186.39 | 148.9 | 135.35 | 150.51 | 183.80 | 248.66 | 332.14 | 439.36 | 591.39
07 344.45 | 877.40 | 1712.2 | 3043.8 | 4731.7 | 6643.1 | 876.79 | 1168.1 | 1250.3
T 193.21 | 154.98 | 140.0 | 155.37 | 190.07 | 256.22 | 340.55 | 451.85 | 613.96
08 331.02 | 842.68 | 1641.7 | 2983.0 | 4589.9 | 6355.5 | 746.15 | 1021.1 | 1043.5
el 191.43 | 155.42 | 140.31 | 157.36 | 189.59 | 255.43 | 343.47 | 452.69 | 612.08
0.9 ! 304.36 | 787.20 | 1517.9 | 2829.0 | 4274.4 | 5960.8 | 642.61 | 888.44 | 827.20
o 188.71 | 153.23 | 136.99 | 152.92 | 186.03 | 249.23 | 335.03 | 439.10 | 601.28

Note: “**” indicates no gain.

Table 4: Monte Carlo Simulation results when the proposed estimator T,,is compared
to the estimator A

W 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
¢ | seT
L 382.79 | 977.38 | 1938.7 | 3615.9 | 5212.8 | 7650.9 | 1562.9 | 2071.2 | 604.32
N 207.40 | 168.47 | 150.66 | 164.49 | 195.34 | 254.96 | 390.45 | 481.73 | 677.77
0.2 | 412.37 | 1044.8 | 2155.3 | 3865.4 | 5836.8 | 7910.1 | 1580.8 | 2058.2 | 694.83
“ln 230.42 | 148.10 | 165.20 | 181.41 | 218.38 | 295.04 | 420.24 | 531.12 | 743.81
03 L 431.53 | 1116.1 | 2285.3 | 4034.5 | 6118.8 | 8107.3 | 1559.1 | 2091.9 | 788.21
' 11 249.33 | 201.20 | 178.36 | 196.95 | 242.61 | 327.34 | 449.90 | 581.06 | 785.87
04 ! 43527 | 1162.7 | 2308.9 | 3957.7 | 6234.6 | 8373.5 | 1458.0 | 1981.8 | 882.83
' 11 266.67 | 211.15 | 192.85 | 210.25 | 256.66 | 351.61 | 476.85 | 613.96 | 832.84
05 L 43357 | 11525 | 2279.8 | 3914.5 | 6083.6 | 8240.9 | 1300.8 | 1750.7 | 982.72
' 11 278.24 | 223.06 | 198.85 | 219.49 | 266.40 | 363.80 | 495.06 | 640.37 | 867.85
06 | 419.40 | 1093.1 | 2159.9 | 3752.4 | 5906.8 | 7933.0 | 1157.3 | 1533.3 | 1096.9
T 277.30 | 221.06 | 199.88 | 221.69 | 273.84 | 370.25 | 496.44 | 648.57 | 872.83
07 ! 406.49 | 1023.7 | 2030.3 | 3531.3 | 5536.4 | 7651.1 | 946.56 | 1268.9 | 1221.1
' 11 274.81 | 220.32 | 197.97 | 218.46 | 269.83 | 364.06 | 483.84 | 634.79 | 868.93
0.8 | 380.53 | 960.60 | 1893.1 | 3386.1 | 5250.5 | 7155.5 | 788.85 | 1088.7 | 1353.2
“ln 258.62 | 210.05 | 189.20 | 211.88 | 256.75 | 345.21 | 465.70 | 605.58 | 824.24
09 ! 340.93 | 876.70 | 1705.9 | 3146.9 | 4777.4 | 6575.1 | 670.72 | 933.49 | 1483.8
AT 244.40 | 198.25 | 176.68 | 196.80 | 240.61 | 321.56 | 433.21 | 560.55 | 775.15

64



Table 5: Monte Carlo Simulation results when the proposed estimator T,, is compared to
the estimator A

v | 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
¢ | seT
01 I 221.37 | 583.99 | 1112.3 | 2154.2 | 3005.4 | 4778.5 | 1255.8 | 1635.1 | 452.25
T 126.34 | 100.97 | ** 100.74 | 118.81 | 158.55 | 240.05 | 297.65 | 424.27
0.2 I 188.97 | 477.50 | 953.30 | 1756.7 | 2630.2 | 3784.2 | 1277.9 | 1641.7 | 499.59
T 143.05 | 114.12 | 104.22 | 115.63 | 136.20 | 187.11 | 261.74 | 335.76 | 467.23
03 I 146.01 | 369.10 | 748.0 | 1330.6 | 2014.4 | 2890.2 | 1228.8 | 1610.8 | 540.34
T 157.92 | 127.07 | 115.03 | 127.71 | 154.32 | 210.52 | 285.71 | 373.76 | 505.36
04 I 111.99 | 280.0 | 572.80 | 1615.1 | 1541.8 | 2182.2 | 1124.0 | 1472.6 | 571.9
11 170.85 | 136.89 | 125.02 | 138.10 | 166.62 | 227.65 | 308.78 | 400.97 | 543.70
05 I *k 215.50 | 440.60 | 776.0 | 1193.1 | 1679.2 | 987.70 | 1292.8 | 588.54
T 180.13 | 144.24 | 131.19 | 145.11 | 174.93 | 238.57 | 322.73 | 421.57 | 570.46
06 I *k 169.20 | 344.70 | 604.30 | 928.50 | 1314.1 | 852.30 | 1114.4 | 596.70
T 182.88 | 144.67 | 132.92 | 146.87 | 179.14 | 243.65 | 326.73 | 430.52 | 578.66
07 I ** | 134,20 | 278.20 | 477.50 | 728.30 | 1046.2 | 712.42 | 934.0 | 595.40
T 178.82 | 142.23 | 130.10 | 143.33 | 175.35 | 237.99 | 318.48 | 421.67 | 568.63
08 I *k 109.17 | 222.80 | 383.80 | 529.23 | 843.70 | 591.94 | 795.30 | 584.30
T 168.53 | 135.68 | 122.22 | 135.66 | 166.62 | 224.0 | 301.69 | 397.37 | 534.44
0.9 | *x *x 183.70 | 317.10 | 490.4 | 690.70 | 501.36 | 672.26 | 563.0
T 154.47 | 124.30 | 111.88 | 123.98 | 152.43 | 204.79 | 276.71 | 364.81 | 490.16

Table 6: Monte Carlo Simulation results when the proposed estimator T,, is compared to
the estimator A

v | 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
¢ | seT
01 | 282.55 | 739.11 | 1493.6 | 2686.1 | 3936.3 | 5856.1 | 1563.1 | 2084.7 | 584.02
T 216.27 | 176.93 | 157.94 | 171.11 | 204.79 | 266.78 | 407.01 | 505.99 | 710.33
02 L 22358 | 565.10 | 1173.2 | 2068.3 | 3108.2 | 4426.1 | 1553.2 | 2031.1 | 645.12
T 242.70 | 194.04 | 173.74 | 191.06 | 230.51 | 311.53 | 441.30 | 561.46 | 783.68
03 | 162.02 | 413.50 | 856.10 | 1484.5 | 2269.7 | 3233.5 | 1465.3 | 1938.9 | 692.13
' 11 260.65 | 209.21 | 187.46 | 207.06 | 253.99 | 344.35 | 471.97 | 607.73 | 823.34
04 L 119.31 | 302.50 | 628.0 | 1098.8 | 1676.9 | 2360.8 | 1291.9 | 1723.7 | 721.17
BT 270.23 | 215.79 | 195.32 | 215.45 | 263.26 | 358.45 | 489.17 | 628.66 | 850.93
05 L ke 227.60 | 470.0 | 819.30 | 1268.8 | 1771.2 | 1100.9 | 1457.5 | 730.73
T 269.61 | 214.41 | 194.81 | 214.42 | 261.90 | 356.15 | 484.27 | 625.35 | 848.60
06 | *x 176.10 | 360.50 | 628.0 | 969.30 | 1364.6 | 926.0 | 1220.3 | 726.10
' 11 257.16 | 201.60 | 185.27 | 203.87 | 251.98 | 341.73 | 460.65 | 601.75 | 806.63
07 ! ** | 138.10 | 287.50 | 491.10 | 750.50 | 1074.9 | 757.63 | 997.30 | 709.60
Tl 235.97 | 186.87 | 170.83 | 187.14 | 231.13 | 313.82 | 421.27 | 553.21 | 747.28
0.8 | *x 111.49 | 228.30 | 391.50 | 605.50 | 860.60 | 618.86 | 835.80 | 681.10
' 11 210.30 | 168.86 | 151.63 | 167.97 | 208.35 | 278.88 | 377.03 | 492.73 | 663.67
0.9 | *x *x 187.0 | 321.90 | 498.60 | 700.80 | 518.57 | 697.84 | 642.20
AT 184.01 | 147.63 | 132.59 | 146.75 | 181.48 | 243.25 | 329.65 | 432.17 | 581.38

Note: “**” indicates no gain.
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9. Mutual Comparison of the Proposed Estimators T;; (i, j =1, 2)

The performances of the proposed estimators T, (i,j=1,2) have been elaborated

empirically as well as through simulation studies in above section 8 and the results
obtained are presented in Table 2 to Table 6. In this section the mutual comparison of the
four proposed estimators has been elaborated through different graphs given in Figure 9.1

to Figure 9.4.
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Figure 9.1: Mutual Comparison of Proposed Estimator T, (i, j =1, 2) when compared

with the estimator M, for set-11.
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Figure 9.2: Mutual Comparison of Proposed Estimators T, (i, j =1, 2) when

compared with the estimator A for y=o0.1 for set-11.
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Figure 9.3: Mutual Comparison of Proposed Estimators T; (i, j =1, 2) when

compared with the estimator A for y=0.5 for set-11.
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Figure 9 .4: Mutual Comparison of Proposed Estimators T;; (i, j =1, 2) when

compared with the estimator A for y=10.9 for set-11.
11. Interpretation of Results

The following interpretation can be drawn from Tables 1 - 6 and Figure 9.1 - 9.4:

(1) From Table-1, it is observed that

(a) Optimum valuesu’) and u¥) for the estimators T and Tz exist for both the
considered Populations which justifies the applicability of the proposed estimatorsT21
and T2 at optimum conditions. However, the optimum values ) and u) for the

estimators T11 and T12 do not exist for both the considered populations.

(b) Appreciable gain is observed in terms of precision indicating the proposed estimators

T,, and T,, (at their respective optimal conditions) are preferable over the estimators
|\7|y(n) and A (at optimal conditions). This result justifies the use of additional

auxiliary information at both occasions which is stable over time in two occasion

successive sampling.
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(c) The values for E®, EY

O EY E? and E? cannot be calculated as optimum values p? and 9

do not exist but simulation study vindicated in Tables 2 - 6 magnify the applicability
of proposed estimators T,, and T,, over sample median estimator I\7Iyand the

estimator A .

(2) From Table-2, it can be seen that, when T;;(i, j =1, 2) is compared with sample
median Estimator M, (n).

(a)The value of E,,(1) increases as ¢ increases except for set I.
(b) E,, (1) increases as ¢ increases except for set 1.

(c) As ¢ increases the value of E,,(1) and E,, (1) increases for set | but for set Il, first it

increases as ¢ increases and then it decreases.
(3) From Table-3, when T, is compared with the estimator A, we infer that

(a) E,,(2) first increases and then decreases as ¢ increases for all choices of y and for first

set.

(b) For fixed choices of ¢,as vy increases the value of E,,(2) first increases and then

decreases.

(4) From Table-4, when T,,is compared with the estimator A , we observe that

(a) For set I, E,, (2)first increases and then decreases as ¢ increases for all value of vy

except for few choices.

(b) For set 11, E,,(2) first increases and then decreases as ¢ increases for all choices of

V.

(5) From Table-5, when T,, is compared with the estimator A , it can be seen that
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(a) E,,(2) decreases as ¢ increases for set | as y varies from 0.1 to 0.8 while for y=0.9 it

increases and then decreases as ¢ increases except for some combinations of ¢ and
V.

(b) For set 11, E,,(2) firstincreases as ¢ increases and then decreases for all choices of
V.

(c) E,,(2) increases asy increases for all choices of ¢ for set | while for set Il E,, (2) first
decreases and then increases as v increases for all choices of ¢ .

(6) From Table-6, it can be concluded that

(a) E,, (2) decreases as ¢ increases for different choices of  for set I.
(b) For set 1l E,,(2)first increases and then decreases as ¢ increases for all choices of y

(c) For fixed ¢, E,,(2) increases asy increases except for y = 0.9 for set | while for II,

E., (2) first decreases and then increases as  increases for all choices of ¢ .

(7) The mutual comparison of the four proposed estimator T;; ;(i, j = 1, 2) in Figure 9.1 to

Figure 9.4 show that the estimator T,, comes out to be the best estimator amongst all

the four proposed estimators, since, it possess largest gain over other proposed

estimators. Also the estimator T,, has a considerably consistent nature for all
combinations of ¢, v and p. It has also been found that the percent relative efficiency
of the estimator T,, increases as the fraction of sample drawn at current occasion

decreases and vice versa which exactly justifies the basic principles of sampling on

successive occasions.
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12. Conclusion

From the preceding interpretations, it may be concluded that the use of exponential ratio
type estimators for the estimation of population median at current occasion in two
occasion successive sampling is highly appreciable as vindicated through empirical and
simulation results. The use of highly correlated auxiliary information which is stable over
time is highly rewarding in terms of precision. The mutual comparison of the proposed
estimators indicates that the estimators utilizing more exponential ratio type structures
perform much better. It has also been observed that the estimator T,,in which maximum
utilization of exponential ratio type structures have been considered turned out to be the
most efficient among all the four proposed estimators. Hence, the proposed estimators

especially the estimator T, may be recommended for their practical use by survey

practitioners.
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CHAPTER -4

Multivariate Analysis of Longitudinal
Surveys for Population Median

* Following is the publication based on the work of this chapter:--

1. Priyanka, K. and Mittal, R. (2016): Multivariate Analysis of Longitudinal Surveys
for Population Median. Journal of Applied Statistics, (Communicated).
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Multivariate Analysis of Longitudinal
Surveys for Population Median

1. Introduction

In order to understand the dynamics of economic and social process which are
changing over time, single time survey and their analysis do not serve the purpose. For
these situations longitudinal surveys, in which the same units are investigated on several
occasions, over extensive period of time becomes important. In such situations, the same
population is sampled repeatedly and the same study variable is measured at each
occasion, so that development over time can be followed. For example, in many countries,
labour-force surveys are conducted monthly to estimate the number of employed and the
rate of unemployment. Other examples are monthly surveys in which the data on price of
goods are collected to determine a consumer price index, and political opinion surveys
conducted at regular intervals to measure voter preferences. These longitudinal surveys in
which the sampling is done on successive occasions (over years or seasons or months)
according to a specified rule, with partial replacement of units, is called successive
(rotation) sampling. Successive sampling provides a strong tool for generating the reliable
estimates at different occasions. In this case the survey estimates are time specific, For
example, the unemployment rate is a key economic indicator that varies over time, the
rate may change from one month to the next because of a change in the economy (with

business laying off or recruiting new employees).

The problem of sampling on two successive occasions was first considered by
Jessen (1942) and latter this idea was extended, see, for example, Patterson (1950), Narain
(1953), Eckler (1955), Gordon (1983), Arnab and Okafar (1992), Feng and Zou (1997),
Singh and Singh (2001), Singh and Priyanka (2008a), Singh et al. (2013a),
Bandhopadhyay and Singh (2014) and many others. All the above efforts were devoted to
the estimation of population mean or variance on two Or more occasion successive

sampling.
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When a distribution concerned with longitudinal survey is skewed, when end-
values are not known, or when one requires reduced importance to be attached to outliers
because they may be measurement errors, median can be used as a measure of central
location. Median is defined on ordered one-dimensional data, and is independent of any
distance metric so it can be seen as a better indication of central tendency (less susceptible

to the exceptionally large value in data) than the arithmetic mean.

Very few researchers see, for example, Martinez et al. (2005), Singh et al. (2007)
and Rueda et al. (2008) have proposed estimators for population median in successive
sampling. Singh and Priyanka (2008b) have proposed estimator to estimate population
median in two-occasion successive sampling assuming that a guess value of the population
median is known. In all the above quoted papers, related to the study of median, they have
assumed that the density functions appearing in the results are known. But, in general
being a population parameter they are not known. Hence, using the information on
additional stable auxiliary variable available on both the occasions, see Priyanka and
Mittal (2014, 2016) proposed estimators for population median in successive sampling. In
these papers they have also estimated the unknown density functions by using the method
of generalized nearest neighbour density estimator related to kernel estimator.

Sometimes, information on several auxiliary variables may be readily available or
may be made easily available by diverting a small amount of fund available for the survey.
For example, to study the social evil such as number (or rate) of abortions, many factors
like availability of medical facilities, income of households, level of education can be
taken as additional auxiliary information. Likewise, suppose for Asian countries, one may
be interested in estimating the military expenditure then the gross national product of the
said countries, average export, average import etc. may be considered as additional

auxiliary information.

Following Olkin (1958), technique of weighted ratio-type estimator, the objective
of the present study is to develop more effective and relevant estimator using exponential
ratio type estimators for population median on current occasion in two occasion successive

sampling embedding information on p — additional auxiliary variates (p > 1), which are
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stable over time. Properties of the proposed estimator are discussed. Optimum
replacement strategies are elaborated. Proposed estimator is compared with the estimator
when information on single auxiliary variable (p = 1) is available on both the occasions
and also with the sample median estimator when there is no matching from the previous
occasion. The dominance of the proposed estimator is justified by empirical

interpretations. The results are validated by the means of simulation studies.

2. Sample Structure and Notations

Let U= (U,U,,...,Uy) be the finite population of N units, which has been

sampled over two occasions. It is assumed that size of the population remains unchanged
but values of units change over two occasions. The character under study be denoted by x
(y) on the first (second) occasions respectively. It is assumed that information on p -
additional auxiliary variables z,, z,, ..., z,, whose population median is known and stable
over occasions, are readily available on both the occasions and positively correlated to x
and y respectively. Simple random sample (without replacement) of n units is taken on
the first occasion. A random subsample of m = nX units is retained for use on the second
occasion. Now at the current occasion a simple random sample (without replacement) of
u= (n-m) = nu units is drawn afresh from the remaining (N - n) units of the population so

that the sample size on the second occasion is also n. Let the fractions of fresh and matched
samples at the second (current) occasion be u and k(p + 7»=1) respectively, where

0< p, A <1 . The following notations are considered for the further use:

M, : Population median of the variable i; i €{X, Y, 2, Z,, ..., Z,}.

M; (u) : Sample median of variable i; i €{y, z,, Z,, ..., Z, } based on the sample size u.
M, (M) : Sample median of variable i; i € {X, y, 2,, Z,, ..., Z, } based on the sample size m.

M, (n) : Sample medians of variable i; i € {X, Z,, Z,, ..., Z, } based on the sample size n.

f,(M,): The marginal densities of variable i; i {X, Y, 2, Z,, ..., Z,}.
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3. Proposed Estimator T

To estimate the population median M, on the current (second) occasion, utilizing

p-additional auxiliary information which are stable over time and are readily available on

both the occasions, a multivariate weighted estimator T, based on sample of the size u=

nu drawn afresh on the current (second) occasion is proposed as

Ty = Wy Texp (u) (1)
where Wy is a column vector of p-weights given by W, = [Wu; Wy, =+ = Wy, |’
[T(1,u)]
[T(2,0)|

and Teyp(u) = | . | where T(i, u)=M (u)exp[—l\';//ll(())] fori =1,2,3,...,p
lT(p, u)J

such that 1'W,, = 1, where 1 is a column vector of order p.

The second estimator T,,, is also proposed as weighted multivariate chain type ratio to

exponential ratio estimator based on sample size m =n\A common to the both occasions

and is given by

T W’ exp(m n) (2)
where Wm is a column vector of p-weights as W, = [Wm; Wm, - - + Wm, |’
[T(l,m,n)‘
|T(2,m,n) _ MG, m) .
and Texp(m, n) = ) , Where T(i,m, n) = | =———M_(i, n)
: MX(I,m)
T(p, m,n |
nere W1, m) =, () evp| M) iy i e g M M ()
where i,m)= m) exp| ———2—~ i,m m) ex —A
y AV ER M, (m) "M+, )
M, - M, (n)
andl\/l(l n) = I\/I(n)exp - fori=1,2,3, ..., p.
'Vlzi+'\/lzi(n)
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Such that 1'W,,, = 1, where 1 is a column vector of order p.

The optimum weights W, and W,,, in T, and T,, are chosen by minimizing their mean

square errors respectively.

Considering the convex linear combination of the two estimators T, and T, we have the

final estimator of population median M, on the current occasion as

T=¢T,+(1-9) T, (3)

where ¢ is an unknown constant to be determined so as to minimise the mean square

error of the estimator T.

Remark 3.1: For estimating the median on each occasion, the estimators T, is suitable,
which implies that more belief on T, could be shown by choosing ¢ as 1 (or close to 1),

while for estimating the change from occasion to occasion, the estimators T could be
more useful so ¢ might be chosen as 0 (or close to 0). For asserting both problems

simultaneously, the suitable (optimum) choices of ¢ are desired.

4. Properties of the Proposed Estimator T
4.1. Assumptions
The properties of the proposed estimators T are derived under the following assumptions:

(i) Population size is sufficiently large (i.e. N — ), therefore finite population

corrections are ignored.

(i) ASN — oo, the distribution of the bivariate variable (a, b) where

aand be{x, Y, 21,22,...,zp}and a = b approaches a continuous distribution with

marginal densities f, (.) and f, (.) respectively, (see Kuk and Mak (1989)).

(iii) The marginal densities f, (.), T, (.),f, ()., (), .- f, () are positive.

) Z1
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(iv) The sample medians M, (u), M, (m), M, (m), M, (n), M, (u), M, (m) and
I\A/IZi (n)for i=1,2,3,..., p; are consistent and asymptotically normal (see Gross

(1980)).

(v) Following Kuk and Mak (1989), let P,, be the proportion of elements in the population

such thata <M, and b<M, where aandbe{x,y,z,,2,,...z,} and a = b.

(vi) The following large sample approximations are assumed:

M, (U) = M, (L+e), My (m) = M, (1+e,), M, (m) = M, (L+e,), M, (n) = M, (L+e,)
Mzi (U) - Mzi (l + e4i)’ Mzi (m) = Mzi (1 + e5i) and Mzi (n) = Mzi (1 + eﬁi)

suchthat|e |<1V k=0,1,23,4,5and6and |e,|<1V i=1,23,..0p.

The values of various related expectations can be seen in Allen et al. (2002) and Singh
(2003).

4.2. Bias and Mean Square Error of the Estimator T

The estimators T, and T, are weighted multivariate exponential ratio and chain type ratio
to exponential ratio type in nature respectively. Hence they are biased for population
median M, . Therefore, the final estimator T defined in equation (3) is also biased
estimator of M, . Bias B(.) and Mean square error M(.)of the proposed estimator T

have been derived up to first order of approximations and thus we have following

theorems:

Theorem 4.2.1. Bias of the estimator T to the first order of approximations is obtained

as
B(T) =¢B(T,) + (1-9) B(T,) (4)
B(T,) = W, B, (5)
B(Ty) = Wy, (= By + By ) (6)
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!
1

where W, = [Wu, Wu,- - - Wuy ], By = (By(w), By(w), ..., By(w))

[t (M)] '™, (4P, 1)[f, ()] [, (M)

-1

B, (u) = fori=1,2,3,..p,

32 M 8 M,
Wm = [Wm1 sz . e me ]',
o [RMoT"m, (4, ()] h ()]
ml 4Mi 4MX

B, = (Bmzmezz, ---,Bmzp)' where

(4P - LT[ (M) (M) "M, 3[F ()] M,

AM, 4M? 32 M2

(P11 (M)] [E ()]

8 M

Zj

Bm,, =

fori=1,23,..p

Proof: The bias of the estimator T is given by
B(T) =E[T-M, | =¢B(T,) + (1-0)B(T,)
where B(T,) =E[T, -M, ] and B(T,,) =E[T,, -M, |

Using large sample approximations assumed in Section 4.1 and retaining terms upto the

first order of approximations, the expression for B(T,)and B(T,) are obtained as in

equations (5) and (6) and hence the expression for bias of the estimator T is obtained as

in equation (4).

Theorem 4.2.2. Mean square error of the estimator T to the first order of approximations

is obtained as

M(T) = 0" M(T,) + (1- ) M(T,)+2 o(1 - 9)Cov(T,. T,) 7)

u’ m

M(Tu) = Wﬁ D, W, (8)
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M(Ty) = (B)Wy, EW,, + Wy, D, W, 9

where W, = [Wu;, Wy, - - - Wy ', Wy, = [Wmy, Wm,- - - Wmp ') E

IS a
unit matrix of order px p, D, = (ﬁ - %) Dy. , Dph= (% - %) D.,. where
_dull du12 Lo dulp_ _dmll dm12 P dmlp_
duy duy, ... duy dm, dm, . . . dm,
D,. = and D, =
(duy, du, ... dupp_pxp dm,, dm, . . . dmpp_pxp

where B = (é — %) Bi,

o 60T [RMIME @Ry DL ][, ] M,
g 4 M? 2M, !

N [T [ )] M @R, - D[, M) ][ M) M,
"4 16 M? 4M, ’

; [T @p, 0[] R M) ™, P, - D[f,M,)] [, M,)] ™,
Ty 8M, 8 M,

, @D (M) [, M) | ™2 |
16 M, M,

am, =- (LM My [F M) MY @Ry D[E MO [f,(M,) | M,
4 M; 16 M; 2M,

@[T 0T,
4M,
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CIRMOTTME @Ry - D[R M, (M) T M,

dm;;= 2
4M? 2 M,
@, - D[f,M)Tr, M) '™, @R, -D[f,M)][F, M, )T M,
] 8M, ] 8M,
) £ 1 ; 1,
+(4PZiZj 1)[ 4 (Mzi)] [ 2 (sz)] My fori=1, 2, 3,..., p.

16 M, M,

Proof: The mean square errors of the estimator T is given by
M (T) =E[T-M, )" =E o (T, -M,) + (1-9)(T, -My)]2

u> " m

=¢* M (T,) + (1-¢)'M [T, ] +2¢ (1-9) Cov(T,, T,)
where M (T,) = E[T, - M,] and M (T,) =E [T, - I\/Iy]2;

The estimators T, and T_ are based on two independent samples of sizes u and m

respectively, hence Cov(T,, T, ) =0.Using large sample approximations assumed in
section 4.1 and retaining terms upto the first order of approximations, the expression for

M(T,) and M(T,,)are obtained as given in equations (8) and (9) and hence the

expressions for mean square error of estimator T is obtained.

Remark 4.2.1: The mean square error of the estimator T in equation (7) depends on the

P Pas Poa £(M,), T,(M,) andf, (M, ); (fori=1, 2,

population parameters P y Ty

Xy’
3, .., p). If these parameters are known, the properties of proposed estimator can be easily

studied. Otherwise, which is the most often situation in practice, the unknown population

parameters are replaced by their sample estimates. The population proportionsP,,, P, ,
P, and P,. can be replaced by the sample estimate Axy, Isyzi, ﬁ’xzi and I5Zizj and the

f

marginal densities f, (M, ), f, (M, ) and f, (MZi ); (i=1,2,3, .., p)can be substituted by

their kernel estimator or nearest neighbour density estimator or generalized nearest

neighbour density estimator related to the kernel estimator (see [4]). Here, the marginal
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densities f,(M, ), f,(M,)and f, (M, )are replaced by fy<|\7|y(m)), fx(MX(n))and
fzi(Mzi(n)); (i=1,2,3,..p) respectively, which are obtained by method of

generalized nearest neighbour density estimation related to kernel estimator.

f

17X

To estimatefy(My) (M,) and fzi(MZi);(i:L 2,3,..,p), by generalized nearest

neighbour density estimator related to the kernel estimator, following procedure has been

adopted:

Choose an integer h = n’2 and define the distance §(x,, x,) between two points on the
line to be|x, - X,|.

For M, (n), define 81(1\7[x (n))sa2 (MX (n))S <3, (MX (n)) to be the distances,
arranged in ascending order, from I\A/IX (n) to the points of the sample.

The generalized nearest neighbour density estimate is defined by
. n M -
f(W, () = ——+—3 k| Melt) Xy
n 5h(Mx(n)) 1 5h(MX(n )

where the kernel function K, satisfies the condition .[ K(x)dx=1.

—00

Here, the kernel function is chosen as Gaussian Kernel given by

K(x) = (1/2x) exp(- (x/2) xz)).

The estimate of f,(M,) andf, (M, );i=1,2,3, .., p can be obtained by the above

explained procedure in similar manner.
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5. Choice of Optimal Weights

To find the optimum of the weight vector W, = [Wu, Wu,- - - Wy, |’ the

mean square error M(T,) given in equation (8) is minimized subject to the

condition 1'W,, = 1 using the method of Lagrange’s Multiplier explained as under:
To find the extrema using Lagrange’s Multiplier Technique, we define Q, as

Ql = wu Du wu - }\u(l wu - 1)’ (10)
where 1 is a unit column vector of order p and A, is the Lagrangian multiplier.

Now, by differentiating equation (10) partially with respect to W,, and equating it to

zero we have

6Q a ! !
ﬁ= M[quuwu_)\u(l Wu—l)] =0

This implies that, 2 D,W, —A,1 = 0, which yields
Y
W, =2 D' 1 (11)

Now pre- multiplying equation (11) by 1’, we get

A 1
711 BEY D;t1 (12)

Thus, using equation (12) in equation (11) , we obtain the optimal weight vector as

_ Dbyt
Uopt. — 1/pzl1

(13)

In similar manners, the optimal of the weight W, = [Wm; Wm,- - - Wm,|" s
obtained by minimizing M(Tm) subject to the constraint 1'W,,, = 1 using the method of

Lagrange’s multiplier, for this we define

QZ = (B)wrln E Wm + wr,n Dm wm - }\m(llwm - 1)’
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where A is the Lagrangian multiplier.
Now, differentiating Q, with respect to W,,, and equating to 0, we get

D!

Mopt. — 1'D;l1

(14)

Then substituting the optimum values of W, and W,,, in equations (8) and (9) respectively,

the optimum mean square errors of the estimators are obtained as:

M(Tu)opt. = (ﬁ - %) 1 D11—1*1 1 (15)
M(Tm)ope. = (i - %) By + (% B %) 1 Dll;la 1 (16)

6. Minimum Mean Square Errors of the Proposed Estimator T

Since the mean square error of the estimator T given in equation (7) is a function of

unknown constants ¢ , therefore, it is minimized with respect to ¢ and subsequently the

optimum values of ¢ is obtained as

O = M(To ) [ (M(T), + M(T,),, ) (17)

Now substituting the values of ¢, in equation (7), we obtain the optimum mean square

error of the estimators T as

*

M(T),, = (M(T) - M(T) )/ (M(T)e *+ M(T),, ) (18)

Further, substituting the optimum values of the mean square errors of the estimators given

in equations (15) and (16) in equation (17) and (18) respectively, the simplified values

(Pop AN M(T)Zpt. are obtained as
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Qo= [1C- (B, +C)] / [W* C-p (B, +C-A) -A] (19)

< _ 1 [HDl ‘Dz]
M(T)opt. " I:uz C-uD, 'A:| (20)

where
A=1/1"Dgl1,CcC=1/1 D,‘nl*l , D,=AC, D,=AB, +AC, D,=B, +C-A

B, = [f,\M,)]" /4 + ([, M]* M2 ) /2 M2 - ((4ny- 1)[fx(|v|x)]'1[fy(|v|y)]‘lMy)/z M.,

and pis the fraction of the sample drawn afresh at the current (second) occasion.

Remark 6.1: M(T)

.. derived in equation (20) is a function of p. To estimate the
pt.

population median on each occasion the better choice of u is 1(case of no matching);
however, to estimate the change in median from one occasion to other, p should be O(case
of complete matching). But intuition suggests that an optimum choice of p is desired to

devise the amicable strategy for both the problems simultaneously.
7. Optimum Replacement Strategy for the Estimator T

The key design parameter affecting the estimates of change is the overlap between
successive samples. Maintaining high overlap between repeats of a survey is operationally
convenient, since many sampled units have been located and have some experience in the

survey. Hence to decide about the optimum value of p (fractions of samples to be drawn

afresh on current occasion) so that M, may be estimated with maximum precision and
minimum cost, we minimize the mean square error M (T)’;pt' in equation (20) with respect

top.

The optimum value of p so obtained is one of the two roots given by

H= (Gz + (G; -G, GS)%)/Gl (21)
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where G,=CD,, G,=CD, and G,=AD, + D, D,

The real value of p exist, iff G -G, G,>0. For any situation, which satisfies this
condition, two real values of p may be possible, hence to choose a value of p, it should
be taken care that 0 < <1 , all other values of p are inadmissible. If both the real values
of u are admissible, the lowest one will be the best choice as it reduces the total cost of

the survey. Substituting the admissible value of p say p, from (21) in to the equation

(20), we get the optimum value of the mean square error of the estimator T with respect

to ¢ as well aspwhich, is given as

(22)

M(T)** - i [Ho D, - Dz]
Pon [Hoz C-up Dy 'A] .

8. Efficiency with Increased Number of Auxiliary Variables

As we know that increasing the number of auxiliary variables typically increases
the precision of the estimates. In this section we verify this property for the proposed

estimator as under: Let T and T, be two proposed estimators based on p and g auxiliary

variables respectively such thatp < g, then M(T,)> M(T, ), i.e.
M(T,) -M(T,) 20 (23)

1 [RAG-A, B+C)] 1 [RAC-A, (B+C)] o
N[ C-uB+C,+A)-A] n[p’C-uB+Co+A)-A ]

On simplification, we get

ApAq (Cp' Cq)

(A,- Aq){(u -1y’ [u C,Cy+ WJ -uB((C,-Cy)(u-1) -B) 20
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This reduces to the condition
-A,) 20 (24)

So from section 6 above, we get

1 1

— >0
rn—1 I -
1'D;’1 1'D'1

I -1 12 -1
1'Dg*1=1'Dyt1

Following, see Rao (2006), the matrix D, can be partitioned and can be written as

D, F
D, =| "
"TF G

where F, F' and G are matrices deduced from D, such that their order never exceeds g-

p and always greater than or equal to 1.Then,

D+ HIH' —HJ
D$=( S J (25)

where J = (G — F’D;,lF)_1 and H= D;lF. (See Rao (2006) and Olkin (1958))

Now rewriting l’D;ll by putting the value of Dél from equation (25), we get

¢ (DY+HJIH —HJ 1
1'D'1=(1 1 P P
q ( p Q'p) ( _JH! J j (1 p]

q-

(1;)(D;+HJH')-1;_pJH' -1 HJ +1g_pJ) [11" ]
q-p

= 1,(D,' +HIH')1, -1, (JH' 1, - 1 HI L, +1, J1,

=1D}1-1 (D) 1, =1, (HIH)1, -1, JJH' 1, - 1L HI 1, +1, J1
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r (HIH" -HJ) (1
0y 1-L (07) L= (L L) [-JH' ) J [1 "J

q-

H

'D}1-1, (D) 1,= 1 (_I

jJ(H 1)1>0

Now latter follows since J is positive definite so that RJ R > 0 forall R,
where R=(H -1) 1.

Hence from equation (23)

This leads to the result that utilizing more number of auxiliary variables provides more

efficient estimates in terms of mean square error for the proposed estimator.

9. Efficiency Comparison

To evaluate the performance of the proposed estimator, the estimator T at optimum
condition is compared with respect to the sample median estimator I\A/Iy (n) when there is

no matching from previous occasion. For empirical investigations the proposed estimator

have been considered for the casesp=1and p = 2.

The variance of sample median estimator I\A/Iy (n) is given as

v[&, ()] =[f,(m,)] "/ 4n (26)

The percent relative efficiencies E; and E; - 0f the estimator T (under their

respective optimum conditions) with respect to I\A/Iy (n) are given by
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Erpy = ———5 x100 and E; .= =— x 100 (27)

10. Empirical Hlustrations and Monte Carlo Simulation

Empirical validation can be carried out by Monte Carlo Simulation. Real life situations of

two completely known finite populations have been considered.
Population Source: [Free access to the data by Statistical Abstracts of the United States]

The first population comprise of N = 40 states of United States. Let y, represent
the rate of abortions during 2008 in the i" state of U. S., x, be the rate of abortions during
2007 in the i" state of U. S., z, , denote the rate of abortions during 2005 in the i" state of

U. S. and z,, denote the rate of abortions during 2004 in the i"state of U. S. The data

are presented in Figure 1.

Similarly, the second population consists of N=41 corn producing states of United

States. We assume 'y, the production of corn (in million bushels) during 2009 in the i"
state of U. S., x, be the production of corn (in million bushels) during 2008 in the i state
of U. S., z,,denote the production of corn (in million bushels) during 2007 in the i" state

of U. S. and z,, denote the production of corn (in million bushels) during 2006 in the i"

state of U. S. The data are represented by means of a histogram in Figure 2.

The graphs in Figure 1 and Figure 2 show that the rate of abortions and the
production of corn in different states are almost skewed towards right. One reason of
skewness for the population-1 may be the distribution of population in different states, that
is the states having larger population are expected to have larger rate of abortion cases.
Similarly for population-I1, the states having larger area for farming are expected to have
larger production of corn. Thus skewness of data indicates that the use of median may be

a good measure of central location than mean in these situations.
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Figure 1: Rate of Abortion versus different states of U.S. during 2007
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Figure 2: Production of Corn (In Million Bushels) versus different states of U.S.
during 2008
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For the considered population-1 and population-Il, the optimum values of p

defined in (21) and percent relative efficiencies E, _;and E;  _, (defined in (27)) of T

(for p=1 and p=2 under their optimal conditions) with respect to I\7Iy(n) have been

computed and are presented in Table-1. To validate the above empirical results, Monte

Carlo simulation have also been performed for Population-I.
Simulation Algorithm
(1) Choose 5000 samples of size n=15 using simple random sampling without

replacement on first occasion for both the study and auxiliary variables.
(i) Calculate sample median M, (n), M, (n) and M, , (n) fork =1, 2, - - -, 5000.

(iii) Retain m = 13 units out of each n = 15 sample units of the study and auxiliary

variables at the first occasion.

A

(iv) Calculate sample median M, (m), M, (m) and M, , (m)for k=1, 2, - - -, 5000.

(v) Select u = 2 units using simple random sampling without replacement from N-n = 25

units of the population for study and auxiliary variables at second (current) occasion.

A N ~

(vi) Calculate sample medians My, (u), M, (u), M, , (u)and My, (m) for
k=1,2,---5000.
(vii) Iterate the parameter ¢ from 0.1 to 0.9 with a step of 0.1.
(viii) Calculate the percent relative efficiencies of the proposed estimator T with the case
p=landp=2(e T

o= and T _, ) with respect to sample median estimator

M, (n) as

91



5000 - 5000 -

Z[Mylk(n)_Msz Z[Mylk(n)'My]z

E,(sim) = L& x 100 and E,(sim)= £t x 100

5000 5000

;[Tmuk'My]z Z[Tp=2|k'My]2

k=1

fork=1, 2, - - -, 5000.

For better analysis, the above simulation experiments were repeated for different choices

of . For convenience the different choices of p are considered as different sets for the

considered Population-1 which is shown below:
SetI: n=15,u=0.10, (m =13, u=2), Set Il: n=15,u=0.20, (M =12, u = 3)
Set I11: n=15,u=0.30, (m = 10, u = 5), Set IV: n=15,1.=0.40, (M =9, u = 6)

The simulation results obtained are presented in Table-2.

Table 1: Comparison of the proposed estimators T__, and T__, (at their respective

[p=1 [p=2

optimum conditions) with respect to the estimator I\7Iy(n)

Population-I Population-11
TR 0.5478 0.5418
TR 0.5229 0.4759
Erjpm 171.16 136.74
Erpm 199.54 322.16
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Table 2: Estimated values of population Median by using the proposed estimators T,

and

T,,-, at their optimum conditions.

Actual Population-I Population-I1
|\/|y:15.50 My:57
Estimated n=10 n=15 n=20 n=10 n=15 n=20
T| p=1 14.83 15.10 16.16 55.74 50.97 50.21
T|p:2 15.01 15.47 15.98 56.31 60.69 58.72

Table 3: Monte Carlo Simulation results when the proposed estimators T ,_, and T, _, are

compared to I\A/Iy (n) for population-I

Set I I Il v
¢
01 E,(sim) | 307.79 536.79 316.69 422.16
| E,(sim) | 528.09 750.31 503.03 572.87
0.2 E,(sim) | 304.69 523.28 352.51 452.88
" | E,(sim) | 538.70 742.33 545.61 624.11
0.3 E,(sim) | 294.64 505.08 370.03 460.89
| Ey(sim) | 521.40 727.42 556.61 621.96
0.4 E,(sim) | 277.73 470.01 366.51 471.37
" | E,(sim) | 480.55 669.88 521.47 618.86
0.5 E.(sim) | 260.27 426.75 355.05 459.98
| Ey(sim) | 431.18 588.43 479.63 582.28
0.6 E,(sim) | 241.34 381.47 328.24 443.04
| Ey(sim) | 379.41 506.80 418.77 542.37
0.7 E,(sim) | 222.24 339.33 301.81 413.75
| E,(sim) | 329.89 433.81 366.84 488.27
0.8 E,(sim) | 204.09 298.86 272.14 378.01
| Ex(sim) | 285.40 366.39 316.65 431.25
0.9 E,(sim) | 184.42 263.30 239.41 337.58
| Ey(sim) | 243.33 312.30 268.82 373.59
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11. Mutual Comparison of the Estimators T, _, and T2

The performances of the estimator T,,_, and T, _, have been elaborated empirically as

p=2
well as through simulation studies in above sections and the results obtained are presented
in Table 1 and Table 3. The mutual comparison of the estimators for the cases when p=1

and p = 2 has been elaborated graphically and is presented in Figure 3.

Figure 3: Mutual Comparison of Proposed Estimator T,,_, and T,,_, when

compared with the estimator I\A/Iy for set-1V
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12. Interpretation of Results

(i) It is clear from Table 1 that optimum values of [y, and Hy,-, exist for both the

considered population and My ,-, < Ky, . This indicates that less fraction of fresh

sample is required when more number of auxiliary variables is used. Hence, total cost of
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survey will also get reduced when more number of additional auxiliary variables will be

considered.

(ii) Table 1 also explains that the value of E;  _,>E; ., this justifies the fact that

efficiency is highly increased when more numbers of auxiliary variates are taken into

consideration, which also resembles in accordance with the theory.

(iii) In Table 2 we have also calculated the estimates of population median by using the
proposed estimator T for p=1 and p=2 at their respective optimum conditions. We see that
the estimates for population median are quite near to the original value of population

median.

(iv) From simulation study in Table 3 and Figure 3, we observe that the value of E, (sim)
and E, (sim)exists for all choices of ¢ and for all different sets. As ¢ increases the value
of E,(sim)and E, (sim) decreases for all sets which indicates that if more weight is given
to the estimator defined on current occasion, the efficiency of the estimator T get reduced,
which is in accordance with see [19] results. The big difference in two lines in Figure 3
shows that the performance of estimator drastically enhances when more number of
auxiliary variables is taken in to account. In real time exercise the estimates for population
median are more near to the original value of population median when the numbers of

auxiliary variables are increased.

(v) From Table 3 we also observe that for set Il, the estimators T,,_, and T _, prove to

be extensively better than the sample median estimator. Although no fixed pattern is
observed in the efficiencies of the proposed estimators, if the value of fraction of fresh

sample to be drawn on current occasion increases.
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12. Conclusion

From the preceding interpretations, it may be concluded that the use of multivariate
exponential ratio type estimators for the estimation of population median at current
occasion in two occasion successive sampling is highly appreciable as vindicated through
empirical and simulation results. The mutual comparison of the proposed estimators
indicates that the estimators utilizing more auxiliary variables perform much better in
terms of cost as well as precision. Hence, the proposed multivariate estimator T may be
recommended for its practical use in longitudinal surveys for the estimation of population

median by survey practitioners.
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CHAPTER - 5°

Estimation of Population Median in Two-

Occasion Rotation Sampling

* Following is the publication based on the work of this chapter:--

1. Priyanka, K. and Mittal, R. (2015): Estimation of Population Median in Two-
Occasion Rotation Sampling. Journal of Statistics Applications & Probability
Letters, Vol. 2, No. 3, 205-2109.
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Estimation of Population Median in Two-
Occasion Rotation Sampling Two Occasion

1. Introduction

Survey often get repeated on many occasions for estimating same characteristics
at different point of time technically called repetitive sampling or sampling over
successive occasions. It has been given considerable attention by some survey
statisticians, when a population is subject to change, a survey carried out on a single
occasion will provide information about the characteristic of the surveyed population for
the given occasion only, the survey estimates are therefore time specific. Generally, the
main objective of successive surveys is to estimate the change with a view to study the
effect of the forces acting upon the population as this scheme consists of selecting sample
units on different occasions such that some units are common with sample drawn on
previous occasions. This retention of a part of sample in periodic surveys provides
efficient estimates as compared to other alternatives by eliminating some of the old

elements from the sample and adding new elements to the sample each time.

The problem of sampling on two successive occasions was first considered by
Jessen (1942) and latter this idea was extended, see, for example, Patterson (1950), Narain
(1953), Eckler (1955), Gordon (1983), Arnab and Okafar (1992), Feng and Zou (1997),
Singh and Singh (2001), Singh and Priyanka (2008a), Singh et al. (2013a),
Bandhopadhyay and Singh (2014) and many others. All the above efforts were devoted to
the estimation of population mean or variance on two or more occasion successive

sampling.

When a distribution is skewed, when end-values are not known, or when one
requires reduced importance to be attached to outliers because they may be measurement
errors, median can be used as a measure of central location. Median is defined on ordered

one-dimensional data, and is independent of any distance metric so it can be seen as a
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better indication of central tendency (less susceptible to the exceptionally large value in

data) than the arithmetic mean.

Most of the studies related to median have been developed by assuming simple
random sampling or its ramification in stratified random sampling considering only the
variable of interest without making explicit use of auxiliary variables (Sedranks and
Meyer (1978), Gross (1980), Smith and Sedranks (1983)). Some of the researchers namely
Chamber and Dunstan (1986), Kuk and Mak (1989), Rao et al. (1990), Rueda et al (1998)
and Allen et al. (2002) etc. have utilized the auxiliary information for the estimation of
population median.

Very few researchers namely Martinez et al (2005) and Rueda and Munoz (2008) have

proposed estimators for population median in successive sampling.

The work done in Singh and Priyanka (2008b) have proposed estimator to estimate
population median in two-occasion successive sampling assuming that a guess value of
the population median is known. In all the above quoted papers, related to the study of
median, they have assumed that the density functions appearing in the results are known.
But, in general being a population parameter they are not known. Hence, using the
additional stable auxiliary variable available on both the occasions, Priyanka and Mittal
(2014, 2016) have proposed estimators for population median in successive sampling. In
these papers they have also estimated the unknown density functions by using the method
of generalized nearest neighbour density estimator related to kernel estimator.

But in practice, one may find that if the gap between two successive occasions is
large, the stability character of the auxiliary variate may not sustain. In addition to this,
we may also find several other situations where auxiliary variate may not be stable over
time, whatever is the duration between two surveys. In such situations the use of dynamic
auxiliary variate (changing over time) which are readily available on different occasions,

may be efficiently utilized for estimating the population median at current occasions.

Hence, focusing on the above problems in this work we have proposed more

effective and relevant estimators of population median at current occasion in two occasion
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successive sampling using additional auxiliary information which is dynamic over time
and is readily available at both the occasions. Properties of the proposed estimators are
discussed. The density functions appearing in the results have been estimated by the
method of generalized nearest neighbour density estimator related to kernel estimator.

Optimum replacement strategies are elaborated for the proposed estimators.
Proposed estimators at optimum conditions are compared with the sample median
estimator when there is no matching from the previous occasion as well as with the ratio
type estimator proposed by Singh et al. (2007) for second quantile, when no additional
auxiliary information was used at any occasion. The behaviours of the proposed estimators
are justified by empirical interpretations and validated by the means of simulation study

with the help of some natural populations.

2. Sample Structure and Notations

Let U= (U, U,, ..., Uy) be the finite population of N units, which has been sampled

over two occasions. It is assumed that size of the population remains unchanged but values
of units change over two occasions. The character under study be denoted by x (y) on the
first (second) occasions respectively. It is assumed that information on an auxiliary

variable whose population medians are known and dynamic over occasions are readily
available on both the occasions and positively correlated to x and y respectively. Let z,
be the auxiliary variable on first occasion which changes to z, on second (current)

occasions. Simple random sample (without replacement) of n units is taken on the first
occasion. A random subsample of m = nAunits is retained for use on the second
occasion. Now at the current occasion a simple random sample (without replacement) of

u= (n-m) = nu units is drawn afresh from the remaining (N-n) units of the population so

that the sample size on the second occasion is also n.pand2, (H + le) are the fractions

of fresh and matched samples respectively at the second (current) occasion. The following

notations are considered for the further use:

M., M,, M, , M, : Population median of the variables X, y, z, and z, respectively.
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M, (u), M, (u), M, (u): Sample median of variables y, z, and z,based on the sample of
size u.

M, (m), M, (m), M, (m), M, (m): Sample median of variables X, y, z, and z, based on
the sample of size m.

M, (n), M, (n), M, (n): Sample medians of variables x, z, and z, based on the sample
of size n.

f,.(M,).f,(M,).f,(M,).f, (M,): The marginal densities of variables x, y, zandz,

respectively.

3. Proposed Estimator T;; (i, j =1, 2)

To estimate the population median M, on the current (second) occasion, two sets of

estimators have been proposed utilizing the concept of exponential ratio type estimators.

First set of estimators {T,,, T,,} is based on sample of the size u=np drawn afresh on

the current (second) occasion and the second set of estimators {T,

Im?

T,n} is based on

sample size m=n\A common to the both occasions. The two sets of the proposed

estimators are given as

)
0= M, (u) exp{%} v
T,n= M<”>[W§J @)



and M (n)= M,(n) exp (%ﬁ/ﬁ((rlrl))]

Considering the convex linear combination of the two sets of estimators T, (i = 1, 2) and
T,.(i=1,2), we have the final estimators of population median M, on the current

occasion as
T,=0,T +(1-(pij) ms (,j=1,2) (5)

whereg,; (i, j =1, 2) are the unknown constants to be determined so as to minimise the

mean square error of the estimators T, (i, =1, 2).

Remark 3.1: For estimating the median on each occasion, the estimators T, (i=1,2) are

suitable, which implies that more belief on T, , could be shown by choosing ¢, (i, j =1, 2)

as 1 (or close to 1), while for estimating the change from occasion to occasion, the

estimators T, (j=1,2) could be more useful so ¢,; might be chosen as 0 (or close to 0).
For asserting both problems simultaneously, the suitable (optimum) choices of ¢, are

desired.
4. Properties of the Proposed Estimators T;; (i, j =1, 2)
4.1. Assumptions

The properties of the proposed estimators T, (i, j =1, 2) are derived under the following

assumptions:

(i) Population size is sufficiently large (i.e.N — o), therefore finite population

corrections are ignored.

(i) AsN — oo, the distribution of the bivariate variable (a, b) whereaandbe{x,y, z,, z,}
and a = b approaches a continuous distribution with marginal densities f, (.) and f, (.)

respectively, (see Kuk and Mak (1989)).
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(iii) The marginal densities f, (.), f,(.),f,(.) and f, (.) are positive.

A A A

(iv) The sample medians M, (u), M, (m), M, (m), M, (n), M, (u), M, (u), M, (m),

~ A

M, (m), M, (n) and I\A/IZz (n)are consistent and asymptotically normal (see Gross (1980)).

(v) Following Kuk and Mak (1989), let P, be the proportion of elements in the population

such that a<M, and b<M, where aandbe{x,y,z,z,}and a = b.

(vi) Following large sample approximations are assumed:

0, (0)=M, (14 ,), K1, (m)=M, (1 +e,), ¥, (m)=M, (L+e,), M, (n)=M, (L +e,)

A A

M, (u)=M, (1 +e,), M, (m)=M, (1+e), M, (m)=M, (1+e;)and M, (n)=M, (1+e,),

Z

such thatle|<1Vvi=0,1,234,56and7.

The values of various related expectations can be seen in Allen et al. (2002) and Singh
(2003).

4.2. Bias and Mean Square Errors of the Estimators Ti; (i, j =1, 2)

The estimators T,, and T, , (i, j=1, 2) are ratio, exponential ratio, ratio to exponential ratio

and chain type ratio to exponential ratio type in nature respectively. Hence they are biased

for population median M . Therefore, the final estimators T, (i, j =1, 2)defined in equation
(5) are also biased estimators of M, . Bias B(.) and mean square errors m(.)of the

proposed estimators T, j(i,j =1, 2)are obtained up to first order of approximations and

thus we have following theorems:

Theorem 4.2.1.Bias of the estimators T, (i, j =1, 2) to the first order of approximations are

obtained as

B(T;;) =@ B(T.) + (1-9;) B(T;n); (1, i=1.2) 6)
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where p(T,,) = %{[sz(MZz )] "™, ) (4P, '1)[fv(Mv)]_l[fzz(MZZ )]1} -

B(T,,) = 1 {3[sz (MZz )]2 M, i (4 Pre, - 1)[fy(My)T[sz (Mzz )]1} (8)

- +
4 M? 4M, 32 Mfz

1 {[fx(Mx)J‘zMy (4p, D)0 ) [, ()] 3[F (M. )],
P

JLACHI My} ©

-1

4 M2 32M2 4M,

) - i{[uw M, 3 (M) M, (4P, 2[5 (M)] "1, (M,)]

-1

(4Pa- IR (M,)] [, (M)]1 M, | (4P, - [F, (M) [ (M,)] "™,

8M,M,, 8M,M,,
(42 1) ()] ()] (4P 1)1 ()] (1 (M)]
8 M, 8M,,
_ (4 lezz- 1)|:f21 (Mzi ):I ) I:fzz (Mzz ):| ’ MY _ |:f21 (Mzi ):|2 My
16 M, M, 32M?

1] (4P, Y[R M) [F, (M,)] ’ . (4P, - 1)[F, (M) [£, (M,)] ™,

AM, 8 MM,

+

-1

(4P, - I F, (M)] [, (M.,)] M, (4P,-1)[f,(M,)] [t (Mm,)]

8M,M,, 8M,
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(4 lezz- 1)[1:11 (le ):| _1|:f22 (Mzz ):I ) MY _[fx (Mx)] i My + [le (Mzi ):I ’ My (10)
16 M, M, 4 M?2 2 M2

X

+

Proof: The bias of the estimators T, (i, j = 1, 2) are given by
B(Tij) = E[Tij - My] = @ B(T,) + (1 _(Pii)B(Tim)
where B(T,,) =E[T, -M, | and B(T,,,) =E[T,,, - M, |

Using large sample approximations assumed in Section 4.1 and retaining terms upto the
first order of approximations, the expression for B(T,,) and B(ij)are obtained as in
equations (7) - (10) and hence the expression for bias of the estimators T, (i, j =1, 2) are

obtained as in equation (6).

Theorem 4.2.2.Mean square errors of the estimators T, (i, j =1, 2) to the first order of

approximations are obtained as

M(Tij): (pizj M(Tiu)"'(l' (Pij)z M(ij)+2 ®ij (1' (Pij)COV(Tiua ij) (1,j=1,2)  (11)

Where M(T,,) = % A, (12)
M(T,) = 5 A, (13)
M(Tlm):%A2+ %As (14)
M(TZm):%A5+ %Aﬁ (15)
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4 4M 2M,,

2
2

{[fy(Myﬂz ALY AL -1>[fy<myu1[fzz<Mn>yMy},

a {[fywy)] MM [ ()] MG (4,2 (M)]E ()] M,

4 4 M? 16 M2 2M,

- +
4M, AM, M,

(4R~ 91, ()] . ()] M, <4sz2-1>[fxwx>1l[fzzwzz)}wsP

1

A- {(4 Py-1)[f,(M)]"[f,(M,)] M, (4P I (M)] [t (m,,)] ™

2M, 4AM, M,
_ [fx<Mx>]‘2M§}
4 M2 ’
A = [fy(My):I ’ + [fzz (Mzz )] ’ Mf’ _(4 PVZz ) l)I:fV(My)J -l|:fzz (Mzz )] ’ My}’
) 4 16 M2 4M,

[(m)]" [T me [ ()] M 1, (M,)]

o i awm 16 M2, T M2
_ (4 PXV_ 1)[fx (MX)] -1|:fy (MV)] ’ MV + (4 Pyzl_ 1)|:fy(My)] _l|:f21 (le )] ’ My
2M, 4M,
(4P )1, (M) ] [ (M) M, (4P - D[ (M)][F (M,)] M
aMm, AM, M,
. (4P, - [F,(M)]"[F., (M.,)] M2 (4P, 1)[f,(M,)] .1[f22 (M,,)] M2
AM, M, 8M_M,
and
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(4P OLEMIT TR M)] M, [f, ()] P M [F(M,)] M

A= oM, aM? 16 M2
_(4 P)’Z1_1)|:fY(MY):|-1|:f21(le)]_lMy+(4 PXZl_1)|:fX(MX):|_1:f21(le):l-lM)z’
4M, AM, M,
(4Pa YR (M)][F (M,,)] M2 (4 P [, (M,)] [F (M,)] ™2
AM, M, 8M,_ M,

Proof: The mean square errors of the estimators T;,are given by

M (T;) =E [T;- Myjz =E [y (T -M,) + (1-0,){T;s 'My}]z

=9,/ M (T,) + (-0, M[T;, ] +2 0, (1-0;) Cov(T,. T;,)

where M (T,,) = E[T, - M,]"andm [T1,,]=E[T,,- M,]"5  (,i=1,2)

The estimators T;, and T, are based on two independent samples of sizes u and m
respectively, hencecOV(Tiu,ij) =0; (i,j=1,2).Using large sample approximations

assumed in section 4.1 and retaining terms upto the first order of approximations, the

expression for M(T,,) and M(ij)are obtained as given in equations (12) - (15) and hence
the expressions for mean square error of estimators T, (i,j=1,2) are obtained as in

equation(11).

Remark 4.2.1: The mean square errors of the estimators T, (i, j=1, 2) in equation (11)
depend on the population parametersP, P, ., P, P, P, P, f(M,), f,(M,),
f, (M) and f, (M) If these parameters are known, the properties of proposed estimators

can be easily studied. Otherwise, which is the most often situation in practice, the
unknown population parameters are replaced by their sample estimates. The population

proportionsP,, P, ,P, , P, , P

o+ Prar P, ,and P,, can be replaced by the sample estimate

Xz

A

PP PP, and P, and the marginal densities f,,(Mm,),f (M,), f

xy1 Pxayr Tzt Dyt Tyzy

(le)and

Y
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f,, (M,, )can be substituted by their kernel estimator or nearest neighbour density estimator

or generalized nearest neighbour density estimator related to the kernel estimator

Silverman (1986). Here, the marginal densitiesf (M, ), f,(M,).f, (M, ) andf, (M, )are
replaced by { (¥, (m)), f, (%, (n)), f, (M, (n))andf, (M, (n)) respectively, which are

obtained by method of generalized nearest neighbour density estimator related to kernel

estimator.

Toestimatef, (My), f.(M,).f, (le) and f,, (MZZ ) by generalized nearest neighbour density

estimator related to the kernel estimator, following procedure has been adopted:

Choose an integer h ~ n% and define the distance 5(x,,x,) between two points on the
line to be|x, - X,|.

For M,(n) , define 3, (M, (n))<8,(M,(n))<--- <3,(M,(n)) to be the distances,
arranged in ascending order, from I\A/IX (n) to the points of the sample.

The generalized nearest neighbour density estimate is defined by

2o _ 1 n M, (n)
o) = ).1K[5h( n)}

where the kernel function K, satisfies the condition I ) dx =1

1

Here, the kernel function is chosen as Gaussian Kernel given by K (x) = zi e'(E ij.
T

The estimate of f (M, ),f, (M, )andf, (M, ) can be obtained by the above explained

procedure in similar manner.
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5. Minimum Mean Square Errors of the Proposed Estimators T;; (i, j =1, 2)

Since the mean square errors of the estimators T, (i, j =1, 2)given in equation (11) are the
functions of unknown constants o, (i, j = 1, 2), therefore, they are minimized with respect

to ¢,; and subsequently the optimum values of ¢,; are obtained as

)
'V'(Tiu)+|\/|(ij)’("J L.2) (16)

i, —

Now substituting the values of o, o in equation (11), we obtain the optimum mean square

errors of the estimators T, (i, j =1, 2) as

(1), = o) M), 52 an

opt. M(Tlu) +M(ij)

Further, substituting the values of the mean square error of the estimators defined in

equation (12) to equation (15) in equation (16) and (17), the simplified values Pij,. and

|\/|(T..) are obtained as
11/ opt.
0, = Hyg [Hﬂ A; - (A2+ As)] (18)
o Hfl Ag -y, (A2+ A, - Al) - Al]
_ [5P) [le Ay - (A5+Ae )] 19
(p120m' - 2 ( )
M Ag - 1y, (A5+ Ay - Al) - Al]
0, = Moy [Hzl As - (A2+ A, )] (20)
o Mgl A -y (A2+ Ay - A4) - A4]
_ ) [sz Ag - (A5+A6 )] (21)
2, = T 2
Mo Ag - My (A5+ Ag - A4) - A4]
1 C -C
M (Tll)opt, == 2 [ull . 2] (22)
n I:lvlll Ay -y G- Al]
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1 [le C, - Cs]
T,) = = (23)
( . )Opt' n [lez Ag -y, Cg - Al:l

M(T21) - 1 [lvlzl G - CB] (24)
o [Hgl Ay -y G - AJ

M(Tzz) — 1 [sz Cyp - Cn] (25)
o I:ng Ag - Hp Cpp - A4:|

where

C1: AlAS’ C:2: AlAZ + AlAS’ C3: A2 + A3 - Al’ C4: AlAG' C5: AlAS + AiAG’
Co=As +As - Al C=AAL CG=AA +AA, C=A, +A -A,, Cp=AA,
Cu=AA +AA; ,C,o=A, +A,-A,and (i, j=1, 2)are the fractions of the sample

drawn afresh at the current(second) occasion.

Remark 5.1: M(Tii)opt derived in equation (22) - (25) are the functions of p,,(i,j=1,2).

To estimate the population median on each occasion the better choices of . (i,j=1,2)

are 1(case of no matching); however, to estimate the change in median from one occasion

to other, (i, j = 1, 2) should be O(case of complete matching). But intuition suggests that
an optimum choices of (i, j=1,2) are desired to devise the amicable strategy for both

the problems simultaneously.
6. Optimum Replacement Strategies for the Estimators T;; (i, j =1, 2)

The key design parameter affecting the estimates of change is the overlap between
successive samples. Maintaining high overlap between repeats of a survey is operationally

convenient, since many sampled units have been located and have some experience in the

survey. Hence to decide about the optimum value of y;; (i,j=1,2) (fractions of samples

to be drawn afresh on current occasion) so that M, may be estimated with maximum
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precision and minimum cost, we minimize the mean square errors M(Ti,-) (i,j=1,2) in
opt.

equation (22) to (25) with respect toy,; (i, j=1, 2) respectively.

The optimum value of (i, j=1, 2) so obtained is one of the two roots given by

. D, %y D; -D, D, (26)
M= D
1
A :Dsi\IDé'DADe (27)
Hao
D,
+ 2
i, = Dy £ Dg -D; Dy (28)
D;
2 -
= D, £ Dy -Dy Dy (29)
Dy,

whereD,=AC,, D,=AC,, D,=AC,+C,C,, D,=AC,, D,=A.C,, D,=AC,+C.C,

D,=AC;, Dg=ACy, Dy=A,C,+C,Cy, D,=AC,y, Dy=AC, and D;,=A,C,+ C,Cp,.

The real values of i, (i, j=1, 2) exist, iff D} -D, D, >0, D - D, D, >0, D] - D, D, >0,and
D% - D,, D,, >0. For any situation, which satisfies these conditions, two real values of
fi,;(i,j = 1,2) may be possible , hence to choose a value of i, (i, j = 1, 2), it should be taken
care of that fi;; €(0, 1), all other values of i,;(i,j=1, 2) are inadmissible. If both the real
values of [i;;(i,j=1,2) are admissible, the lowest one will be the best choice as it reduces
the total cost of the survey. Substituting the admissible value of fi;; say pn(i,j=1,2)
from equation (26) to (29) in equation (22) to (25) respectively , we get the optimum

values of the mean square errors of the estimators T (i, =1, 2) with respect to ¢,;;as well

asy; (i, j=1, 2)which are given as
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* [Hﬁ) C - Cz]

M(Tll)opt. = nl:”ﬁ)z A, - uﬁ) C, - A1] (30)
©
* I:lvllz C, - C5]
M(T, = 1)
(e)en ™ B A, i €, A
©
x [Hzl G - C8}
M(T. = (32)
(e = T1®7 A, 8, -4, ]
. Oc,-C
M(T, ) = (O)Euzz 0 - Cu (33)

o nl:uzz Aq - i) Cy, 'A4:|

7. Efficiency Comparison

To evaluate the performance of the proposed estimators, the estimators T, (i, j = 1, 2)at
optimum conditions are compared with respect to (i) the sample median estimator m,_(n)

, when there is no matching from previous occasion and (ii) the ratio type estimator A
proposed by Singh et al. (2007) for second quantile, where no additional auxiliary

information was used at any occasion and is given by

A=y M, (u) + (1 -y)M, (n)(%} (34)

where y is an unknown constant to be determined so as to minimise the mean square error

of the estimator A. Since, My(n) is unbiased and A is biased for population median, so

A

variance of m_(n)and mean square error of the estimator A at optimum conditions are

given as

V(i (n) = %M (35)
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and  M(A) = [ - %] (36)
o n[ui -y, Js -Il]

H iwf H2-H, H
where, =—* HZ —, H =)L, Hy= L, Hy=10, 0,05, 0 =1L, 1= (12+Iz)°
1

(0] [0 0)]" [r0a]” me (R, n. )] Tr,(m,)] ',

Jo=b 4+, 1= =
$ e 4 2 4 4M? 2M

X

(4Py- L (M)T[F, ()] M, [£,(M)]° M}

2M, 4M?

and l,=

The percent relative efficienciesE? and E of the estimators T, (i, j = 1, 2) (under their
respective optimum conditions) with respect to l\?ly(n)and A are respectively given by

—)) x 100 and E@ = M x 100; (i, j=1, 2) (37)

(
M(T), )

opt. 1§ Jopt.

8. Empirical Illlustrations and Monte Carlo Simulation

Empirical validation can be carried out by Monte Carlo Simulation. Real life situation of

completely known finite population has been considered.
Population Source: [Free access to the data by Statistical Abstracts of the United States]

The population comprise of N = 51 states of United States. Letx, be the Percentage of
+th

Advanced Degree Holders or More during 1990 in the i" state of U. S.,y, represent the

Percentage of Advanced Degree Holders or More during 2009 in the i™ state of U. S., z,

denote Percentage of Bachelor Degree Holders or More during 1990 in the i" state of U.

S.and z, denote the Percentage of Bachelor Degree Holders or More during 2009 in the

i" state of U. S and The data are presented in Figure 1.
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Figure 1: Percentage Advanced Degree Holders or More during 1990 and 2009
versus different states of United States.

For the considered population, the optimum values of (i, j = 1, 2) defined in
equation (26) to (29) and percent relative efficiencies g®and e® defined in equation (37)
of T,;(i, j =1, 2) (under their respective optimality conditions) with respectto M, (n) and

A have been computed and are presented in Table-2.

To validate the empirical results quoted in Table 2, Monte Carlo simulation have
also been performed.5000 samples of size n=20 states are selected using simple random

sampling without replacement in the year 1990. The sample medians g1, (njandm, , (n), k

=1, 2, - - -,5000 are computed. From each one of the selected samples, m=17 states are
retained and new u=3 states are selected out of N — n =51 — 20 = 31 states of U.S. using
simple random sampling without replacement in the year 2009. From the m units retained

in the sample at the current occasion, the sample medians M, (m), M, (m),

A

M, (m) and M, , (m), k =1,2,---5000 are computed. From the new unmatched units
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selected on the current occasion the sample medians M, (u) and M, , (u), k =1, 2,- - -

,5000 are also calculated. The parameters ¢ and ware selected between 0.1 and 0.9 with

a step of 0.1.

The percent relative efficiencies of the proposed estimators T;; with respect to M, (n) and

A are obtained as a result of above simulation and are respectively given as:

5000 _ 2 5000 )
Z[My\k(n)'My] Z[Ak'My
E;(1) = S5 — x 100 and E,;(2)=5 x100; (i, j=1,2)
kZ:;[Tiik'My] kzzl:[Tiik My]

For better analysis, the above simulation experiments were repeated for different choices
of u. For convenience the different choices of p are considered as different sets for the

considered Population which is shown below:

Sets Population

I n=20, un=0.15, (m=17,u = 3)
] n=20, un=0.20, (m=16,u=4)
i n=20, n=0.35,(M=13,u=7)
v n=20, u=0.50, (m = 10, u = 10)

The simulation results obtained are presented in Table-3 to Table-7.

Table 1: Descriptive statistics for the population considered

9% of Advanced 9% of Advanced % of Bachelor’s % of Bachelor’s
Degree Holders or | Degree Holders or Degree or More Degree or
More(1990) More(2009) (1990) More(2009)

(x) () ( Z, ) ( Z, )
Mean 5.7 10.00 20.00 27.40
Median 6.40 7.90 19.30 26.30
Standard deviation 4.70 11.23 16.98 30.46
Kurtosis 8.43 11.04 0.79 2.70
Skewness 2.34 2.69 0.70 1.09
Minimum 5.7 6.30 12.30 17.1
Maximum 17.2 26.7 33.37 48.2
Count 51 51 51 51
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Table 2: Comparison of the proposed estimatorsT,; (at optimum conditions) with

respect to the estimators I\A/Iy (n)and A (at their respective optimum conditions)

hy -

n 0.8389
ns) 0.5278
n 0.5603
e :

ES 200.75
ESY 155.52
EY) 165.02
= :

EY 171.79
E? 133.08
EY 141.21

Note: “** indicates that 1% ; (i, j =1, 2) do not exist.

ij>
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Table 3: Monte Carlo Simulation results when the proposed estimator T;is
compared to 1 (n).

SET | T I v
¢
o1 | En@ 157.64 136.42 139.61 104.70
E,, (1) 139.56 135.09 144.90 148.55
E, (1) 155.56 137.23 142.14 106.44
E,,(1) 137.61 135.68 146.87 151.28
E,,(1) 161.27 145.61 148.14 119.39
E,(1) 147.08 144.78 153.24 167.79
02 E,,(1) 161.27 144.25 148.66 121.37
E,,(1) 142.42 143.43 152.85 170.72
E,(1) 171.41 152.14 152.99 133.24
E,(1) 152.23 151.62 157.13 185.83
03 E,,(1) 161.68 146.36 147.98 134.36
E,,(1) 143.81 145.93 150.68 187.01
E,.(1) 172.75 151.39 153.37 146.51
s | E2® 153.29 151.85 157.52 202.15
T ELQ) 157.17 138.96 141,53 145.79
E,,(1) 140.00 139.43 143.68 199.08
E,, (1) 169.68 148.53 148.19 159.08
E,(1) 151.22 148.99 151.80 215.89
0 E, (1) 148.70 129.43 127.97 154.54
E,,(1) 133.39 129.74 129.45 205.79
E,,(1) 162.03 140.99 138.28 171.10
E,(1) 145.87 141.54 141.20 227.47
00 E,,(1) 136.36 115.71 112,57 160.04
E,,(1) 123.84 116.09 113.30 206.50
E,(1) 154.69 131.88 124.56 179.50
E,(1) 140.61 132.26 126.70 232.64
07 E,, (1) 125.89 103.21 ok 160.75
E,,(1) 115.62 103.44 ok 200.20
E,(1) 144.46 119.52 112.15 182.42
E,(1) 132.79 119.77 113.77 229.90
08 E,,(1) 113.79 ok ok 156.07
E,,(1) 105.73 ok ok 187.95
E,,(1) 133.55 107.93 ok 180.42
E,(1) 124.30 108.12 ok 220.39
09 E, (1) 102.91 ok ok 147.02
E,,(1) Hox *ox *ox 171.21

Note: “**” jndicates no gain.
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Table 4: Monte Carlo Simulation results when the proposed estimator T, is

compared to the estimator A

vV

SET

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

166.50

164.58

172.38

188.62

228.93

277.81

333.46

422.99

479.54

140.62

135.80

149.73

184.74

244.06

347.10

391.73

556.52

731.76

134.98

126.52

138.99

197.52

258.06

362.92

511.86

668.66

895.18

v

116.54

100.35

*%*

*%*

**

*%*

123.84

160.06

211.31

0.2

174.84

170.32

179.46

198.15

246.31

293.62

336.28

414.78

507.51

147.81

141.46

157.48

196.01

256.57

350.54

433.21

581.35

756.12

14443

134.92

152.62

210.36

281.48

393.28

540.90

716.93

913.98

1\

131.84

104.09

**

*%*

**

107.11

134.64

183.01

233.14

0.3

178.86

174.28

183.33

202.86

246.40

300.03

354.10

434.50

518.11

152.95

145.17

161.03

200.44

263.20

355.79

454.44

603.50

776.33

151.01

140.19

159.32

218.27

293.69

408.04

566.13

715.27

942.02

1\

148.55

116.42

**

*%*

100.93

118.78

154.26

199.88

259.18

0.4

179.43

175.46

183.29

202.99

248.29

299.47

353.28

432.78

515.88

152.22

145.54

160.58

200.91

265.35

357.71

460.92

610.86

760.58

151.43

139.34

158.79

216.11

295.25

409.66

564.60

742.28

941.09

1\

163.16

129.19

107.79

100.14

110.62

131.32

170.91

220.06

282.55

0.5

175.36

172.12

179.58

199.54

242.51

291.57

345.79

420.66

515.67

149.34

142.89

157.15

197.21

261.35

352.07

452.17

607.09

749.93

145.63

133.76

153.37

206.83

284.12

393.77

537.64

713.06

907.43

1\

177.53

139.85

116.86

108.35

120.59

143.48

187.29

239.67

310.80

0.6

167.19

164.42

172.61

191.70

232.03

278.84

333.16

405.10

492.13

141.98

136.24

149.74

187.96

246.67

333.07

429.17

569.91

709.42

136.23

124.27

143.46

192.75

265.70

368.16

501.30

661.34

848.74

1\

190.07

149.10

124.74

116.23

128.75

152.66

199.81

257.62

332.90

0.7

159.37

155.34

162.37

181.70

219.28

263.40

313.41

387.07

462.57

132.92

125.95

138.83

174.34

229.98

308.49

397.17

528.32

661.19

123.11

112.21

129.17

173.54

240.65

337.10

453.64

604.41

775.34

1\

199.78

155.47

130.26

121.68

134.63

160.18

209.69

270.21

346.17

0.8

148.49

144.04

151.56

169.90

204.19

245.76

292.35

357.20

431.24

120.56

114.86

126.15

160.31

210.25

284.17

360.20

477.84

601.11

110.85

100.36

115.34

154.33

214.13

300.74

403.23

540.34

688.10

1\

203.38

157.98

132.34

124.54

137.06

162.68

212.57

275.04

352.95

0.9

137.22

132.63

139.82

155.98

188.41

224.81

268.21

327.37

397.74

108.66

104.07

114.83

145.37

189.19

255.82

325.72

431.0

544.49

**

**

101.74

13525

187.25

265.51

353.08

470.35

600.77

v

201.06

157.02

131.81

123.53

135.94

161.63

211.07

272.07

346.66

Note: “**” indicates no gain.
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Table 5:

Monte Carlo Simulation results when the proposed estimator T, is
compared to the estimator A

v

SE

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

147.41

145.42

152.84

167.96

205.15

245.85

287.97

379.09

429.76

139.26

130.52

147.81

182.62

247.25

348.99

396.14

552.83

737.42

140.10

125.66

142.88

200.32

266.60

371.37

520.99

675.04

907.49

[\

165.36

131.09

111.73

105.05

110.30

135.83

168.97

217.91

293.82

154.34

150.08

158.57

176.72

218.11

257.30

298.15

368.28

453.74

146.96

138.61

155.49

196.26

260.63

353.46

438.36

579.23

761.42

0.2

149.40

134.87

155.77

213.36

289.19

404.90

556.13

728.97

923.68

[\

185.30

146.82

124.64

116.52

124.85

149.48

189.38

248.68

324.44

158.85

153.55

162.09

180.36

217.48

263.04

313.32

385.31

458.56

0.3

152.43

143.57

159.98

201.01

266.61

357.11

456.77

602.15

780.56

155.10

141.28

162.21

220.98

301.04

420.15

579.05

770.08

952.36

[\

207.19

163.58

137.49

128.45

139.17

164.48

214.91

273.60

359.43

159.22

154.82

162.16

180.33

219.78

262.40

314.13

348.73

456.35

0.4

152.68

144.84

159.77

201.72

267.74

359.65

462.40

608.93

764.93

155.53

140.76

161.10

218.47

302.35

419.97

576.67

759.17

956.37

[\

225.13

180.10

149.75

139.74

151.07

179.92

235.54

298.40

388.24

156.28

153.07

160.21

178.21

215.58

257.46

308.89

374.79

460.02

149.80

142.50

156.87

198.03

262.93

354.07

452.77

604.91

755.09

0.5

149.17

135.50

155.26

209.19

289.74

401.92

548.37

726.64

921.76

[\

240.93

191.53

159.71

149.10

162.46

193.60

253.76

320.98

420.27

150.51

147.50

155.47

172.77

208.13

248.55

299.85

363.74

442.23

0.6

142.53

135.85

149.68

188.86

247.72

335.34

429.69

568.05

713.58

139.11

125.74

144.98

194.42

269.92

374.53

511.26

672.23

861.67

[\

252.69

200.10

166.61

156.52

170.26

201.90

264.86

338.34

441.53

144.87

140.89

147.95

165.22

198.88

263.40

284.91

350.90

419.95

133.32

125.80

138.93

175.14

230.76

310.13

398.21

527.50

665.34

0.7

125.23

113.28

130.46

174.93

244.27

342.04

460.79

612.47

785.09

[\

258.92

202.87

169.77

159.50

173.88

206.66

271.39

346.66

448.02

136.50

132.28

139.52

156.15

187.55

245.76

268.76

327.92

396.09

0.8

120.82

114.81

127.12

160.96

210.85

285.41

360.90

477.31

604.09

112.45

101.14

116.26

155.42

216.76

304.15

408.39

546.84

695.73

v

256.31

200.14

167.41

158.42

172.14

204.04

267.17

343.12

444.21

127.70

123.33

130.28

145.20

175.21

208.21

249.65

304.26

369.99

0.9

108.85

104.07

114.96

145.06

189.64

255.82

326.32

430.68

546.88

**

**

102.40

136.05

189.25

267.93

357.08

474.84

605.96

v

245.56

192.90

161.89

152.22

165.80

196.86

258.07

329.86

423.49

Note: “**” indicates no gain.
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Table 6: Monte Carlo Simulation results when the proposed estimator T,, is
compared to the estimator A

Y

SE

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

164.30

162.04

170.17

186.41

225.19

273.63

318.27

416.48

473.41

141.30

137.16

151.29

185.73

247.77

351.46

396.87

563.10

741.51

137.43

128.55

141.92

200.86

263.88

369.83

522.15

679.07

910.72

[\

118.48

105.56

**

*%

125.42

162.57

214.0

0.2

169.22

164.43

173.74

191.94

237.26

283.01

325.54

401.66

492.17

146.42

140.67

157.02

194.23

256.77

349.22

431.44

580.83

757.19

144.94

134.99

153.20

210.47

282.25

393.85

543.97

717.48

920.49

[\

134.04

117.32

**

**

**

108.93

136.67

185.99

236.66

0.3

168.71

163.74

172.99

191.54

232.10

281.87

333.45

407.94

489.82

147.14

139.76

155.67

192.73

254.65

343.14

437.95

581.08

749.47

146.06

134.74

154.03

209.81

233.18

396.35

547.58

718.77

917.21

[\

149.80

128.47

100.11

**

101.37

120.47

155.25

201.64

261.26

0.4

163.25

159.18

167.59

183.77

224.98

271.79

321.96

393.64

473.0

139.73

133.36

148.84

185.01

244.59

328.50

424.73

561.31

707.64

139.74

127.01

145.41

197.85

270.95

376.30

518.17

675.94

871.26

[\

162.36

135.92

107.72

100.04

109.68

131.46

169.16

218.55

281.58

0.5

153.68

151.0

158.66

175.83

211.75

255.99

304.54

370.36

452.13

130.14

125.18

137.85

171.75

227.73

304.54

395.12

526.53

658.63

125.76

114.80

131.95

178.34

246.39

341.66

465.45

612.26

789.09

[\

172.46

140.33

114.30

105.17

116.65

140.05

180.77

232.54

301.70

0.6

140.70

138.80

146.75

162.06

195.09

236.45

282.72

343.0

417.54

116.53

113.59

123.84

154.90

204.93

273.57

356.37

472.16

591.84

110.90

100.53

115.38

157.30

215.80

300.35

408.67

537.16

688.69

v

177.79

139.94

117.65

109.17

120.37

144.22

186.37

240.64

311.57

0.7

129.70

126.10

132.55

149.58

177.75

215.08

257.43

314.25

380.18

104.03

100.14

109.0

137.33

180.63

240.87

312.68

415.49

523.70

**

**

**

133.60

185.24

258.53

351.47

464.06

595.42

v

178.91

135.46

117.81

109.46

120.76

144.66

186.96

241.53

311.63

0.8

116.88

113.24

119.85

135.13

159.69

193.70

232.06

282.62

342.43

**

**

**

119.77

158.24

212.80

273.82

361.75

454.69

**

**

**

113.23

156.67

219.80

298.48

397.24

506.82

v

174.0

140.86

113.71

106.67

117.35

140.40

181.37

234.29

302.86

0.9

105.73

101.54

107.40

120.34

143.32

173.41

207.59

253.34

306.09

**

**

**

103.73

137.32

182.59

237.85

312.02

391.95

**

*%*

**

*%*

132.98

187.26

250.32

336.43

430.48

v

163.85

128.33

107.93

100.65

110.64

132.25

171.50

221.13

285.08

Note: “**” indicates no gain.
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Table 7: Monte Carlo Simulation results when the proposed estimator T,, is
compared to the estimator A

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

[ 145.34 | 142.91 | 150.34 | 165.76 | 201.25 | 241.72 | 283.71 | 372.27 | 422.76

0.1 1 139.86 | 131.72 | 149.28 | 183.75 | 251.11 | 353.73 | 401.21 | 560.08 | 747.12

1l 142.01 | 126.68 | 145.84 | 202.37 | 271.64 | 376.86 | 528.24 | 684.40 | 918.32

v 168.40 | 133.02 | 113.61 | 106.71 | 112.35 | 138.09 | 171.15 | 222.02 | 279.44

[ 149.44 | 144.84 | 152.99 | 170.90 | 209.80 | 247.94 | 288.51 | 355.91 | 438.58

0.2 1 145,59 | 137.80 | 155.01 | 194.71 | 260.76 | 352.53 | 436.69 | 579.70 | 761.35

1l 149.03 | 133.54 | 155.58 | 211.23 | 288.36 | 402.60 | 553.84 | 723.93 | 922.12

v 188.53 | 148.72 | 126.73 | 118.13 | 126.62 | 152.41 | 192.27 | 253.35 | 328.86

| 150.07 | 144.53 | 152.80 | 170.30 | 204.83 | 247.52 | 295.52 | 361.88 | 432.91

1 146.71 | 138.09 | 154.92 | 193.58 | 257.84 | 344.89 | 441.02 | 580.43 | 754.38

03 1l 148.73 | 134.21 | 155.45 | 209.84 | 287.19 | 404.09 | 555.0 | 727.42 | 918.78

IV | 208.51 | 164.05 | 138.74 | 128.89 | 139.03 | 166.56 | 25.66 | 275.54 | 359.87

I 145.42 | 141.02 | 148.49 | 165.50 | 199.88 | 239.20 | 287.11 | 350.73 | 418.86

04 1 140.20 | 132.59 | 148.35 | 185.95 | 246.69 | 330.71 | 426.58 | 559.47 | 711.77

1l 141.86 | 126.81 | 146.01 | 197.66 | 273.69 | 381.30 | 523.37 | 683.22 | 875.16

v 221.71 | 177.43 | 148.03 | 137.60 | 148.13 | 178.21 | 231.03 | 293.93 | 381.61

I 137.85 | 135.10 | 142.12 | 157.92 | 189.45 | 227.59 | 273.41 | 331.58 | 405.16

05 1 130.45 | 124.88 | 137.89 | 172.41 | 229.23 | 307.19 | 396.44 | 524.90 | 662.82

1l 127.21 | 114.85 | 132.21 | 177.97 | 248.29 | 344.66 | 468.77 | 615.55 | 792.22

v 229.67 | 182.27 | 153.0 | 142.04 | 154.08 | 185.10 | 240.28 | 305.89 | 398.49

| 127.78 | 125.60 | 133.10 | 147.23 | 176.64 | 212.63 | 256.40 | 310.51 | 377.76

1 116.90 | 113.38 | 124.03 | 155.66 | 205.91 | 275.77 | 357.22 | 470.98 | 594.70

0.6 1l 111.62 | 100.0 | 115.44 | 156.69 | 216.72 | 302.02 | 411.56 | 539.55 | 691.10

v 229.39 | 182.55 | 152.29 | 142.69 | 154.53 | 185.09 | 240.15 | 307.21 | 399.19

| 119.13 | 115,58 | 121.87 | 137.22 | 163.02 | 196.13 | 236.15 | 287.92 | 348.08

0.7 1 104.27 e 109.23 | 137.97 | 181.22 | 242.29 | 313.73 | 414.96 | 526.11

1l ** ** ** 133.30 | 185.96 | 259.46 | 353.0 | 465.10 | 596.38

v 222.81 | 175.30 | 147.60 | 137.83 | 150.17 | 179.11 | 232.76 | 298.37 | 386.84

| 108.68 | 105.16 | 11141 | 125.46 | 148.49 | 179.11 | 215.52 | 262.33 | 317.59

08 1 e e e 120.23 | 158.65 | 212.99 | 274.54 | 361.38 | 456.32

11 il il il 113.03 | 157.10 | 220.20 | 299.43 | 398.12 | 507.52

v 209.54 | 163.69 | 137.32 | 129.39 | 141.03 | 168.18 | 217.93 | 279.63 | 363.49

| 100.05 | 101.54 | 101.09 | 113.19 | 134.89 | 162.45 | 195.18 | 237.99 | 287.66

1 ** ** ** 104.06 | 137.61 | 183.21 | 238.41 | 311.82 | 393.15

09 11 ** ** ** 109.51 | 133.25 | 187.47 | 250.79 | 337.01 | 430.48

v 190.81 | 150.13 | 126.23 | 100.65 | 128.73 | 153.38 | 199.50 | 255.99 | 331.80

Note: “**” indicates no gain.
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9. Mutual Comparison of the Proposed Estimators T;; (i, j =1, 2)

The performances of the proposed estimators T;; (i, j=1,2) have been elaborated

empirically as well as through simulation studies in above Section 8 and the results
obtained are presented in Table 2 to Table 7. In this section the mutual comparison of the
four proposed estimators have been elaborated though different graphs given in Figure 2

to Figure 5.
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Figure 2: Mutual Comparison of Proposed Estimator T;; (i, j =1, 2) when compared
with the estimator I\7Iy(n) for set-1V.
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Figure 3: Mutual Comparison of Proposed Estimators T; (i, j =1, 2) when compared

with the estimator A fory=0.1 for set-11.
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Figure 4. Mutual Comparison of Proposed Estimators T (i, j =1, 2)when

compared with the estimator A fory = 0.5 for set-11.
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Figure 5: Mutual Comparison of Proposed Estimators T; (i, j =1, 2) when compared

with the estimator A for y = 0.9 for set-I1I.

10. Interpretation of Results
The following interpretation can be drawn from Tables 2-7 and Figure 2-5:

(1)From Table- 2, it is observed that

(a) Optimum valuesp?, u$) and p$) for the estimators T,,, T,, and T,, respectively
exist for the considered population which justifies the applicability of the proposed
estimators T,,, T,, and T,,at optimum conditions. However, the optimum value u'? for

the estimator T,; does not exist for the considered population.

(b) Appreciable gain is observed in terms of precision indicating the proposed estimators

T,, T,1, T,, (at their respective optimal conditions) are preferable over the estimator
I\7Iy(n) and A (at optimal conditions). This result justifies the use of additional auxiliary

information at both occasions which is dynamic over time in two occasion successive

sampling.
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(c) The values for EX) and E% cannot be calculated as optimum value 1) does not exist
but simulation study vindicated in Tables 3-7 magnify the applicability of proposed

estimator T,, over sample median estimator I\A/Iy (n)and the estimator A .

(2) From Table-3, it can be seen that, when T;; (i, j =1, 2) is compared with sample median

estimator I\A/ly (n)

(@) E, (1), E;,(2), E, (1), E,, () first increase and then decrease as ¢ increases for all sets.

(b) For fixed value of ¢, E,;(1) and E,, (1) show no fixed behaviour as the value of p is

increased.

(c) E;,(1) and E,, (1) increase as pincreases.

(3) From Table-4, when T, is compared with the estimator A , we see that

(@) E,(2)increases as ¢ increases for all choices of .

(b) For fixed choices of ¢ as y increases the value of E(2) increases.

(c) As pisincreased E,, (2)decreases.

(4) From Table-5, when T,, is compared with the estimator A , we observe that
(@) E,(2) increases for all the sets as ¢ increases for all choices of .

(b) As v increases E,(2)also increases for all sets except for some of the combinations

of pand .
(c) No fixed pattern is observed for E,,(2)as p is increased.
(5) From Table-6, when T,, is compared with the estimator A , it can be seen that

(a) For all choices of v the value of E,, (2) first increases and then decreases as ¢ increases

for all sets except for set V.
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(b) For different choices of ¢ as vy increases, the value of E,, (2) also increases for set I,

Il and I11.

(c) For set 1V, E,,(2) first decreases as vy increases and then increases for all choices of

0.
(d) As for all choices of ¢ and y as p increases, the value of E,,(2) decreases.
(6) From Table-7, it can be concluded that

(@) E,,(2)first increases as ¢ increases and then decreases for different choices of y for

all the four sets.

(b) As v increases E,, (2) also increases for all sets and for all choices of ¢ .

(c) For set IV E,,(2)first decreases and then increases as v increases for all choices of ¢

(d) No fixed behaviour is observed for E,, (2) as portion of sample drawn afresh at current

occasion increases.

(7) The mutual comparison of the four proposed estimators T; (i, j=1, 2) in Figure 2 to
Figure 5, show that the estimator T,, comes out to be the best estimator amongst all the
four proposed estimators when they are compared with sample median estimator I\7Iy(n),
since it is the most consistent and having greater precision but when T; (i, j =1, 2)are

compared with estimator A, T,, comes out be the best as it possess largest gain over other
proposed estimators and considerably consistent in nature for all combinations of
o, v and p. It has also been found that the percent relative efficiency of the estimator T,

increases as the fraction of sample drawn at current occasion decreases and vice versa

which exactly justifies the basic principles of sampling over successive occasions.
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10. Conclusion

From the preceding interpretations, it may be concluded that the use of exponential ratio
type estimators for the estimation of population median at current occasion in two
occasion successive sampling is quite feasible as vindicated through empirical and
simulation results. The use of highly correlated auxiliary information which is dynamic
over time is highly rewarding in terms of precision. The mutual comparison of the
proposed estimators indicates that the estimators utilizing more exponential ratio type

structures perform better. It has also been observed that the estimator T,,in which
maximum utilization of exponential ratio type structures have been considered, has turned
out to be the most efficient among all the four proposed estimators when comparison is
made with sample median estimator and T, is most suitable amongst all when they are
compared with the estimator A. Hence, when a highly positively correlated auxiliary
information which is dynamic over time is used, the proposed estimators may be
recommended for their practical use by survey practitioners.
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CHAPTER - 6°

Longitudinal Analysis of Population Mean on

Successive Occasions

* Following is the publication based on the work of this chapter:--

1. Priyanka, K. and Mittal, R. (2016): Longitudinal Analysis of Population Mean on
Successive Occasions. International Journal of Mathematics and Statistics, Vol. 17,
No. 2, 47-63.
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Longitudinal Analysis of Population Mean
on Successive Occasions

1. Introduction

Single time survey and their analysis do not serve the purpose in understanding the
dynamics of economic and social process which are changing over time. For these
situations longitudinal surveys, in which the same units are investigated on several
occasions, over extensive period of time becomes important. In recent years, longitudinal
surveys are now being used increasingly for longitudinal analysis and in many cases;
longitudinal surveys are carefully designed to permit the derivation of sophisticated
analysis of the long dynamics of social and economic processes. In this case, the same
population is sampled repeatedly and the same study variable is measured at each
occasion, so that development over time can be followed. For example, in many countries,
labour-force surveys are conducted monthly to estimate the number of employed and the
rate of unemployment. Other examples are monthly surveys in which the data on price of
goods are collected to determine a consumer price index, and political opinion surveys
conducted at regular intervals to measure voter preferences. These longitudinal surveys in
which the sampling is done on successive occasions (over years or seasons or months)
according to a specified rule, with partial replacement of units, is called successive
(rotation) sampling. Successive sampling provides a strong tool for generating the reliable
estimates at different occasions. In this case the survey estimates are time specific, For
example, the unemployment rate is a key economic indicator that varies over time, the
rate may change from one month to the next because of a change in the economy (with

business laying off or recruiting new employees).

To cite one may refer the papers by Jesson (1942), Patterson (1950), Rao and
Graham (1964), Gupta (1979), Das (1982) and Chaturvedi and Tripathi (1983) etc.
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Sometimes, the information on auxiliary variables, which are correlated to the
study variable, is available so that their population means are known. The question arises
that whether it is possible to utilize the information on the auxiliary variables, which are
available on both the occasions, to increase the precision for estimating the population
mean on current occasion. For example in agriculture surveys, the crop infestation due to
pest or disease during a week, in a particular area, may be associated with infestation and
ancillary factors such as rainfall, temperature and humidity during the preceding week.
Similarly, the yield of crop during a season in a farm is known to depend to a great extent
on the climate factors, prevailing during the previous season. In biological populations we
may be interested to estimate the kill of birds during season by hunter in locality, which
is known to be related to the hunter’s kill and his disposable income during the previous
season. Utilizing the auxiliary information on both the occasions Sen (1971), Singh et al.
(1991), Feng and Zou (1997), Biradar and Singh (2001), Singh and Singh (2001), Singh
(2005) have successfully given some of the very literature in the field of sample surveys.
Singh and Priyanka (2006, 2007a, 2008a), Singh and Karna (2009), Singh and Prasad
(2010) have proposed a variety of estimators for estimating the population mean on

current (second) occasion in two occasions successive sampling.

It has been theoretically established that, in general, the linear regression estimator
is more efficient than the ratio estimator except when the regression line y on x passes
through the neighbourhood of the origin; in this case the efficiencies of these estimators
are almost equal. Also in many practical situations where the regression line does not pass
through the neighbourhood of the origin, in such cases the ratio estimator does not perform
as good as the linear regression estimator. Motivated with this argument the present work
attempts to develop more efficient estimators to estimate population mean using the
concept of exponential type estimators in two occasion successive sampling. Here we have
also tried to amalgamate the auxiliary variate with different type of exponential type of
estimators at different occasions to increase the efficiency of the proposed estimators. The
amalgamation of auxiliary variable has been fruitfully justified when the proposed
estimators are compared with sample mean estimator and general successive sampling
estimator due to Jessen (1942). The proposed estimators are also compared mutually. The
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reasonability of using the new proposed estimators has been shown through empirical
results and validated by means of Monte Carlo simulation based on some natural

population.

2. Sample Structure and Notations

Let U=(U,U,, ..., Uy) be the finite population of N units, which has been

sampled over two occasions. It is assumed that size of the population remains unchanged
but values of units change over two occasions. The character under study be denoted by x

(y) on the first (second) occasions respectively. It is assumed that information on an
auxiliary variable z, whose population mean (Z) is completely known and stable over

occasions is readily available on both the occasions and positively correlated to x and y
respectively. Simple random sample (without replacement) of n units is taken on the first
occasion. A random subsample of m = ni units is retained for use on the second occasion.
Now at the current occasion a simple random sample (without replacement) of u= (n-m)

= ny units is drawn afresh from the remaining (N-n) units of the population so that the

sample size on the second occasion is also n. Let u and k(p+ }»=1) are the fractions of

fresh and matched samples respectively at the second (current) occasion. The following

notations are considered for the further use:

X, Y, Z : Population means of the variables x, y and z respectively.
Vor Zyy Xoos Yor Zis X0 Z,, - Sample means of respective variates based on the sample sizes

shown in suffice.

P> Pres Py, - Correlation coefficient between the variables shown in suffices.

s, Sf,, S’: Population mean square of variables x, y and z respectively.
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3. Proposed Estimators T;; (i, j =1, 2)

To estimate the population mean Y on the current (second) occasion, two sets of
estimators have been proposed utilizing the concept of exponential ratio type estimators.

First set of estimators {T,,, T,,} is based on sample of the size u= np drawn afresh on the

current (second) occasion and the second set of estimators {T T, } is based on sample

Im?

size m=nA common to the both occasions. The two sets of the proposed estimators are

given as
T, = 2(;—} (1)
- Z-Z
TZu: yu exp(2+;j (2)

(4)

(V. Z-7,
roen(3)on [ 22)

Considering the convex linear combination of the two sets of estimators T, (i =1, 2) and

T;n (i =1, 2), we have the final estimators of population mean Y on the current occasion

as

T=0T, + (1-9) Ty s (,i=1,2) (5)
where (pij(OS(pij <L ij=1, 2) are the unknown constants to be determined so as to
minimise the mean square error of the estimators T;;(i, j=1, 2).
Therefore, following four estimators are possible namely
() Tu= 0y Tyt (1- ¢y Ty, (D) To= @y, Tyt (1- 9y, ) T (i) Tu= @, T+ (1-90,,) Ty,
and (V) T,,= ¢, Tt (1- 95 ) Thp
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Remark 3.1: For estimating the mean on each occasion, the estimators T, (i = 1, 2) are

suitable, which implies that more belief on T, could be shown by choosing ¢;; (i,j =1, 2)
as 1 (or close to 1), while for estimating the change from occasion to occasion, the
estimators T, | (j:1, 2) could be more useful so ¢;; might be chosen as 0 (or close to 0).
For asserting both problems simultaneously, the suitable (optimum) choices of ¢, are

desired.

4. Properties of the Proposed Estimators T;; (i, j =1, 2)

The properties of the proposed estimators T;; (i,j =1, 2) are derived under the following
large sample approximations

V.=Y(1+e), V,=Y(1+e), X,=X(L+e,),X,=X(1+e,),Z,=Z(1+e,),

z,=Z

m

Remark 4.1: The expansion of (1+ x)n for negative values of n is feasible only when

[Xx|<1. The properties of proposed work have been studied under large sample
approximations and we need to use Binomial expansion as well since error is very small.

Hence to validate both we have considered magnitude of error, i.e. |e,|<1.

4.1. Bias and Mean Squared Error of the Estimators T; (i, j =1, 2)
The estimators T;, and T, . (i, j=1, 2) are ratio, exponential ratio, ratio to exponential

ratio and chain type ratio to exponential ratio type in nature respectively. Hence they are

biased for population mean'Y . Therefore, the final estimators T;; (i, j =1, 2)defined in

equation (5) are also biased estimators of Y . The bias B() and mean squared errors M ()
of the proposed estimators T,; (i,j =1, 2)are obtained up to first order of approximations

and thus we have following theorems:

Theorem 4.1.1.Bias of the estimators T;; (i, j=1, 2) to the first order of approximations

are obtained as
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B(Tij) = Q5 B(Tiu) + (1 ‘(Pij) B(ij); (i, J=1, 2), (6)

1-(C C
where B(T, )= =Y | =22 . Zol | 7
(Ti) u (zz YZ) ()
1-(3C 1C
B(T. Y 02 _ —Zou | 8
(Teu) = u (8 Z? zvz) ®)

-(1(C 3C C 1C 1C C, C e
B(-rlm):Y(_( 200 4 2 oz | Zuo = ou +__121j (le o a0 101)j, (9)

m\X> 8272 XY 2YZ 2XZ X? 2 X7
and  B(T,)=Y i(c_zgo : @} i(§ Core G0 1 Cou C_ZgO] (10)
m\ X XY n\8 z2 XY 2Yz X

where C = E[(xi- X) (v -Y) (z - Z)t}; (r,s,1)>0.
Proof: The bias of the estimators T; (i, j =1, 2)are given by

B(T;) =E[T;; - Y] =0y B(T,) + (1-;)B(T;n)
where B(T,,) =E[T,, -Y]and B(T,,) =E[T,, - Y |

Using large sample approximations and retaining terms up-to the first order of

approximations, the expression for B(T; ) and B( )are obtained as in equations (7) -
(10) and hence the expression for bias of the estimators T, (i, j =1, 2) are obtained as in

equation (6).

Theorem 4.1.2.Mean squared errors of the estimators T;; (i, j =1, 2) to the first order of

approximations are obtained as

M(Tij) :(Pizj M(Tiu)+(1_(Pij)zM(ij)+2(pij(1-(Pij)COV(leij) (i,j=1,2) (11)
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1
where M(T,,) = ~ A, S; (12)
_1 2
M(T,,) = A (13)
M(T,,) = (i A+ = AJ S; (14)
m m n y
M(TZm)z(l A, + EAGJ s (15)
m n Y
~ 5 9 _
A=2(1-p,). A= 7 P Ay= 4 2Py Py T P> AT 2Py P 1

A=2(1-p, ) and A;=2p, -p,, - % :
Proof: The mean squared errors of the estimators T;; are given by
M (T) =E [T;- Y] =E [0y (T, -¥) + (1-0,)(Ts ‘?ﬂz
=9, M (T,,) + (1-0;) M [T, ] +20; (1-0;) Cov(T,,. T;,,)
where M (T,,) = E[T,, - Y] andM [T, ] =E[T,,- ¥]": Gi.i=1,2)

Since x and y denote the same study character over two occasions and z being completely
known auxiliary variate positively correlated to x and y, therefore, looking at the stability
nature (see Reddy (1978)) of the coefficient of variation and following Cochran (1977)

and Feng and Zou (1997), the coefficient of variation of X, y and z are considered to be
S

approximately same which is given by Cyzé.

The estimatorsT,, and T, —are based on two independent samples of sizes u and m

respectively, hence Cov(T

iu?

ij)=o; (i,j=1,2). Considering population size is
sufficiently large (i.e. N — o), therefore finite population corrections are ignored and
using large sample approximations and retaining terms upto the first order of

approximations, the expression for M(T;,) and M(ij)are obtained as given in

equations (12) - (15) and hence the expressions for mean squared errors of estimators

T; (i, j =1, 2) are obtained as in equation (11).
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5. Minimum Mean Squared Errors of the Proposed Estimators Tj; (i, j =1, 2)

Since the mean squared errors of the estimators T;; (i,j =1, 2) given in equation (11) are
the functions of unknown constants ¢, (i, j =1, 2), therefore, they are minimized with

respect to ¢;; and subsequently the optimum values of ¢;; are obtained as

M(Tin )
M(T,) +M(T;,)

¢ip, = 1 (1,j=1,2) (16)

Now substituting the values of Pie in equation (11), we obtain the optimum mean squared

errors of the estimators T;; (i, j =1, 2) as

, (Li=1,2) (17)

Further, substituting the values of the mean squared error of the estimators defined in

equations (12) to (15) in equation (16) and (17), the simplified values of o, o and

M(T,

) are obtained as
11/ opt.

My [Hll A, - (A3+ A, )]

- (18)
5 H121 A, - lvln(A3+ A, - Al) ‘Al}
0y, = Mo [”12 Ag - (A5+A6 )] (19)
124, n Ag - Uy, (A5+ A - Al) - Al:l
_ Moy [Hzl A, - (A3+ A“)]
Do, = F 2 -
Wy A, - H21(A3+A4 'AZ) ) AJ
A, - (A.+A
G, = Ko I:”zz s - (As 6)] )

- ng Ag - Hy (A5+ Ag - Az) - Az:l
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B, -B,] S?
M(Tll)opt. = 1 [“ll : 2] Sy

(22)
n I:Hfl Ay -y By - A1:|

1 [le B, - Bs]si
n [Hfz Ag - 1y, By _Al:|

(23)

M (TlZ )opt. =

|\/|(T ) — 1 [Hzl B, 'Bs]si (24)
et n [Hgl Ay -y By - Az]

M(T ) — 1 [lvlzz By -Bll]si (25)
#etn [ng Ag - Uy By - Az}

where

B=AA, B,=AA,+AA, B,=A,+A,-A, B,=AA,, B.=AA +AA,,
B.=A. +A, -A, B,=AA, B,=AA +AA, B=A +A, -A, B,=AA,
B,=AA; +AA,  B,=A; +A,-A, and p;;(i,j=1,2) are the fractions of the

sample drawn afresh at the current(second) occasion.

Remark 5.1: M(T,; )Opt derived in equation (22) - (25) are the functions of p;; (i, j =1, 2)

. To estimate the population mean on each occasion the better choices of ;, (i,j =1, 2)
are 1(case of no matching); however, to estimate the change in mean from one occasion
to other, uij(i,j =1, 2) should be O(case of complete matching). But intuition suggests
that the optimum choices of p;; (i, j=1, 2) are desired to devise the amicable strategy for

both the problems simultaneously.

6. Optimum Replacement Strategies for the Estimators Tj; (i, j =1, 2)

The key design parameter affecting the estimates of change is the overlap between

successive samples. Maintaining high overlap between repeats of a survey is operationally
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convenient, since many sampled units have been located and have some experience in the

survey. Hence to decide about the optimum value of p;; (i,j =1, 2) (fractions of samples

to be drawn afresh on current occasion) so that Y may be estimated with maximum

precision and minimum cost, we minimize the mean square errors M(Tij)opt (i,j =1, 2)

in equation (22) to (25) with respect to p;; (i, j = 1, 2) respectively.

The optimum value of p;; (i, j =1, 2) so obtained is one of the two roots given by

i, = \/ (26)

. / -C, C, 27)

i, = \/ (28)

i - Cut / C% -Cy, Cy (29)
Cio

where
C=AB, C,=AB,, C,;=AB+B,B,, C,=AB,, C,=AB;, C,=AB,+BB,
C,=AB;, C;=A,B,, C;=A,B,+BB,, C;=ABy, C,=A,B, and C,=A,B,+B,B,,.

The real values of [;(i,j=1,2) exist, iff C;-C C,>0,C:-C,C,>0,
CZ-C, Cy>0,andC? -C,, C,, >0 respectively. For any situation, which satisfies these
conditions, two real values of [y, (i,j =1, 2) may be possible , hence to choose a value
offi;;(i,j=1,2), it should be taken care of that 0<fi;<1, all other values of
f;(i,j=1,2) are inadmissible. If both the real values of fi;;(i,j=1,2) are admissible,

the lowest one will be the best choice as it reduces the total cost of the survey. Substituting

the admissible value of [i;; say uf‘}) (1 j=1 2) from equation (26) to (29) in equation
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(22) to (25) respectively , we get the optimum values of the mean square errors of the

estimators T;; (i, j = 1, 2) with respect to ¢;;as well asy;; (i, j = 1, 2)which are given as

© 2
- [wmoBs
- 30
(Tit)ope. = n[u? A, -l B, - A, | "
. [u9B,-B]s?
M(T]_Z )opt. n[u(o)Z Mg) B6 - Al] (31)
.. [, -B]5
M(Tz1) 0 = (107 A, -1 B, - A, | (32)
* ©pB _B.|s2
M(T )opt [HZZ 10 ll:l y (33)

n [H(O)Z Hgoz) By, - Az]
7. Efficiency Comparison

To evaluate the performance of the proposed estimators, the estimators T. (| j=1, 2)at

optimum conditions are compared with (i) the sample mean estimator y,, when there is

no matching from previous occasion and (ii) the general successive sampling estimator

Y due to Jessen (1942)

V=g (1-v)T,, (34)
where y_'=y_+ By« (X,-X,), By, is the population regression coefficient of y on x and
v IS an unknown constant to be determined so as to minimise the mean squared error of
the estimator Y . Here both y, and Y are unbiased for population mean, so variance of

the estimator y, and Y at optimum conditions are given as

(35)
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. 2
V(9,3 e @
and the fraction of sample to be drawn afresh provided by the estimators due Jessen (1942)
is given by
1

HJ:l N h[- pi,x

The percent relative efficiencies E;;(M) and E;;(JS) of the estimator T;; (under optimum

(37)

conditions) with respect to y, and Y are respectively given by

*

V(7.) v(Y)
E;;(M)= T x100 and E;;(JS)= ——% x100(i,j=1,2). (38)
15/ opt. 0§ /opt.

8. Empirical Illustrations and Monte Carlo Simulation
Empirical validation can be carried out by Monte Carlo Simulation. Real life situation of
completely known finite population has been considered.

Population Source: [Free access to the data by Statistical Abstracts of the United States]

The population comprise of N = 51 states of United States. Let y, be the total energy
consumption during 2008 in the i" state of U. S., x,be the total energy consumption
during 2003 in the i" state of U. S. and z, denote the total energy consumption during

2001 in the i" state of U. S.

- - (O) - - -
For the considered population, the values of p;;’ defined in equation (26) to (29) and the

percent relative efficiencies E;;(M)and E;;(JS) defined in equation (38) of Tij(i, =1, 2)
with respect to y, and Y have been computed and are presented in Table 1. The optimum
bias of the estimators T, (i, j=1, 2) has been computed utilizing ¢ (i, j=1,2) from
equation (18) to (21) and the ui“j’) (i, =1, 2) from equation (26) to (29) and are shown in

the Table 2.
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To validate the above empirical results, Monte Carlo simulation has also been performed

for the considered population.
8.1 Simulation Algorithm

(i) Choose 5000 samples of size n=20 using simple random sampling without replacement

on first occasion for both the study and auxiliary variable.

(ii) Calculate sample meanx, , and Z , fork=1,2, - - -, 5000.

(iii) Retain m=17 units out of each n=20 sample units of the study and auxiliary variables
at the first occasion.
fork=1, 2, - - -, 5000.

and Z

m|k

(iv) Calculate sample mean X

m|k

(v) Select u=3 units using simple random sampling without replacement from N-n=31

units of the population for study and auxiliary variables at second (current) occasion.

(vi) Calculate sample meany, ., ¥, and z,, fork=1,2, - - -, 5000.

(vii) Iterate the parameter ¢;; (i, j=1, 2) from 0.1 to 0.9 with a step of 0.1.
(viii) Iterate y from 0.1 to 0.9 with a step of 0.2 within (vii).

(ix) Calculate the percent relative efficiencies of the proposed estimators Tij(i, =1, 2)

with respect to estimators respect to y, and Y as

o 5000 A 42
Z[Ymk'Y] Zl:Yk'Y}
Ei (1) = oot x 100 and E;;(2)= gt

~ 5000

[ka-\?]z Z[Tink'ﬂz

k=1 k=1

x 100, k=1, 2, ..., 5000.
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Table 1: Empirical Comparison of the proposed estimatorsT,; with respect to the

estimators y, and Y.

Optiml.m?:/alue of Opt(y)”nlfm.i/alue of EfficPiZ;CceiQ; vF\e/?tlr?tli\efsepect Effizzaieigst vRvietlr?tli\e/:pect
¢;; (i, =1, 2) wy (i, =1, 2) 0y, oG
i, 0.5362
o 0.5487 T 0.4396 E,,(M) 122.22 E,,(3S) 130.59
0y 0.5389 T 0.4070 E,,(M) 119.34 E,,(3S) 127.51
o 0.50 n® 0.3772 E,,(M) 115.20 E,,(JS) 123.01
' 0.50 g 0.3554 E,,(M) 112.49 E,,(JS) 120.12

Table 2: Optimum Bias of the proposed estimators T;; for the choices of sample size n.

Optimum Bias n=15 n=20 n=25
B(Ty) 41.87 31.40 25.12
B(Ty,) 38.36 28.77 23.01
B(T,,) 27.69 20.77 16.61
B(T,) 24.56 18.42 14.73

Table 3: Monte Carlo Simulation results when the proposed estimators T;; are compared

toy,.

@ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E,,(1) |462.33 | 405.02 | 375.06 | 368.48 | 364.25 | 384.56 | 431.24 | 488.90 | 556.41

E,(1) |477.58 | 415.00 | 384.20 | 375.98 | 371.26 | 390.83 | 436.56 | 493.61 | 560.69

E, (1) |449.59 | 379.28 | 336.78 | 302.91 | 274.72 | 253.47 | 236.82 | 227.25 | 222.72

E,, (1) |564.35 | 488.88 | 446.47 | 410.75 | 381.46 | 359.95 | 342.48 | 332.37 | 327.29
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9. Mutual Comparison of the Proposed Estimators Tj; (i, j =1, 2)

The performances of the proposed estimators T;; (i,j =1, 2) have been elaborated

empirically as well as through simulation studies in above section 8 and the results
obtained are presented in Table 1 to Table 4. In this section the mutual comparison of the
four proposed estimators has been elaborated through different graphs given in Figure 9.1
to Figure 9.3.

600

550

500

450

400

350

Percent Relative Efficiencies

300 e
=
250 Tee —~— Eu (D
o ~5 - Ep(l)
e
o Bar (1)
200 —= Ez(1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 9.1: Mutual Comparison of Proposed Estimator T;; (i, j =1, 2) when

compared with the estimator y, .
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Table 4: Monte Carlo Simulation results when the proposed estimators T;; are compared

toY.
v 0.1 03 05 0.7 0.9
O
E.(2) | 446.13 | 57450 | 601.84 | 274.17 386.37
op | B@ | 529.93 | 67220 | 624.14 | 300.44 356.37
E,(2) | 448.55 | 576.43 | 605.09 | 274.80 388.70
E,@ | 534.19 | 677.14 | 62852 | 302.17 358.75
E.() | 390.02 | 529.49 | 516.24 | 247.17 345.70
0p | Ex@ | 463.00 | 61595 | 537.18 | 269.91 320.53
E,(2 | 393.90 | 531.26 | 519.80 | 248.12 348.97
E, 2 | 469.50 | 621.60 | 542.37 | 272.32 323.94
E.( | 351.29 | 469.57 | 463.87 | 221.79 303.70
03 | B | 415.52 | 54564 | 48155 | 241.62 282.05
E (2 | 356.42 | 471.06 | 468.57 | 222.57 307.64
E, 2 | 423.69 | 552.03 | 488.09 | 244.14 286.08
E.() | 317.06 | 421.74 | 414.95 | 197.24 273.65
04 | E:@ | 37460 | 489.30 | 429.51 | 214.48 254.47
E,(2 | 322.46 | 423.22 | 420.38 | 197.89 278.20
E (2 | 383.45 | 496.64 | 437.01 | 217.21 259.11
E.() | 285.50 | 382.09 | 373.44 | 178.19 246.45
05 | E=@ | 336.00 | 441.38 | 385.90 | 193.55 229.61
E,(2 | 290.94 | 383.39 | 379.11 178.40 250.93
E,@ | 345.27 | 449.03 | 393.81 195.99 234.18
E.() | 259.66 | 347.76 | 338.52 163.18 222.14
06 | Ex@ | 30425 | 400.62 | 349.09 | 176.60 207.15
E,(2) | 265.00 | 348.45 | 343.80 | 163.10 226.48
E,@ | 313.65 | 407.86 | 356.74 | 178.87 211.58
E.() | 236.64 | 318.91 | 312.24 | 150.54 200.79
07 | E:@ | 275.99 | 365.42 | 321.32 162.35 187.41
E, (2 | 241.43 | 319.25 | 316.18 | 150.11 205.02
E,2) | 284.80 | 372.36 | 327.66 | 164.32 191.75
E.() | 217.64 | 298.02 | 290.02 141.70 183.07
0g | F:@ | 25238 | 330.25 | 207.96 | 152.22 171.15
E,(2 | 221.83 | 297.48 | 292.59 | 140.44 186.98
E,(2) | 260.48 | 345.14 | 302.82 153.29 175.15
E.() | 204.19 | 28351 | 273.36 | 135.44 168.58
0o | E:@ | 235.14 | 32021 | 280.43 | 144.79 157.93
E,( | 207.48 | 281.09 | 27459 | 133.58 171.96
E,2 | 242.09 | 323.79 | 290.79 | 145.11 161.40
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Figure 9.2: Mutual Comparison of Proposed Estimator T;; (i, j =1, 2) when

compared with the estimator Y for y=0.1.
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Figure 9.3: Mutual Comparison of Proposed Estimator T;; (i, j =1, 2) when

compared with the estimator Y for y=0.3 .
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10. Interpretation of results

The performance of an estimator in successive sampling is generally judged on the basis
of percent relative efficiency and in terms of optimum values of fraction of fresh sample
drawn on current(second) occasion which in turns is directly associated to the cost of
survey. Here the following interpretation can be drawn from Tables 1 - 4 and Figure 9.1 -
9.3,

(1) From Table-1, it is observed that

(a) Optimum values 9, 1, u& and pf) for the estimators T, T,,, T,,, T,, respectively
exist for the considered Population and < pu®<pQ<p<y,, which justifies the
applicability of the proposed estimators T,,, T,,, T,;, T,, at optimum conditions. The value

for nf) is lowest amongst all other which leads the results that the estimator T,, is most

favourable in terms of cost amongst the other proposed estimators. However, at optimum

conditions for the considered population the estimator T,, performs better in terms of

efficiencies with respect to sample mean estimator as well as with estimator Y due to

Jessen (1942) in terms of precision only.

(b) Appreciable gain is observed in terms of precision indicating the proposed estimators

T;; (i, =1, 2) (at their respective optimal conditions) are preferable over the estimators y,

and\i((at optimal conditions). This result justifies the use of additional auxiliary
information at both occasions which is stable over time in two occasion successive

sampling.

(2) In Table-2, we see that the optimum bias of the estimators T;; (i, =1, 2) reduces as the

sample size of sample is increased. The estimator T,, is least biased for population mean

amongst all the four proposed estimators.
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(3) From the simulation results presented in Table-3, where Tij(i, =1, 2) are compared

to the sample mean estimator y, , it can be seen that

(a) The values for E, (1) and E;, (1) increases as the value of ¢ increases, this is in

accordance with Sukhatme et al. (1984) results.

(b) The value for E,, (1)is greatest amongst all when the estimators T; (i, j=1, 2)are

compared to sample mean estimator y, , This indicates that the estimator T,, outperforms

amongst the four considered estimators.

(4) From simulation results presented in Table-4, where the estimators Tij(i, =1, 2) are

compared with the estimator Y% , following results can be drawn

(a) The value for E;;(2);(i, j=1, 2) decreases as ¢ increases for all choices of y which is

in accordance with the concept of successive sampling.

(b) The value of T, (2) is maximum amongstE;;(2);(i, j=1, 2), this indicates that the

estimator T,,(2) dominates the other estimators proposed.

11. Conclusion

From the preceding interpretations, it may be concluded that the use of exponential
ratio type estimators for the estimation of population mean at current occasion in two
occasion successive sampling is highly appreciable as vindicated through empirical and
simulation results. The use of positively correlated auxiliary information which is stable
over time is highly rewarding in terms of precision and reducing the cost of survey. From
the mutual comparison of the estimators it is observed that all the four proposed estimators

prove to be working more efficiently than sample mean and general successive sampling
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estimator due to Jessen (1942). Although the estimator T,, is most efficient over the

estimators y, and Y in terms of precision.

The performance of an estimator in successive sampling is generally judged on the
basis of percent relative efficiency and cost of survey involved, in terms of optimum
values of fraction of fresh sample drawn on current(second) occasion since same is
directly associated to the cost of survey. Empirically the estimator T,, is not best in terms
of efficiency for this population but it provides the minimum fraction of sample to be
drawn afresh on current occasion, now it is not as good as the others in terms of efficiency
but just for sake of little more gain in efficiency, the cost of survey cannot be
compromised, so for being more precise we have carried out the simulation which suggest

that T,, is best irrespective of optimum value of . We see that T,, least biased. Hence,
we conclude that the estimator T,, performs best out of the four proposed estimators. This

leads to the result that more inclusion of exponential type estimators provides more
efficient results as it utilizes the information on relationship between auxiliary and study
variable most efficiently as compared to others. Hence the proposed estimators are

justified and are recommended for their practical use by survey practitioners.
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CHAPTER -7

Multivariate Rotation Design for Population

Mean in Sampling on Successive Occasions

* Following is the publication based on the work of this chapter:--

1. Priyanka, K. Mittal, R. Kim, J. M. (2015): Multivariate Rotation Design for
Population Mean
in Sampling on Successive Occasions. Communications for Statistical Applications
and
Methods, Vol. 22, No. 5, 445-462.

150



Multivariate Rotation Design for Population
Mean in Sampling on Successive Occasions

1. Introduction

Longitudinal surveys are correlational research studies which involve repeated
observations of the same variables over long periods of time. Longitudinal studies are
often used in psychology to study developmental trends across the life span, and in
sociology to study life events throughout lifetimes or generations. The reason for this is
that longitudinal studies track the same people, and therefore the differences observed in
those people are less likely to be the result of cultural differences across generations.
Because of this benefit, longitudinal studies make observing changes more accurate, and
they are applied in various other fields. In medicine, the design is used to uncover
predictors of certain diseases. In advertising, the design is used to identify the changes
that advertising has produced in the attitudes and behaviours of those within the target

audience who have seen the advertising campaign.

Many researchers have tried to take advantage of the longitudinal surveys, to cite
one may refer the literature by Jessen (1942), Patterson (1950), Rao and Graham (1964),

Gupta (1979), Das (1982) and Chaturvedi and Tripathi (1983) etc.

Sometimes we get to sense that different variables are related to the study
character, which may be helpful in estimating the study character. For example many
countries keep track of the population through total population register and it is often used

as a sampling frame of individuals or households. The register contains a number of
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variables, some quantitative and some categorical, that may serve as auxiliary information
for identifying the human development index. So age and the taxable income of individual
are the quantitative auxiliary variables while sex of the individual, marital status and

residential specification may be considered as categorical auxiliaries.

Hence utilizing the auxiliary information on both the occasions Sen (1972, 1973),
Singh et al. (1991), Feng and Zou (1997), Biradar and Singh (2001), Singh and Singh
(2001), Singh (2005) have successfully added some literature in the field of successive
sampling. Singh and Priyanka (2006, 2007a, 2008a), Singh and Karna (2009), Singh and
Prasad (2010) have proposed a variety of estimators for estimating the population mean

on current (second) occasion in two occasions successive sampling.

It has been established that, in general, the linear regression estimator is more
efficient than the ratio estimator except when the regression line y on x passes through the
neighbourhood of the origin; in this case the efficiencies of these estimators are almost
equal. Also there are many practical situations when the regression line does not pass
through the neighbourhood of the origin, in such cases the ratio estimator does not perform

as good as the linear regression estimator.

Motivated with this argument, in the proposed work an attempt has been made to
utilise multi-auxiliary information which are available on both the occasions and are stable
over time. The multi-auxiliary information are blended with exponential type structures
and a multivariate exponential ratio type estimator has been proposed for estimation of
population mean at current occasion in two occasion rotation sampling. The properties of

the proposed estimator are derived upto the first order of approximation and the optimum
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replacement strategies are discussed. These properties have been corroborated
empirically. The proposed multivariate estimator has been compared with the recent
literature in rotation sampling due to Singh (2005) and Singh and Priyanka (2008a). A
simulation study has been carried out which determines the working efficiency of the
proposed estimator. It has been observed that the proposed exponential type structure

works well even if the auxiliary variables have low correlation with the study variable.
2. Sample Structure and Notations

Let U=(U,U,,..,U,) be the finite population of N units, which has been

sampled over two occasions. We have assumed that the size of the population remains
unchanged but values of units change over two occasions. The characters under study have
been denoted by x and y on the first and second occasions respectively. It has been

assumed that information on p additional auxiliary variables,z,, z,, ..., z, whose

population means are known, correlated to x and y, stable over the occasions and are
readily available on both the occasions. Simple random sample (without replacement) of
n units is taken on the first occasion. A random subsample of m = nA units is retained for
use on the second (current) occasion. Now at the current occasion a simple random sample
(without replacement) of u= (n-m) = nu units is drawn afresh from the remaining (N-n)

units of the population so that the sample size on the second occasion is also n. Let p and
k(u +A=1;0<p, A< 1) are the fractions of fresh and matched samples respectively at

the second (current) occasion.
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3. Formulation of the Proposed Estimator T,

To estimate the population mean Y on the current (second) occasion, utilizing p-
additional auxiliary information which are stable over time and are readily available on

both the occasions, a multivariate weighted estimator T, based on sample of the size u=

nu drawn afresh on the current (second) occasion is proposed as

Ty = Wy Texp (u) (1)
where Wu is a column vector of p-weights given by W, = [Wu, Wu, - = - Wy, |
[T(l u)]
|T(2 u) | Z, -7, (u)
and Teyp(w) = | J| where T(i, u) =y, eXp£Z+—Z(u)J fori =1,2,3,....p
T(p, u)

such that 1'W,, = 1, where 1 is a column vector of order p.
The second estimator T,, is also proposed as weighted multivariate chain type ratio to
exponential ratio estimator based on sample size m =n\A common to the both occasions

and is given by

T = Wi Texp(m, 1) (2)
where W is a column vector of p-weights as Wy, = [Wm; Wm, - - - Wm, |’
[T(l,m, n)]
T(2,m,n) s
and Tey,(m, ) = | | where T(i, m, n) = X (!’ m) X (i, n)
X (i, m)

T(p, m, n)

where ¥ (i,m)=y_ EXp[wJ’ X (i,m) =X, exp[%]

z(m)

Z-7(0) ) i
= Z(n)] fori=1, 2,3, .., p.

Such that 1"W,,, = 1, where 1 is a column vector of order p.

and X (i,n) =X, exp[

The optimum weights W, and W,,, in T, and T,, are chosen by minimizing their mean
square errors respectively.

Now a convex linear combination of the two estimators T, and T has been considered to

define the final estimator of population mean Y on the current occasion and is given as
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Tp=0T, +(1-0) T, 3
where ¢(0<¢<1) is an unknown constant to be determined so as to minimise the mean

square error of the estimator T, .

4. Properties of the Proposed Estimator T, |

The properties of the proposed estimator T, are derived under following large sample
approximations:
V.=Y(1+e), Vo= Y(L+e), X,=X(1+e,),X,=X(L+e,),Z(u)=Z(L+e,),

Z(m)=Z (1+e;;)and Z (n)= Z (1 +e,;) suchthatle,| <1V k=0,1,2 3,4 5and 6

andle,|<1V i=123..0p.

Under the above transformations, the estimators T, and T, take the following forms:

T(i,u) = —(8 +8e,-de,- dee, + 3e%;) for i=1,2, ..., p (4)

o | <I

o | <!

T(i,m,n) (8 +8e, - 8e,+ 8e,-dey;- 8ee, + Bee,- dee ;- 8e,e,

(5)

+4e,0,- deeg + 8e) + 3ep,) for i=1,2, ..., p

Thus we have the following theorems:

Theorem 4.1: The bias of the proposed estimator T, to the first order of approximation

is obtained as

B(T,) =¢B(T,) + (1-¢) B(T,) (6)
B(T,) = - W, B, %
B(Tm) = Wiy (= By + =By ) (8
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where By, = (B (w), By (1), .., By(w)), B,() = %\? [— e % \_C(:O%l j

fori=1,23,..p

Bml = V(% - %], Bmz = (Ble, Bmzz, ey Bmzp)

where Bm,, :\?[§ SSTIR %COM : C_ZOO}CrsF E[(Xi'x)r(yi -Y) (2, 'z)t}
(r,s,t)>0 for i=1,2,3,..,p.
Proof: The bias of the estimator T, is given by
B(T,) =E[ T, - Y] =@ B(T,) + (1-9)B(T,)
where B(T,) =E[T, -Y]and B(T,) =E[T, - Y]

Using large sample approximations assumed in Section 4 and retaining terms up-to the
first order of approximations, the expression for T(i, u)and T(i, m, n) fori=1,2,3, ..., p

are obtained as in equation (4) and equation (5) respectively and hence using equation (4)

and (5) in equation (1) and (2) respectively the expression for B(T,) and B(T,)are

obtained as in equations (7) and equation (8) respectively, hence the expression for bias

of the estimator T, is obtained as in equation (6).

Theorem 4.2: The mean square error of the estimator T, is given by

M(T,,) = ¢* M(T,) + (1-9)* M (T,)+20(1 - 9)Cov (T,, T,,) 9)
M(T,) = W K, W, (10)
M(T,) = (B)W,EW,_,, + W, K, W, (11)
where W, = Wu, Wupo - - W ', W, = [Wmy, Wmy - - - Wmp |, E is a
. . 1 1 1 1
unit matrix of order pxp, K, = (; — E) Ky » Kp= (; — ﬁ) K., Where
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[kuy, ku, ... kuy, | [kmy,  kmy, . . . km, ]

ku,, ku, . . . ku km,, km,, . . . km,
Ku* — 21 22 2p and Km* _ p

[ kup, kug, o kupp_pxp L kmy, kmg, oL kmpp_pxp

1

where B = (;—%) By, B, =2Y?(1-p,,)C}, ku”:\_(z(cg + %Cf pyz,COCz,j’

kuij: vz [C(z) - _pyziCOCzi_ lpyszOCzj—’_ %pzizjcziczj)

1
2 2
krnii: ?2 (CS(ZP)’X-I) - pyZiCOCZi+ %Ciuj and

lp)’zicoczi- lpijCOCzj—’_ %pzizjcziczj) v 1 ijzl, 27 3;---1 p

km, = Y? (CS(ZpYX- 1) - > >

Proof: The mean square error of the estimator T,  is given by

M (T,) =E [T,-Y] =E [0 (T, -¥) + (1-9)(T, - V)]
=¢* M (T,) + (1-9)’M (T,) +2¢ (1-¢) Cov(T,, T,)
where M (T,) = E[T, - ¥]’andM (T,) =E [T, - Y]
The estimators T, and T, are based on two independent samples of sizes u and m
respectively, hence Cov(T,, T,,) =0; Considering the population is sufficiently large so
using large sample approximations assumed in section 4 and retaining terms upto the first

order of approximations and also assuming C,= C = C,(following Cochran(1977)), the
expression for M(T,) and M(T,,)are obtained as given in equation (10) and (11) and

hence the expression for mean square error of estimator T, is obtained as in equation (9).

5. Choice of Optimal Weights
To find the optimization of the weight vector W, = [Wu, Wu, - - - Wu, |, the mean

square error M(T,) given in equation (10) is minimized subject to the condition 1'W,, =

1 using the method of Lagrange’s Multiplier explained as:
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To find the extrema using Lagrange’s Multiplier Technique, we define L, as
Ly = W, K, W, -1, (1'W, - 1), (12)
where 1 is a unit column vector of order p and A, is the Lagrangian multiplier.

Now, by differentiating equation (12) partially with respect to W,, and equating it to zero

we have

aLu a ! !
W, = O_Wu[wu Ko Wy — A, (T'W, — 1)] =0

This implies that, 2 K,W, —A,1 = 0, which yields

W, =2 K11 (13)
Now pre- multiplying equation (13) by 1’, we get

Ay 1

2 1'Ki'1 (14)

Thus, using equation (14) in equation (13), we obtain the optimal weight vector as

_ Kyt
Uopt. — 1/Kz1

(15)

In similar manners, the optimal of the weight W, = [Wm; Wm,- - - Wm,|" is
obtained by minimizing M(Tm) subject to the constraint 1'W,,, = 1 using the method of
Lagrange’s multiplier, for this we define

Ly = B)WL,EW, + W, K, W, — A, (1'W,, — 1),
where 2, is the Lagrangian multiplier.
Now, differentiating L, with respect to Wy, and equating to 0, we get

Kyt

Mopt. — 1Kzt

(16)

Then substituting the optimum values of W, and W, in equations (10) and (11)

respectively, the optimum mean square errors of the estimators are obtained as:

M(Tu)opt. = (% - %) 1 Kll_l*l 1 (17)
MTwdope = (=) B + (= %) 7 ae)
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6. Minimum Mean Square Error of the Proposed Estimator T,

The mean square error of the proposed estimator T, is given by

M(Tp)= 0" M(T,),,, (1 - 0) M(T,),,

Minimizing M(Tlp)with respect to ¢ gives the optimum value of ¢ as

M (T ).

m

M(T, ) + M(T

u m )opt.

Popt. = (19)

Now substituting the above value of ¢, in equation (9), we obtain the optimum mean

square error of the estimators T as

e MWL), M(T),,
( |p)opt._ M(Ty)pe * M(Ti ).

u m

(20)

Further, substituting the optimum values of the mean square errors of the estimators given

in equations (17) and (18) in equation (19) and (20) respectively, the simplified values

Py and M(Tlp):pt_ are obtained as
C-(B, +C
(Popt.: u[u ( - )] (21)
(W C-p (B, +C-A)-A]
* 1 [H D, 'Dz]
M(T == 22
(Tio)ge 7T C-uD, -a] (22)
where
A=#L_H11 B, =2Y(1-p,)C, =%m11 D,=AC, D,=AB,+AC,

D,=B, +C- A and pis the fraction of the sample drawn afresh at the current (second)

occasion.

7. Optimum Replacement Strategy for the Estimator T,

The idea of longitudinal surveys is mainly concerned with obtaining efficient estimates

with minimal cost in carrying out the survey. So it is technically convenient to maintain a
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high overlap between repeats of the survey which provides the advantage due to many
sampled units being located and have some experience in the survey. Hence the decision

of the optimum value of p should be made (fractions of samples to be drawn afresh on
the current occasion) so that Y may be estimated with maximum precision and minimum

cost, we minimize the mean square error M (T|p):m in equation (22) with respect top as:

o (M(T,),.)

op

= u G;-2 nG,+G,=0,
Thus the optimum value of u so obtained is one of the two roots given by
G, i,\/Gﬁ -G, G,
p= (23)
Gl
where G,=CD,, G,=CD, and G,=AD, + D, D,

The real value of p exist, iff G2 -G, G, >0. For any situation, which satisfies this
condition, two real values of p may be possible, hence choose a value of p such that

0<u<1 . All other values of p are inadmissible. If both the real values of u are
admissible, the lowest one will be the best choice as it reduces the total cost of the survey.
Substituting the admissible value of p say M from (23) in to the equation (22), we get
the optimum value of the mean square error of the estimator T, with respect to ¢ as well

asuwhich, is given as

M(T, )** _1 [”Twp D, - DZ}
1P Jopt. [”%p C_“"I"p D, _A] l

(24)

8. Efficiency with Increased Number of Auxiliary Variables
As we know that increasing the number of auxiliary variables typically increases the
precision of the estimates. In this section we verify this property for the proposed estimator
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as under: Let T, and T, be two proposed estimators based on p and g auxiliary variables
respectively such thatp < g, thenM(T, )= M(T,,). i.e.
M(Tlp)'M(qu) >0 (25)

1 [RAG-AB+C)] 1 [HAGC-A,(B+CY]
N[ C, -uB+C,+A)-A,| N[ C-pB+C +A)-A,]

On simplification, we get
A A (C-C
(Ap-Aq)[(u- 1)Z[u C,Cy+ %;‘)‘J] -uB((Cp-Cy)(n-1) -B) |20
p q
This reduces to the condition
-A,) 20 (26)

So from Section 6 above, we get

1 1 -
r -1 T -1 =
K;'1 1'K;'1

0
1Ki'1>1'K;'1
Following Rao (2006), the matrix K can be partitioned and can be written as
K, F
K, = ;
F G

where F, F’ and G are matrices deduced from K such that their order never exceeds g-
p and always greater than or equal to 1. Then,

K+ HIH —HJ
K$=( N j @)

where J =(G - F'K;}F)’1 and H = K,'F . (See Rao (2006) and Olkin(1958))

Now rewriting 1’K;11 by putting the value of K;ffrom equation (27), we get

P (KP+HJIH —HJ 1
1KM=(1 1 P P
q ( p Q'p) ( _JH! J ] (1 p]

.
= (L (K +HIH)- 1 0H -1 HI+ 17 J) (11" J
q-p
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- 1;)(K;1+HJH’)1p SUIHL - 1 HIL LI

S1UKH -1 (K 1, =1 (HIH)L, -1, JH' 1 - 1 HI L, +1, 31,

((HIHT -HIY (1
UK 1-3 (KY) 3= (3, 1) (-JH' ) j (1 "J

q-

p

! —. ! - ’ H

KM -1 (K ,=1 ( jJ (H-1)1>0
The latter follows since J is positive definite so that R'J R > 0 for all R,
where R=(H -1)1.

Hence from equation (25), we have

M(T,) -M(Tiy) = 0

This leads to the result that utilizing more auxiliary variables provides more efficient

estimates in terms of mean square error for the proposed estimator.

9. Special Cases
Case 1:

There are several instances where the p-auxiliary variates are mutually
uncorrelated but they are correlated to study variates for example, in survey of commercial
product say the aim is to estimate the number of persons reading newspaper. Then in that
case the numbers of copies produced by different newspaper companies are different and
number of copies produced by a particular newspaper company is uncorrelated to the
number of copies produced by another newspaper but both are correlated to study variates,
i.e., number of persons reading newspaper. Similarly, in transportation survey if the aim
is to estimate the number of persons traveling by air per year, then in that case the total
seating capacity of different airlines may be treated as auxiliary variates. Since, the seating
capacity of different airlines is different and they are mutually uncorrelated but the
information on this will contribute a lot in estimation of the number of persons traveling

by air. Hence, for modelling such type of situations where the p-auxiliary variates are
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mutually uncorrelated, i.e. p,,=0Vi=j=12, .. p, the proposed multivariate

exponential ratio type estimator is applicable and in this case optimum value of psay p°

and the optimum value of the mean square error of the estimator T, with respect to ¢ as

well asp® is given by

, &z 6 -6" ¢
— 2 1 3 (28)

w = G()
0 0 0
* * l “ Tp D = D
and M(Tlp)om; = Oz[ 0‘ 01 02] : (29)
n[uﬂp C -p7w, Dy -A }
where G'=C° D, G!=C’ D?,G’=A’ D’ + D’ D!, A® = ——
B =2VY?(1-p,)C,
C0 =57 DP=A°C’, D'=A° B’ + A’ C°, D°= B+ C*- A",
[su, su, . . . suy| [smy, sm, . . . sm,|
SUpy SUpy + . . SUy, SMy SMy, . . . SMy,
Sus =] and Sy, = |
[SUp SUp - - . SU | [SMp My . SMy, |
_ - 1
where B) =2Y*(1-p,, )C5, su;=Y? (Cé + Zcii - Py, CoC, j
— V2 2 1 1 — V2 2 1 2
su;=Y? | Cp - Py C,C,, - EpyszOCZj . sm=Y?| C3(2p,,-1) - p,, C,C,, + ZCZi

S 1 1 o
andsm,;= Y? (Cg(zpyx- 1) - EpyziCOCZi- Epyzj,COCij Vi#j=1,2,3,.,p.

Case 2:

The p-auxiliary variates are mutually correlated i.e. Poz, * OVi#j=1,2,..,p. Inthis

case if there is high correlation between p-auxiliary variates, then such a problem can be

addressed as a problem of multi collinearity in survey sampling.
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10. Efficiency Comparison

In order to examine the performance of the proposed estimator with some of the recent
estimators due to Singh (2005) and Singh and Priyanka (2008a) in successive sampling,
same assumptions have been considered for proposed estimator for discussing the
properties of estimators as that of estimators proposed by Singh (2005) and Singh and
Priyanka (2008a).

Hence, following Olkin (1958), Raj (1965), Artes and Garcia (2005) and Singh et al.
(2011) we consider C,=C, ;v i=1,2,3, .., p approximately and hence, the optimum

*

value of psay fi"and optimum value of mean square error M('I'lp)O:t of the proposed

estimator T, reduces to

_ 22 30
n S (30)
e 1 |Ww D -D;
M(T|p)opt. - *2[ * * * :I * (31)
n[“ﬂpc KT, D3-Aj|
where G}=C’ Dj, G;=C’ D}, Gi=A" D; + D} D, A" = 1rikry € = prs

D;=A"C',D,=A"B +A"C’, D;=B; +C -A", B, =2(1-p,,)S] ,

‘huy, hu, ... hu, fhmy,  hm, .. . hmy ]
H, = hu, hu, . . . huy, and H = hm, hm,, . . . hm,
hug huy, o hug | |hMey M, o hmy, |

5 1 1 1
Bl :2(1'pW)S§, huii:(z_pyzij Sf/! huij: (1_ Epyzi_ Epyzj_'_ szizj) Sf/a

3 1 1 1
hm;; = (ZPW- Py, Zj S, and hm,;= (ZPW- 2P 5Pt 7P ] ) S,

Vi# j=1,2 3., p.
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10.1 Comparison of the proposed Estimator T, with respect to estimator T, due to

Singh (2005)

The estimator proposed by Singh (2005) is given as

Tomy 27+ (1-y)ntez, (32)
z

u m n

X |~<|
N | X

and the optimum mean square error of this estimator T is given by

2 2
0y 0,0, Hs:l S,

n [(114— a, lvl;]

M (TS )opt. - I:

with a,=2 (1 -pyz),oc2 =2 ( pyz-pyx)and

5= = (1-0c) = (1 ) (1P ) (01 i)

Hence, the percent relative efficiency of the proposed estimator with respect to T is given

as

M[T.
E} = — 2 x100 (33)

10.2 Comparison of the proposed estimator T, with respect to estimator Tg, due to

Singh and Priyanka (2008a)

The proposed estimator T, at optimum condition is also compared with respect to the
estimator Tg, due to Singh and Priyanka (2008a) given as

To= &[T+ By, (Z-7,) ] + (1-8)[Fnt By (R %) |. (34)
where y,=Y,+B,(Z-%,).X,=X,+B,,(Z-%,). X,=%X,+B,,(Z-Z,), B, andB,,
are the population regression coefficients of y on z and x on z respectively and &is

constant so as to minimize the variance of the estimator T .

The optimum variance of estimator Tg, is given as
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* K[K+H5P X] S,
V(TSP )opt. - [K+ ng X} Fy

-k % (K (kK +y)

X

where k= 1-p,, X = 2P, Py~ Pix (1 + pf,z)and Uep=

Hence, the percent relative efficiency ET for (p=1,2,3 ...) of the estimator T, (under

their respective optimum conditions) with respect to T, is given by

*

SP V[TSP]opt.
E;y = ————— x100;for(p=1,2,3...). (35)

oMm(T,)

1P Jopt.

11. Empirical Hlustrations and Monte Carlo Simulation

Population Source: [Free access to the data by Statistical Abstracts of the United States]

For Carrying out the empirical study the population of total electric consumption in

different states of United States has been considered.

For carrying out numerical illustration we have considered the case of three auxiliary
information (i.e. p=3) which are stable over time and are available at both the occasions.
The population comprise of N = 51 states of the United States. Let

y, : The total energy consumption during 2007 in the i" state of U. S.
x, : The total energy consumption during 2002 in the i" state of U. S.
z,,: The total energy consumption during 2001 in the i" state of U. S,
z,,: The total energy consumption during 2000 in the i" state of U. S,
z,, The total energy consumption during 1999 in the i" state of U. S.

For the considered population, the values of p}lp (p=1, 2 and 3)defined in equation (31)
and percent relative efficiencies E; and ET defined in equation (33) and (35) of T, (p=
1, 2 and 3) with respect to Ty and Ty, have been computed and are presented in Table-2.
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11.1 Simulation Algorithm

(i) Choose 5000 samples of size n=20 using simple random sampling without replacement

on first occasion for both the study and auxiliary variables.

(i) Calculate sample meanX, ., z, ,Z, andZ, -fork=1,2, ---, 5000.

(i1i) Retain m=17 units out of each n=20 sample units of the study and auxiliary variables
at the first occasion.

(iv) Calculate sample meanX,,, z, ,Z, andZz, fork=1,2,--- 5000.

(v) Select u=3 units using simple random sampling without replacement from N-n=31
units of the population for study and auxiliary variables at second (current) occasion.

(vi) Calculate sample meany, ., Ym«: Z,,.Z,, and I, fork=1,2,---,5000.

u

(vii) Iterate the parameter ¢ from 0.1 to 0.9 with a step of 0.1.

(viii) Iterate y from 0.1 to 0.9 with a step of 0.1 within (vii).

(ix) Calculate the percent relative efficiencies of the proposed estimator T, (pzl, 2 and 3)

with the case p=1, p=2 and p=3(i.e. T, T, and T _;) with respect to estimator due

to Singh (2005) and Singh and Priyanka (2008) as

5000

I:T5|k'v]2 I:Tsmk'v:lz
E,(S) = £L — 100 and E, (SP)=¢g5; — x 100, k=1, 2, ..., 5000.
k:l[Tlplk'Y:l kzl[Tlplk'Y:'
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Table 1: Empirical comparison of the proposed estimator T, (p=1, 2 and 3) with

respect to the estimators T;and Tg, respectively at their optimum conditions.

p=1 p=2 p=3
w,=0.5355 | Wu,=0.5196 | p;=0.5137
i ps=0.5502 109.55 120.77 125.17
T e =0.5496 *ox 101.44 105.14

Note: “*** denote estimator T/, does not perform better than T, in terms of efficiency.

Table 2: Monte Carlo Simulation results when the proposed estimator T,,_, is compared

to T, and T, respectively ( considering y =&).

0 ¥ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
o1 E.(S) 1349.9 | 5895.1 | 12296.0 | 17324.0 | 36619.0 | 57157.0 | 72197.0 | 84832.0 | 84170.0
E,(SP) | 104.42 | 102.05 | 127.52 | 171.80 | 262.54 | 375.88 | 520.91 | 638.86 | 867.55
03 E.(S) 1168.9 | 4741.7 | 11796.0 | 16766.0 | 32572.0 | 45474.0 | 61039.0 | 81957.0 | 97409.0
E,(SP) ok *x 113.58 | 159.70 | 237.69 | 329.08 | 469.05 | 577.94 | 764.94
05 E.(S) 894.8 | 3399.7 | 8454.4 | 12852.0 | 22913.0 | 30904.0 | 41579.0 | 60708.0 | 70099.0
E,(SP) ok *x fal 113.93 | 167.23 | 231.62 | 323.22 | 410.61 | 540.09
07 E.(S) 608.0 | 2258.0 | 5620.8 | 8907.0 | 14926.0 | 19794.0 | 27410.0 | 40345.0 | 46610.0
' E,(SP) ok *x *ok bl 109.21 | 153.80 | 211.71 | 272.91 | 358.30
09 E.(S) 413.45 | 1493.1 | 3817.9 | 5946.8 | 10156.0 | 13715.0 | 18796.0 | 26496.0 | 31819.0
E,(SP) ok *x foll folad bl 105.43 | 141.45 | 184.93 | 242.63

Note: “**° denotes estimator T, _, does not perform better than TSP in terms of efficiency.

[p=1
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Table 3: Monte Carlo Simulation results when the proposed estimator T, .., are

compared to T, and T, respectively ( considering y=¢).

\ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
E,(S) 1335.2 | 5940.6 | 12400.0 | 17376.0 | 36883.0 | 57438.0 | 73062.0 | 85114.0 | 84732.0
E,(SP) | 104.44 | 102.84 | 128.60 | 172.31 264.43 377.72 527.15 640.98 873.34
E,(S) 1178.3 | 11795.1 | 11935.0 | 16892.0 | 32827.0 | 45857.0 | 61624.0 | 82646.0 | 98297.0
E,(SP) foll fol 114.92 | 160.90 239.55 331.85 473.55 582.80 | 771.92
E,(S) 902.63 | 3431.4 | 8553.5 | 12956.0 | 23109.0 | 31143.0 | 41964.0 | 61237.0 | 70719.0
E,(SP) okl faid *x 114.85 168.66 233.41 326.21 414.19 544.87
E,(S) 612.36 | 2276.4 | 5673.3 | 8977.4 | 15037.0 | 19933.0 | 27637.0 | 40674.0 | 46957.0
E,(SP) foled ** ** fal 110.02 154.88 213.46 275.13 | 360.96
E.(S) 416.00 | 1502.6 | 3846.8 | 5988.2 | 10221.0 | 13801.0 | 18936.0 | 26671.0 | 32009
E,(SP) foled ** *x ok ** 106.09 142.50 186.15 244.08

Note: “*** denotes estimator I,

p=2 does not perform better than TSP in terms of efficiency.

Table 4: Monte Carlo Simulation results when the proposed estimator T, _, are

compared to T, and T, respectively ( considering v =¢&).

N 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S) 1407.7 | 6252.0 | 12967.0 | 18284.0 | 38857.0 | 61313.0 | 76382.0 | 89262.0 | 88716.0
SP) | 110.12 | 108.23 | 134.48 | 181.31 | 278.58 | 403.21 | 551.10 | 672.22 | 914.40

w

w

Eq

Ey(

E,(S) | 12222 | 5606.4 | 12300.0 | 17513.0 | 34076.0 | 47645.0 | 63630.0 | 85846.0 | 10116.0
03 E;(SP) | 104.40 | 104.34 | 118.44 | 166.82 | 248.67 | 34479 | 488.95 | 605.36 | 794.41

E,(S) | 934.23 | 3549.5 | 8812.8 | 13413.0 | 23967.0 | 32399.0 | 43198.0 | 63448.0 | 73073.0
0 E,(SP) | ** o =« | 11890 | 128.23 | 242.82 | 33581 | 429.14 | 563.01

E,(S) | 638.63 | 2371.6 | 5891.4 | 9397.2 | 15675.0 | 20776.0 | 28770.0 | 42331.0 | 490.21

E,(SP) | =+ *ox ok x| 11469 | 16142 | 222.22 | 286.35 | 376.83

E,(S) | 436.36 | 1577.9 | 4023.4 | 6288.2 | 10711.0 | 14474.0 | 19833.0 | 27952.0 | 33593.0

E,(SP) | ** wox ok o w« | 11127 | 149.26 | 195.09 | 256.16

Note: “*** denotes estimator T _; does not perform better than T, in terms of efficiency.
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11.2 Performance of proposed estimators for various choices of correlation
coefficients

To validate the applicability and performance of the proposed estimator, T, (for p=1, 2

and 3) has been compared with Singh (2005) and Singh and Priyanka (2008a) at their

respective optimum conditions for various combinations of correlation coefficients and

results are tabulated in Table 5 to Table 7.

Table 5: Forp =1

Pyx 0.5 0.6 0.7
* S SP S SP * S SP
Pyz, | By | Hs | Hsp T, T, Hsp T, Eﬂp By | Hs | Hep T, T,
01 051|057 05314136 | ** |0.54|0.60| 05514223 | ** | 0.58 | 0.63 | 0.58 | 143.34 | **
03 |049 054|052 13421 | ** 1052|056|054|13493 | ** | 055 0.60| 057 | 135.86 | **
0.6 1044|047 04911635 | ** 047|050 051 ]116.69 | ** | 051 | 053|053 | 117.12 | **
Note: “*** denotes estimator T, does not perform better than Tg; in terms of efficiency.
Table 6: Forp=2and p,, =0.
Pyx 0.5 0.6 0.7
* S SP * S SP * S SP
pyz1 pyz2 W, Hs Hsp Tp Tp Ly Hs Hsp Tp Tp Ly Hs Hsp Tp Tp
0.3 | 048 ]0.55] 05315892 | 100.0 | 0.51 | 0.58 | 0.55 | 160.26 | 102.09 | 0.54 | 0.62 | 0.57 | 161.99 | 104.06
0.2 04 |0.47]0.55] 053] 168.30 | 105.91 | 0.50 | 0.58 | 0.55 | 169.91 | 108.23 | 0.53 | 0.62 | 0.57 | 171.98 | 110.48
0.5 | 0.46 | 0.55| 053 | 180.81 | 113.78 | 0.48 | 0.58 | 0.55 | 182.79 | 116.44 | 0.52 | 0.62 | 0.57 | 185.35 | 119.07
0.3 [047]054]052]149.03 | ** |0.50|0.56 | 0.54 | 150.13 | 101.65 | 0.53 | 0.60 | 0.57 | 151.54 | 103.74
03 | 04 | 046054052 156.62 | 104.62 | 0.49 | 0.56 | 0.54 | 158.10 | 107.05 | 0.53 | 060 | 0.57 | 159.79 | 109.38
05 [ 045]0.54]052 | 167.23 | 111.58 | 0.48 | 0.56 | 0.54 | 168.83 | 114.32 | 0.52 | 0.60 | 0.57 | 170.91 | 117.0
03 [046]052]052 13932 | ** |0.49 |0.55] 053 | 140.19 | 100.22 | 0.53 | 0.58 | 0.56 | 141.30 | 102.44
04 | 04 |045]0.52 | 0.52 | 145.60 | 102.27 | 0.48 | 0.55 | 0.53 | 146.63 | 104.83 | 0.52 | 0.58 | 0.56 | 147.95 | 107.27
0.5 | 0.45]0.52 | 052 | 154.20 | 108.31 | 0.47 | 0.55 | 0.53 | 155.46 | 111.14 | 0.51 | 0.58 | 0.56 | 157.09 | 113.89

Note: “*** denotes estimator T ,_, does not perform better than Tg, in terms of efficiency.
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Table 7: Forp=2and p,, #0.

Pyx 0.5 0.6 0.7
pyzl
* s SP * s SP * s SP
=P, | Pye | My | Hs | Mse | Eq T, | My | Bs | ke | Ef, T, | My | Bs | B | Ef, T
0.2 04 |0.47]0.55]0.53 | 162.28 | 104.01 | 0.50 | 0.58 | 0.58 | 166.81 | 106.26 | 0.53 | 0.62 | 0.57 | 168.77 | 108.41
' 0.5 | 0.46 | 0.55 | 0.53 | 178.37 | 112.24 | 0.49 | 0.58 | 0.58 | 180.27 | 114.83 | 0.52 | 0.62 | 0.57 | 182.73 | 117.38
0.3 04 |0.47]0.54]0.52]|151.70 | 101.22 | 0.50 | 0.56 | 0.54 | 152.87 | 103.51 | 0.53 | 0.60 | 0.57 | 154.38 | 105.68
' 0.5 |0.46 | 0.54 | 0.52 | 162.40 | 108.36 | 0.48 | 0.56 | 0.54 | 163.86 | 110.95 | 0.52 | 0.60 | 0.57 | 165.75 | 113.47
0.4 04 | 046]052)|052|13866| ** |049]055][053 13951 | ** |0.53|0.58]0.56 | 140.60 | 101.94
' 0.5 |0.45]0.52 | 0.52 | 146.88 | 103.13 | 0.48 | 0.55 | 0.53 | 147.89 | 100.73 | 0.52 | 058 | 0.56 | 149.26 | 108.21
Note: “**” denotes estimator T/ _, does not perform better than Tg;, in terms of efficiency.
Table8: Forp=3and p,, =0Vi=j=1,2,3.
* S S
Pyx pyz1 pyz2 pyz3 Ms Us Usp Tp Tip
06 | 05 | 06 | 0.7 |0.45]|0.52 | 052 | 152.12 | 114.09
07| 05 | 06 | 07 |0.490.56 | 055 | 15367 | 117.30
0704 | 06 | 05 |0.50]0.58]0.56 | 169.65 | 122.99
Table9: Forp=3and p,, # 0 Vi=j=I,2,3.
* S s
Pyx pyz1 pyz2 pyz3 pzlz2 pzlz3 p2223 Hs Us Hsp Tp Tp
06 | 02 | 05 | 03 0.5 0.5 04 046 | 055 | 053 | 177.71 | 111.83
07| 04 | 07 | 06 0.3 0.3 04 048 | 058 | 0.56 | 182.62 | 132.40
07 ] 03 ] 07 | 05 0.3 04 0.2 048 | 0.60 | 0.57 | 206.51 | 141.37

12. Mutual Comparison of the Estimators T, (p=1, 2 and 3)

The performances of the estimator T, (p=1, 2 & 3) have been elaborated empirically as

well as through simulation studies in above sections and the results obtained are presented

in Table 1 to Table 9. In this section the mutual comparison of the estimators for the cases

when p=1, p = 2 and p=3 has been elaborated graphically and is presented in Figure 12.1

and 12.2.
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Figure 12.1: Mutual Comparison of Proposed Estimator T, _;, T,,, and T, _; with

respect to the estimator T, for yw=0.1
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Figure 12.2: Mutual Comparison of Proposed Estimator T,_,, T,,_, and T ,_; with

respect to the estimator T, for yv=0.6.
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13. Rendition of Results

13.1 Results based on Empirical study for the considered population

1) It is clear from Table 1 that the optimum values of HI, u; and u; exist for the

considered population and ;< i, < W, < < M. This indicates that a smaller fresh

sample is required when more number of auxiliary variables is used and this fraction is
even lesser than the procedures given by Singh (2005) and Singh and Priyanka (2008a).

Hence, total cost of survey is getting reduced.

2) The value of E; ,;>E;,,>E; -, this justifies the fact that efficiency is highly
increased when more numbers of auxiliary variates are taken into consideration and it also
results peachy in terms of cost as it gets smaller on increasing the number of auxiliary
variables, which also abide by Sukhatme et al.(1984).

3) Inthe Table 1, we see that the proposed estimator T,  is more efficient than the estimator
T, for all the considered values of p (i.e. p=1,2 & 3) and T, is better than the estimator
T, except for p=1 as the number of auxiliary variables is increased, efficiency increases
to a great extent, hence the estimator T is better than the estimator Ty, due to Singh and
Priyanka (2008a) for p=2 onwards in terms of efficiency but in terms of cost T, is better

then Tgand Ty, for every value of p.

13.2 Results based on Simulation study

1) From simulation results in Table 2, Table 3 and Table 4 we observe that if less attention

is given to ¢ (i.e. more attention is given to the estimator used at the first occasion) then
the proposed estimators T, (p=1, 2 and 3)are better than the estimator T and abide by
the theory while keeping higher weights for v (i.e. more attention is given to the estimator
used at the current occasion). This makes the proposed estimators T, , (pzl, 2 and 3) much

more effective than the estimator T, due to Singh (2005).
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2) From Table 2, Table 3 and Table 4 it is vindicated that if less emphasis is supplied to

o (i.e. more attention is given to the estimator used at the first occasion) then the proposed
estimators T (p=1, 2 and 3)are better than the estimator T, and is in accordance with
the theory while choosing a greater value for & (i.e. more attention is given to the estimator
used at the current occasion). This makes the proposed estimators T, (p:1, 2 and 3)
much more effective than the estimator T, due to Singh and Priyanka (2008a). As we

keep on increasing the value of ¢ , the efficiency gets reduced for all choices of & .

13.3 Results extracted from General Scenario i.e. by considering different choices of
correlation coefficients

1) In Table 5 we observe that for fixed value of correlation coefficient between the study
variable at two occasions, if the correlation between the study and auxiliary variates is
increased then the proposed estimator T, for p=1 is efficient over the estimator T in
terms of precision as well as cost but it is efficient over the estimator Tg, only in terms of

cost. If the contribution of auxiliary variable increases the fraction of sample to be drawn

on current occasion decreases.

2) From Table 6, Table 7, Table 8 and Table 9 we observe that, whether the auxiliary
information utilized are mutually correlated or uncorrelated, the proposed estimator T,
for p=2 and p=3 is efficient over the estimators T, and T, even for very low correlation

between study variable and auxiliary variable, which is a positive point. The fraction of
samples to be drawn afresh at current occasion is least for the proposed estimator than the
estimators due to Singh (2005) and Singh and Priyanka (2008a) and it is getting more and

more reduced as the contribution of auxiliary information increases.
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12. Conclusion

The articulation of two structures (i.e. exponential ratio type and chain type ratio to
exponential ratio type) is certainly beneficial as summed with multi-auxiliary information
which are stable in nature, pronto and need not to be highly correlated to study variable
over the two occasions. The empirical study for the considered population, simulation
study and the study by taking different choices of correlation coefficient suggest that the
proposed estimator is providing the lowest fraction of fresh sample drawn on the current
occasion as compared to some very well-known estimators available in the literature for
estimating population mean, resulting in lowering the total cost of the survey. Although

the proposed estimator T, is better than the estimator T, for p=1 in terms of cost only.

Now as soon as we increase the number of auxiliary variables the proposed estimator

comes out to be much better than the estimator T, in terms of both efficiency as well as

cost. Hence, the proposed estimator may be recommended for its practical use by survey

statisticians.
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CHAPTER - §°

New Approaches using Exponential Type
Estimator with Cost Modelling for
Population Mean on Successive Waves

* Following is the publication based on the work of this chapter:--

1. Priyanka, K. and Mittal, R. (2016): New Approaches using Exponential Type

Estimator with Cost Modelling for Population Mean on Successive Waves.

Statistics in Transition-new series, (Accepted for Publication).
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New Approaches using Exponential Type
Estimator with Cost Modelling for
Population Mean on Successive Waves

1. Introduction

Real life facts always carry motleying natures which are time dependent. In such
circumstances where facts change over a period of time, one time enquiry may not serve
the purpose of investigation since statistics observed previously contain superannuated
information which may not be good enough to be used after a long period of time.
Therefore surveys are being designed sophistically to make sure no possible error gets a
margin to escape at least in terms of design. For this longitudinal surveys are considered
to be best since in longitudinal surveys, facts are investigated more than once i.e. over the
successive waves, Also a frame is provided for reducing the cost of survey by a partial

replacement of sample units in sampling over successive waves.

Jessen (1942) is considered to be the pioneer for observing dynamics of facts over
a long period of time through partial replacement of sample units over successive waves.
The approach of sampling over successive waves has been made more fruitful by using
twisted and novel ways to consider extra information along with the study character.
Enhanced literature has been made available by Patterson (1950), Narain (1953), Eckler
(1955), Sen (1971, 1972, 1973), Gordon (1983), Singh et al. (1991), Arnab and Okafor
(1992), Feng and Zou (1997), Biradar and Singh (2001), Singh and Singh (2001), Singh
(2005), Singh and Priyanka (2006, 2007a, 2008a), Singh and Karna (2009), Singh and
Prasad (2010), Singh et al. (2011), Singh et al. (2013), Bandyopadhyay and Singh (2014),
Priyanka and Mittal (2014), Priyanka et al. (2015), Priyanka and Mittal (2015a, 2015b)
etc.

It has been theoretically established that, in general, the linear regression estimator

is more efficient than the ratio estimator except when the regression line y on x passes
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through the neighborhood of the origin; in this case the efficiencies of these estimators are
almost equal. Also in many practical situations where the regression line does not pass
through the neighborhood of the origin, in such cases the ratio estimator does not perform
as good as the linear regression estimator. Here exponential type estimators play a vital
role in increasing the precision of the estimates.Motivated with this idea we are aspired to
develop unexampled estimators for estimating population mean over two successive
waves applying the concept of exponential type ratio estimators. In this line of work, an
attempt has been made to consider the dynamic nature of ancillary information also
because as the time passes by, not only the nature of study variable changes but the nature
of ancillary information also varies with respect to time in many real life phenomenon
where time lag is very large between two successive waves. For example, in a social
survey one may desire to observe the number of females human trafficked from a
particular region, the number of girls child birth may serve as ancillary information which
is completely dynamic over a period of 8 years of time span. Similarly in a medicinal
survey one may be interested to record the number of survivors from a cancerous disease,
here the number of successfully tested drugs for the disease may not sustain to be stable
over a period of 10 or 20 years or in an economic survey the government may like to
record the labor force, the total number of graduates in country may serve as an ancillary
character to the study character but it surely inherent dynamic nature over a period of 5 or
10 years.So such situations cannot be tackled considering the ancillary character to be
stable since doing so will affect the final findings of the survey. Keeping the drawback of
such flaws in consideration, this work deals in bringing modern approaches for estimating
population mean over two successive waves. Four estimators have been habituated with a
fine amalgamation of completely known dynamic ancillary information with exponential
ratio type estimators. Their properties including optimum rotation rate and a model for
optimum total cost have been proposed and discussed. Also detailed empirical illustrations
have been done by doing a comparison of proposed estimators with well-known existing
estimators in the literature of successive sampling. Simulation algorithms have been

devised to make the proposed estimators work in practical environment efficiently.

178



2. Survey Design and Analysis
2.1. Sample Structure and Notations

Let U= (U,U,, .., U,) be the finite population of N units, which has been sampled over

two successive waves. It is assumed that size of the population remains unchanged but
values of units change over two successive waves. The character under study be denoted

by x (y) on the first (second) waves respectively. It is assumed that information on an
ancillary variable z,(z,) dynamic in nature over the successive waves with completely
known population meanZ,(Z,) is readily available on both the successive waves and

positively correlated to x and y respectively. Simple random sample (without replacement)
of n units is taken at the first wave. A random subsample of m = nA units is retained for
use at the second wave. Now at the current wave a simple random sample (without
replacement) of u= (n-m) = nu units is drawn afresh from the remaining (N-n) units of the

population so that the sample size on the second wave remains the same. Let pand
A(n+2=1) are the fractions of fresh and matched samples respectively at the second

(current) successive wave. The following notations are considered here after:

X, Y, Z,Z, : Population means of the variables x, y, z, and z, respectively.

Y,.Z,,%,. V.. Z(m),Z,(m), X, Z(n), Z,(n): Sample mean of respective variate based on

the sample sizes shown in suffice.

Py Pr > Pr,s Pys s Ps,» P, - COrTElation  coefficient between the variables shown in

suffices.

S, S;, S, S, : Population mean squared of variables x, y, z, and z, respectively.
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2.2 Design of the Proposed Estimators 7, (i, j=1, 2)

For estimating the population mean Y at the current wave, two sets of estimators have

been proposed. The first set of estimators is based on sample of size u drawn afresh at
current occasion and is given by

v,

Tu :{tlu’ t2u}’

1)
where t, =V, [iz(zu)j

@
=, exp(zzsz((t))] ®

The second set of estimators is based on sample of size m common to both occasion and
is

T ={tin: tan @)

e o) (52
=Y, [; j ©)
e P =

Hence, considering the convex combination of the two sets 7°, and 7", we have the final
estimators of the population mean Y on the current occasion as

T =w.t +

it + (L@ )ty (i, =1, 2) (7)

180



where(tiu, t,-m) eT,x T, and @ are suitably chosen weights so as to minimize the

mean squared error of the estimators 7;, (i, j=1, 2).

2.3. Analysis of the estimators 77, (i, j=1, 2)

2.3.1. Bias and Mean Squared Errors of the Proposed Estimators 7, (| i=1,2)

The properties of the proposed estimators 7, (i, j=1, 2) are derived under the following

large sample approximations

+8), Vu=Y(L1+e), Xp=X(1+e,), X=X (L+e,),Z,(u)=2, (1 +e,),
Z,(m)=2Z,(1+e;),z,(m)= Z,(1 +e6)andz(n) Z,(1+e,)suchthatle,|<1Vi=0,.7.

The estimators belonging to the sets 7, and 7, (i, j=1, 2) are ratio, exponential ratio, ratio

to exponential ratio and chain type ratio to exponential ratio type in nature respectively.

Hence they are biased for population mean Y . Therefore, the final estimators ¢/, (1,71, 2)
defined in equation (7) are also biased estimators of Y . The bias B(.)and mean squared

errors M(.)of the proposed estimators 7; j(i,jzl, 2) are obtained up to first order of

approximations and thus we have following theorems:

Theorem 2.3.1.Bias of the estimators 7}, (i, j=1, 2) to the first order of approximations

are obtained as

B( Vij) = wij B(tlu) + (1 - ZU”) B(tjm)' (i,j:1’2)’ (8)
where B(t,) = %\7 [% 3 go%)lj’ o)
2 2
1-(3C 1C
B(t,) = =Y | o272 - =%, 10
( Zu) u (8 Zg 2Yzzj (10)
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B(t ) :v i Czooo 3C0002 _ C1100 _ 1 Co101 l C1001 l C1100 _ C2000 _ 1 C1001 ’ (11)
" m| X 8Z XY 2z, 2xz XY X 22Xz,

and

B(t ): v i C_zooo _E C_oozo 3 Coonz _ C_nﬁo _l ElOlO 1 C1001 1 Couo 1 E()iOl _l (_:oo_u
o m| X? 8Z 8Z XY 2 XZ, 2XZ 2YZ 2YZ, 4727,

+ 1 1 Cooz _ Czooo + C1100 +1 C1010 _E C1001 _ l C0101 +£ C0011 (12)
87 X XY 2Xz, 2XZ, 2YZ, 477,

where C,, = [(xi-)_()r(yi YY) (24 - 2,) (2 -zz)‘*]; (r,s,t,q)>0

Theorem 2.3.2.Mean squared errors of the estimators q‘ij(i,jzl, 2) to the first order of

approximations are obtained as

M(7,) = @ ML)+ (1- ) M(t,)+2 (1 0, )Cov((er,):6.512) 09

1
Where M(t,,) = " A 'S (14)
_1 2
M(t, ) = - A, S (15)
1 1
M(t,,) = (E A+ A4j S (16)
1 1
M(t,,) = (E At Aej s? (17)
5 9 _
Cov(t,, t;,)=0, A,=2(1-p,, },A,= 73 P A= 2, Pyt P AT 205 Py - 1

5
As= S 205 Py T Prg, Py, Py, -

1 1 5
2 _pzlzz and A6: 2pyx+p><zl_p><22_ pyZ1+ _pzlzz_ Z .

2 2
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2.3.2. Minimum Mean Squared Errors of the Proposed Estimatorsq‘ij (i, =1, 2)

Since the mean squared errors of the estimators i‘ij (i, =1, 2) given in equation (13) are
the functions of unknown constantsa;, (i, j = 1, 2), therefore, they are minimized with
respect to @, and subsequently the optimum values of a;(i,j=1,2)and
M(q‘ij)om_ (i, j=1, 2) are obtained as

M(t;,)

P S M) M) )

M(7,) = M(t;,) - M(t;,)

wM(t,) +M(,,)

L (1Lj=1,2) (19)

Further, substituting the values of the mean squared errors of the estimators defined in
equations (14)-(17) in equation (18)-(19), the simplified values of @;; and M(fi‘.j) _are
opt. 1/ opt.

obtained as

Mg [Mu A, - (A3+ A4)]

@, = (20)
o [lel Ay -y (A3+ A, - Al) - AJ
Ty = — Hip [“12 Ag - (A5+A6 ):| (21)
- M Ag - My, (A5+ Ag - Al) - Al]
Ty = — Mo I:Hzl Ay - (A3+A4 )] (22)
" I:M21 Ay - Uy (A3+ Ay - Az) - Az]
o = e Ao (AT A 23)
- I:uzz Ag - Uy (As+ Ag - Az) - Az]
, 1 B, -B,]S;
M(Tll)opt, == [, B, - B,]S; (24)

[Hizl Ay -y By - Al:'
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1 [le B, - B5]Sf/

" 1 25
( 12 )opt. n |:l,[fz A6 - Wy, B6 - A1:| ( )
. 1 [MZl B, - BS]S?’
y 1 26
( Zl)OP‘- n [uil Ay -y By - AZ:I "
5 1 [mn By - Bll]sf’
' 1 27
( 22 )opt. n [“52 A -1y, B, -Az] (27)

whereB=AA, B,=AA,+AA, B=A +A -A, B=AA, B=AA +AA,

BezAs +Ae 'A1’ B7:A2A4’ 88:A2A3 +A2A41 B9:A3 +A4 'Az’ Blo:Aer

B,=AA, +AA; ,B,=A +A -A, and p,(i,j=1,2)are the fractions of the sample

drawn afresh at the current(second) wave.

2.3.3. Optimum Rotation Rate for the Estimators 7, (i, j=1, 2)

Since the mean squared errors of the proposed estimatorsi“ij (i, =1, 2) are the function of

the pij(i,j = 1,2), hence to estimate population mean Y with maximum precision and

minimum cost, an amicable fraction of sample drawn afresh is required at the current

wave. For this the mean squared errors of the estimators ffij (i, =1, 2) in equations (24) -
(27) have been minimized with respect to (i,j =1, 2). Hence an optimum rotation rate

has been obtained for each of the estimators 77, (i, j=1, 2) and given as :

c,xC;-CcC
W, = 2 Cz 13 (28)
1
C,x,Ci-C,C
By = — C5 — (29)
4
C,+,C:-C,C
Hy = 2 Cs 7 S (30)
7
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_ Ch* \/ C121 -Cy Cp (31)

ClO

Ko
where
C=AB, C,=AB, C;=AB+B,B;, C,=AB, C,=A;B;, C;=AB,+BB,
C7:A4B7' C8:A4BS’ C9:A287+BSBQ’ ClOZAGBlo’ C11: AGBll and C12:AZBlO+BllBlT

The real values of p; (i,j =1,2) exist, iffcz-c, c,»0,C? -C, C,>0, C? - C, C,>0,and

C? -C, C, >0respectively. For any situation, which satisfies these conditions, two real
values of ;;(i,j=1,2) may be possible , hence to choose a value of ;; (i,j=1,2), it
should be taken care of that O<p;;<1, all other values of p(i,j=1,2) are

inadmissible. If both the real values of p;; (i, j=1,2) are admissible, the lowest one will
be the best choice as it reduces the total cost of the survey. Substituting the admissible
value of p;; say pij(i,j=1,2) from equation (28) - (31) in equation (24) - (27)
respectively , we get the optimum values of the mean squared errors of the estimators

T:;(i,J =1, 2) with respect to @,;as well asp;;(i, j = 1, 2)which are given as

. [n9B, -B,] S (32)

M =
(T n[u® A, -nfd B - A, |

0) 2
L (19 B, -B,]S
M(TIZ)opt,: n[u(O)zle 4_ (0)5B iA] (33)
12 6 ~ M2 Ds 1

© 2
o En s
M (721)0pn = ©) 221A 7_ (O)BB i/ A >
n[um 4~ Mo By 2]
©) 2
L [sz By 'Bll] Sy
M(T. = )
(Teho = T8 &, - B, - A,
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3. Cost Analysis
The total cost of survey design and analysis over two successive waves is modelled as:

C,=nc, + mc, + uc, (36)

where ¢, : The average per unit cost of investigating and processing data at previous (first)
wave,

c, : The average per unit cost of investigating and processing retained data at current wave,

C,: The average per unit cost of investigating and processing freshly drawn data at current
wave.

Remark 3.1: ¢, < c,< c,, when there is a large gap between two successive waves, the cost

of investigating a single unit involved in the survey sample should be greater than before
(at previous occasion) since as time passes by different commodities (software) and
services (human resources, daily wages and conveyance) become expensive so the cost
incurring at second occasion increases in a considerable amount. Also the average cost of
investigating a retained unit from previous wave should be lesser than investigating a
freshly drawn sample unit since survey investigator as well as respondent has some

experiences from the previous wave.

Theorem 3.1.1: The optimum total cost for the proposed estimators ffij (i, =1, 2) is
derived as

v, _ () P
C, (Tii)opt. = n{cf+ .+ (1 - uf )(cr- cs)}V i,j=1,2 (37)
Remark 3.2: The optimum total costs obtained in equation (37) are dependent on the
value of n. Therefore, if a suitable guess of n is available, it can be used for obtaining

optimum total cost of the survey by above equation. However, in the absence of suitable

guess of n, it may be estimated by following Cochran (1977).
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4. Efficiency Comparison

To evaluate the performance of the proposed estimators, the estimators 7, j(i, =1, 2) at
optimum conditions, are compared with the sample mean estimatory, , when there is no

matching from previous wave and the estimator Y due to Jessen (1942) given by

Since the sample mean estimator Y, is unbiased for population mean, so variance of the

estimator Y, is given by

Y=y, +* (1-v)¥n, (38)
where y_ =y _+ Byx (in- im), B, « is the population regression coefficient of y on x and
v is an unknown constant to be determined so as to minimize the mean squared error of
the estimator Y . The estimators y. and Y are unbiased for population mean and variance

of the estimators y, and Y at optimum conditions are given as

V(v,) = S, (39)

AT 1 SZ
V(Y) - —(1+,/1- ZX) > 40
opt. (2 py n ( )
and the fraction of sample to be drawn afresh for the estimator Y

1
M:—
Tief1-p2

The percent relative efficiencies E;;(M) and E;;(J) of the estimator ffij(i, =1, 2) (under

(41)

optimum conditions) with respect to ¥, and Y are respectively given by
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*

_ v( )
Lj‘)* x 100and E;;(J) = ——=2—

i opt.

<b

E,,(M)= x 100 (i, j=1, 2). (42)

=
=

i/ opt.

5. Numerical Illustrations and Simulation

5.1. Generalization of empirical study

A generalized study has been done to show the impact of motleying ancillary information

in enhancing the performance of the proposed estimators ; (i, j=1,2). To elaborate the

scenario, various choices of correlation coefficients of study and auxiliary variables have

been considered. The results obtained have been shown in Table 1.

Table 1: Generalized empirical results while the proposed estimators 7, (i, j=1, 2) have

been compared to the estimatorsy,and ¥ for p, =p, =p,and p,=p_ =p,.

P2, =Py =05

222 N

P | by | D S e | e | e | e [ e | e | EL(D) | EL() | ELG) | EL (D)

06 | 053 | 0.66 | 0.58 | 0.44 0.41 | 119.69 114.58 135.48 128.91 111.67 106.90 | 126.41 | 120.28

0.7 | 053 | 051 | 045 | 043 0.39 | 149.98 138.58 157.12 145.01 | 139.93 | 129.30 | 146.60 | 135.30

0.8 | 053 | 033 | 032 | 0.42 0.37 | 197.61 176.31 187.18 166.66 | 184.38 | 164.50 | 174.64 | 155.50

06 | 053 | 061 | 058 | 042 0.41 | 117.08 114.58 132.04 128.91 109.24 106.90 | 123.20 | 120.28

0.7 | 053 | 048 | 045 | 0.41 0.39 | 14581 138.58 152.67 145.01 136.04 129.30 | 142.45 | 135.30

08 | 053 | 033 | 032 | 040 0.37 | 191.44 176.31 181.18 166.66 178.61 164.50 | 169.04 | 155.50

06 | 053 | 058 | 058 | 0.41 0.41 | 11458 114.58 128.91 12891 | 106.90 | 106.99 | 120.28 | 120.28

0.7 | 053 | 046 | 045 | 040 0.39 | 142.03 138.58 148.66 145.01 | 132,52 | 129.30 | 138.70 | 135.30

0.8 | 053 | 033 | 0.32 | 0.39 0.37 | 185.89 176.31 175.84 166.66 | 173.44 | 164.50 | 164.06 | 155.50

06 | 053 | 055 | 058 | 040 0.41 | 112.22 114.58 126.04 128.91 104.70 106.90 | 117.60 | 120.28

0.7 | 053 | 045 | 0.45 | 0.39 0.39 | 138.58 138.58 145.01 145.01 | 129.30 | 129.30 | 135.30 | 135.30

08 | 053 | 032 | 032 | 0.38 0.37 | 180.88 176.31 171.03 166.66 | 168.76 | 164.50 | 159.57 | 155.50

P, = Px=0.0

222

po | By | @ D p® | p e e ) [ e | ecn) | E () | EL() | ELG) | EL(D)

06 | 055 | 0.87 | 0.69 | 0.46 0.44 | 12452 121.01 143.54 137.34 112.07 108.91 | 129.18 | 123.60

0.7 | 055 | 0.60 | 0.49 | 0.46 0.42 | 159.70 147.84 167.74 154.84 143.73 133.06 | 150.97 | 139.35

0.8 | 055 | 029 | 033 | 045 0.40 | 212.25 188.59 201.85 178.44 191.02 169.73 | 181.58 | 160.54

0.6 | 055 | 0.73 | 0.69 | 0.45 0.44 | 12231 121.01 139.24 137.34 | 110.08 | 108.91 | 125.36 | 123.60

0.7 | 055 | 054 [ 049 | 044 0.42 | 154.60 147.84 162.24 154.84 139.14 133.06 | 145.89 | 139.35

0.8 | 055 | 032 | 033 | 0.43 0.40 | 204.53 188.59 193.99 178.44 | 184.08 | 169.73 | 17459 | 160.59

06 | 055 | 0.66 | 0.69 | 0.44 0.44 | 119.69 121.01 135.48 137.34 107.72 108.91 | 121.94 | 123.60

0.7 | 055 | 051 | 049 | 043 0.42 | 149.98 147.84 157.12 154.84 134.98 133.06 | 141.41 | 139.35

0.8 | 055 | 033 | 0.33 | 0.42 0.40 | 197.61 188.59 187.18 178.44 177.85 169.73 | 168.46 | 160.54

06 | 055 | 061 | 0.69 | 042 0.44 | 117.08 121.01 132.04 137.34 105.37 108.91 | 118.84 | 123.60

0.7 | 055 | 048 | 049 | 041 042 | 1581 147.84 152.67 154.84 131.23 133.06 | 137.41 | 139.35

0.8 | 055 | 033 | 033 | 040 0.40 | 191.44 188.59 181.18 178.44 172.29 169.73 | 163.06 | 160.59

0

0 0 . -
Note: The values for p, uil), pi;, H(z) and i, have been rounded off up to two places of decimal for presentation.

1
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5.2. Generalized study based on correlation coefficients and optimum total cost

model

To validate the proposed cost model, a hypothetical survey design has been assumed in
which various choices of correlation coefficient and different input costs have been

considered over two successive waves

Table 2: Optimum total cost of the survey design at the current wave of the proposed
estimators 7 (i, j=1, 2)

p, =05, n=30, ¢, = T 50.00, ¢,= ¥ 75.00and ¢, = Z 80.00

b Lo [ [0 [0 [ (w8 [c,0) [ e, @) [c )] c ()
06]053|061|058|042|0.41 | 3830.4 | 3842.7 38375 3814.4 3812.8
05(0.7]053|048 | 045 | 0.41 | 0.39 | 3830.4 | 3823.1 3817.7 3813.0 3809.8
0.8 1053033032040 0.37 | 38304 | 3799.9 3798.2 3811.2 3806.3
06053058 |058]|041]|0.41 | 38304 | 3837.5 3837.5 3812.8 3812.8
0.6 07| 053|046 | 045 | 0.40 | 0.39 | 3830.4 | 3820.2 3817.7 3811.3 3809.8
0.8 1053 |0.33|0.32]0.39]|0.37 | 3830.4 | 3799.5 3798.2 3809.3 3806.3
06053 |055|058|0.40 | 041 | 38304 | 3833.4 38375 38114 3812.8
0.7 07| 053|045 |0.45|0.39 | 0.39 | 3830.4 | 3817.7 3817.7 38.9.8 3809.8
0.8 1053032032038 | 0.37 | 3830.4 | 3798.9 3798.2 3807.7 3806.3

p, =06, n=30, ¢, = 50.00, ¢,= 75.00 and c,=Z 80.00

b o [ [ nf [nf (a2 (w8 [c.(0) [, [c. () [ c.(2) [ o, ()
06 ]055|073|069 045 |0.44 | 3833.3 | 3860.9 3854.8 3817.9 3817.0
05107 |055]|054|049]|0.44 | 0.42 | 3833.3 | 3832.1 3824.9 3816.9 3813.9
08 1]055(032|033|043|0.40 | 3833.3 | 3798.9 3799.8 3815.5 3810.2
06| 055|066 069|044 | 0.44 | 3833.3 | 3849.9 3854.4 3816.1 3817.0
06|07 |055]|051|049]|0.43 | 0.42 | 3833.3 | 3826.9 3824.9 3814.8 3813.9
0.81]055(033|0.33|0.42|0.40 | 3833.3 | 3833.3 3799.8 3813.2 3810.2
06| 055|061 069|042 | 0.44 | 3833.3 | 3842.7 3854.8 3814.4 3817.0
07107 |055]|048|0.49|0.41 | 0.42 | 3833.3 | 3823.1 3824.9 3813.0 3813.9
0.8]055(033|0.33|0.40|0.40 | 3833.3 | 3833.3 3799.9 3811.2 3810.2

189



Table 3: Optimum total cost of the survey design at the current wave of the proposed
estimators 7, (i, j=1,2)

p, =05, n=40, ¢, =¥ 50.00, ¢,= 75.00and c,=Z 80.00

o Lo [ [0 [0 [ (w8 [0 [ e, [c @) [c ) ]c ()
06 ]053|061|058]|042|0.41|5107.2 | 5123.7 5116.7 5085.8 5083.8
05| 0.7]053|0.48 | 045 | 0.41 | 0.39 | 5107.2 | 5097.5 5090.3 5084.0 5079.8
0.81]053(033|0.32|0.40|0.37|5107.2 | 5066.6 5064.3 5081.5 5075.0
06 ]053|058|058]|041|0.41|5107.2 | 5116.7 5116.7 5083.8 5083.8
06| 0.7]053]|0.46| 045 | 0.40 | 0.39 | 5107.2 | 5093.6 5090.3 5081.8 5079.8
0.81]053(033|0.32|0.39|0.37|5107.2 | 5066.0 5064.3 5079.1 5075.0
061|053 |055|058]|040|0.41|5107.2 | 5111.2 5116.7 5081.9 5083.8
07107 053|045 |0.45]0.39 | 0.39 | 5107.2 | 5090.3 5090.3 5079.8 5079.8
081]053(032|0.32|0.38|0.37 | 5107.2 | 5062.2 5064.3 5077.0 5075.0

p,=0.6, n=40, ¢, =% 50.00, ¢, =X 75.00 and c,=X 80.00

Po | P [ W |y [ | ma |y | & Q)| C (Y| C(12) | S (21) | C(22)
0.6 ]055|0.73|0.69|0.45| 044 | 51111 | 51479 5139.7 5090.5 5089.3
05]07[055|054|049 044|042 |5111.1 | 51094 5099.8 5089.2 5085.2
0.8]055|032|033]043|040|5111.1 | 5065.1 5066.3 5087.3 5080.3
0.6 055|066 | 069|044 | 044 |51111 | 5133.3 5139.7 5088.1 5089.3
06 ]07[055|051]049 043|042 51111 | 51025 5099.8 5086.4 5085.2
0.8055|0.33|033|0.42| 04051111 | 5066.5 5066.3 5084.2 5080.3
0.6 |055|0.61|0.69]|042| 044 |51111 | 5123.7 5139.7 5085.8 5089.3
0.7]107]055|048 049|041 ]042 51111 | 5097.5 5099.8 5084.0 5085.2
0.8]1055]0.33|0.33]0.40 | 040 |5111.1 | 5066.6 5066.3 5081.5 5080.3

5.3. Monte Carlo Simulation

Monte Carlo simulation has been performed to get an overview of the proposed estimators

in practical scenario through considering different choices of n and p for better analysis.

Following three sets have been considered for the simulation study

Setl:n=20, n =0.35,(m=13,u=7),
Set Il : n=20, p=0.20, (m = 16,u = 4),

Setlll:n=20, p =0.15, (m=17,u=3).
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5.3.1. Simulation Algorithm

(i) Choose 5000 samples of size n=20 using simple random sampling without replacement

on first wave for both the study and auxiliary variable.

(ii) Calculate sample meanXx,,, and Z, (n) fork =1, 2, - - -, 5000.

(iii) Retain m=17 units out of each n=20 sample units of the study and auxiliary variables

at the first wave.
(iv) Calculate sample meanX,,  andz,, (m)for k=1, 2, - - -, 5000.

(v) Select u=3 units using simple random sampling without replacement from N-n=31

units of the population for study and auxiliary variables at second (current) wave.
(vi) Calculate sample meany, , and Z,, (m)fork =1, 2, - - -, 5000.

(vii) Iterate the parameter @ from 0.1 to 0.9 with a step of 0.2.

(viii) Iterate y from 0.1 to 0.9 with a step of 0.1 within (ix).

(ix) Calculate the percent relative efficiencies of the proposed estimator 7; (i, j=1, 2) with

respect to estimator to y and Y as

5000

Z[fuk'ynlk]z %[rfiuk' |k}

E(#,M)= S~ x100 and E(7,1)=

5000

IE D[]

k=1 k=1

<P

x 100 ;(i,j=1, 2), k=1, 2, ..., 5000.
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Table 4: Simulation Results when proposed estimator 7, (i, j=1, 2) have been compared to ¥,

SET

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E(7,,M)

u?!

344.81

368.65

396.28

415.00

424.49

424.50

415.11

399.40

372.37

E(7,,M)

471.37

503.57

532.28

546.96

513.18

526.00

498.87

466.15

422.95

E(7,,M)

35.71

343.89

319.56

279.27

236.28

192.75

157.04

127.20

104.46

E(7,,M)

481.75

453.54

399.70

329.37

265.46

202.08

166.51

132.62

107.68

E(7,,M)

1!

295.21

331.51

362.39

388.13

413.31

432.55

443.08

440.17

431.41

E(7,,M)

468.60

517.25

552.45

579.43

599.73

604.44

597.23

570.13

538.56

E(7,,M)

304.46

323.91

323.39

303.13

271.90

232.93

199.24

168.94

142.09

E(7,,m)

487.75

499.92

464.47

405.47

338.91

273.84

224.47

184.37

151.52

E(7,,M)

1!

218.44

244.19

271.66

303.33

333.45

364.67

393.36

419.85

439.71

E(7,,M)

461.69

514.46

566.60

619.47

665.56

703.63

731.26

746.47

743.76

E(7,,M)

231.69

260.16

283.97

304.00

306.75

299.67

281.22

256.46

228.66

E(,,m)

505.81

562.87

585.67

578.89

529.97

467.34

397.98

334.78

280.42
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Table 5: Simulation results when the proposed estimator 7", is compared with the estimator Y

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SET

| 326.12 | 332.43 | 428.19 | 602.76 | 882.27 | 1232.9 | 1637.4 | 2159.7 | 2787.3

0.1 1 276.72 | 256.44 | 298.55 | 389.14 | 563.25 | 742.19 | 1039.6 | 1443.9 | 1886.6

11 182.55 | 153.16 | 137.82 | 159.12 | 205.37 | 293.91 | 390.68 | 499.10 | 660.27

| 360.01 | 360.10 | 782.72 | 656.20 | 936.12 | 1351.0 | 1821.4 | 2348.6 | 310.88

0.2 1 310.81 | 281.27 | 322.94 | 426.16 | 614.49 | 820.41 | 1173.6 | 1571.9 | 2015.2

11 209.72 | 166.19 | 153.72 | 179.11 | 229.31 | 301.97 | 423.52 | 550.37 | 732.32

| 380.60 | 384.95 | 514.06 | 708.38 | 1010.3 | 1442.1 | 1891.4 | 2541.3 | 3284.2

0.3 1 336.86 | 306.94 | 351.72 | 465.95 | 669.62 | 907.41 | 1286.9 | 1654.1 | 2139.2

11 229.76 | 184.83 | 170.77 | 196.28 | 255.02 | 336.89 | 470.10 | 618.90 | 818.38

| 401.05 | 400.43 | 532.96 | 746.77 | 1060.7 | 1520.9 | 2012.7 | 2651.1 | 34716

0.4 1 361.82 | 330.30 | 377.40 | 505.19 | 714.43 | 984.13 | 1391.5 | 1775.2 | 2298.0

11 252.68 | 205.47 | 188.91 | 216.26 | 278.49 | 376.42 | 523.01 | 679.76 | 908.90

| 414.01 | 407.18 | 549.29 | 764.41 | 1090.0 | 1552.8 | 2044.6 | 2715.7 | 3539.2

0.5 1 383.07 | 345.26 | 399.88 | 533.56 | 767.19 | 1051.3 | 1463.7 | 1887.3 | 2469.8

11 278.45 | 227.24 | 209.50 | 239.44 | 304.72 | 411.04 | 574.21 | 748.40 | 994.88

| 411.71 | 410.70 | 545.30 | 755.91 | 1095.5 | 1549.5 | 2067.6 | 2694.6 | 3548.5

0.6 1 398.06 | 361.34 | 415.99 | 556.75 | 797.60 | 1097.9 | 1514.8 | 1979.0 | 2589.5

11 303.72 | 249.08 | 229.98 | 261.05 | 333.80 | 449.52 | 625.62 | 813.86 | 1085.2

| 400.98 | 400.17 | 532.67 | 742.17 | 1068.7 | 1521.9 | 2029.6 | 2638.5 | 3478.8

0.7 1 404.20 | 269.57 | 424.83 | 566.29 | 814.96 | 1120.9 | 1552.3 | 2022.4 | 2642.9

11 327.71 | 270.01 | 249.29 | 281.45 | 362.61 | 482.77 | 674.92 | 882.95 | 1164.0

| 383.48 | 385.90 | 502.00 | 704.79 | 1028.8 | 1456.8 | 1960.8 | 2521.3 | 3325.5

0.8 1 398.93 | 368.51 | 424.67 | 569.15 | 812.87 | 1115.5 | 1549.6 | 2011.0 | 2651.8

11 350.68 | 287.18 | 267.02 | 300.12 | 385.81 | 515.96 | 718.68 | 947.91 | 1240.0

| 360.51 | 360.82 | 469.77 | 663.00 | 955.74 | 1348.7 | 1826.2 | 2366.4 | 3125.1

0.9 1 387.49 | 358.90 | 413.19 | 557.72 | 791.19 | 1379.7 | 1524.7 | 1970.4 | 2579.0

11 366.09 | 300.07 | 280.72 | 315.76 | 404.82 | 541.84 | 752.31 | 995.79 | 1298.8
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Table 6: Simulation results when the proposed estimator 7" is compared with the estimator Y

12

SE

Y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

438.79

454.45

582.11

831.42

1201.8

1694.0

2233.1

2968.4

3831.7

442.66

398.59

469.84

628.23

878.42

1185.5

1648.1

2361.0

2936.5

427.90

343.13

312.59

375.43

47241

634.04

887.31

1166.2

1504.7

0.2

481.01

491.89

651.11

890.31

1271.9

1828.8

2451.3

3226.3

4266.5

484.85

439.04

508.95

677.41

967.42

1308.2

1846.5

2485.0

3124.6

475.65

373.99

347.93

407.95

521.89

684.91

962.09

1278.4

1656.4

0.3

499.05

517.07

686.35

940.19

1348.0

1916.8

2527.0

3388.8

4461.2

517.55

472.81

543.99

725.41

1040.0

1410.6

2000.8

2582.6

3306.2

516.76

407.22

383.11

444.72

572.07

757.85

1047.3

1398.8

1833.6

0.4

516.41

527.75

692.80

971.12

1377.0

1970.1

2631.3

3458.3

4579.0

545.34

500.29

570.34

768.94

1083.7

1499.5

2117.7

2706.0

3471.8

556.92

445.77

416.14

480.80

614.70

829.45

1138.9

1507.8

1992.2

0.5

520.23

521.02

696.36

967.83

1375.2

1959.2

2596.5

3454.0

4525.4

559.62

507.51

587.80

789.21

1129.7

1552.7

2165.4

2782.7

3624.1

596.58

480.22

449.92

516.79

655.86

884.66

1221.4

1616.5

2127.7

0.6

501.75

508.90

670.69

927.60

1343.8

1900.8

2545.1

3324.2

4397.8

560.74

513.26

589.91

794.99

1133.0

1565.5

2162.5

2814.5

3662.3

627.38

510.46

477.32

544.38

696.06

935.55

1286.6

1703.9

2248.6

0.7

475.33

480.92

636.01

885.73

1272.4

1815.9

2426.3

3158.2

4173.9

548.69

504.44

578.62

776.17

1112.8

1534.4

2132.8

2762.2

3599.1

650.44

531.63

496.40

562.32

724.39

961.78

1335.1

1767.5

2313.1

0.8

442.41

450.39

581.65

818.15

1191.6

1688.9

2279.4

2929.7

3873.3

519.16

482.41

556.39

748.91

1065.4

1467.8

2041.6

2637.1

3466.6

663.15

538.25

507.13

569.47

733.17

977.60

1353.2

1808.1

2343.7

0.9

405.82

409.83

530.42

750.32

1077.9

1521.9

2067.0

2677.9

3542.1

485.43

452.18

519.97

705.34

997.25

1379.7

1932.2

2487.1

3243.2

654.95

532.58

504.31

567.16

727.56

972.56

1343.2

1799.6

2322.1
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Table 7: Simulation results when the proposed estimator 7, is compared with the estimator Y

SET

v

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

338.97

338.12

438.20

602.27

901.95

1257.7

1682.5

2185.7

2853.7

289.16

265.72

309.35

409.45

583.03

777.05

1085.8

1500.7

1961.1

194.16

162.27

147.18

169.77

218.56

290.84

417.32

531.93

700.09

0.2

341.08

355.92

451.14

604.12

882.83

1245.9

1694.9

2196.8

2886.7

312.55

277.63

323.08

432.83

610.81

825.45

1162.4

15725

2029.8

226.59

179.69

165.54

192.53

246.92

327.07

458.49

592.66

787.86

0.3

310.27

310.43

408.06

562.85

822.07

1156.5

1551.7

2053.6

2646.2

306.79

275.65

320.34

430.40

607.64

828.57

1159.0

1522.2

1966.6

244.65

197.87

182.29

208.92

270.87

359.27

503.59

657.30

870.32

0.4

266.62

269.46

348.62

491.28

716.91

1009.3

1355.7

1768.7

2298.6

285.62

259.65

300.40

404.39

566.62

778.82

1088.9

1426.1

1851.3

259.87

210.16

193.93

220.93

284.73

384.16

536.82

700.23

931.24

05

222.99

226.65

292.20

411.81

592.26

838.78

1131.5

1482.9

1913.1

255.38

229.96

268.35

359.57

504.58

699.70

973.42

1268.4

1642.9

266.55

215.90

199.93

226.91

291.38

391.08

548.24

717.8

951.67

0.6

183.72

186.48

240.18

335.81

487.34

687.36

923.04

121.44

1571.7

220.07

199.74

232.47

310.54

434.76

603.52

836.57

1096.1

1407.9

261.83

212.32

196.50

222.57

286.35

384.76

536.17

701.89

930.06

0.7

151.98

151.39

193.89

275.64

395.51

560.16

758.68

989.83

1286.5

184.07

170.31

194.83

263.85

370.29

513.19

709.12

931.98

1201.6

244.56

200.80

185.50

209.60

269.14

363.34

504.47

663.99

879.04

0.8

124.08

122.90

159.60

227.06

324.64

455.54

618.43

812.79

1057.1

154.25

142.83

164.30

221.74

311.35

432.74

590.51

782.89

1005.1

224.81

183.61

170.18

191.41

246.68

331.87

458.85

606.02

800.17

0.9

101.01

101.22

131.92

187.55

268.81

377.36

512.49

673.75

868.16

127.98

120.18

138.06

186.92

261.26

362.84

494.70

657.75

844.50

200.96

162.94

151.25

171.04

220.55

296.36

409.10

542.09

714.32
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Table 8: Simulation results when the proposed estimator 7°

22

is compared with the estimator Y

0.1 0.2 03 0.4 05 0.6 07 0.8 0.9
@, | SET
| 45741 | 464.45 | 598.53 | 833.06 | 12224 | 1727.8 | 22805 | 3012.7 | 3960.2
01 | n 467.70 | 42057 | 49351 | 671.77 | 917.64 | 1258.4 | 1742.7 | 2481.8 | 3090.8
1 471.41 | 378.45 | 347.07 | 41754 | 523.23 | 700.91 | 985.84 | 1294.1 | 1660.1
[ 44659 | 443.03 | 585.78 | 800.42 | 1159.9 | 16648.2 | 2207.2 | 2917.1 | 3854.2
02 |1 480.06 | 428.10 | 497.99 | 673.58 | 938.32 | 1290.7 | 17905 | 24525 | 3116.9
1 528.24 | 417.18 | 384.72 | 451.31 | 575.64 | 760.29 | 1077.0 | 1413.8 | 1830.2
| 383.86 | 388.26 | 504.92 | 699.77 | 1018.4 | 1438.3 | 19253 | 2563.7 | 3330.3
03 [Nl 44247 | 396.88 | 464.53 | 624.20 | 875.24 | 1203.7 | 16785 | 2236.8 | 2856.7
i 341.14 | 430.65 | 402.61 | 465.7 | 597.23 | 788.46 | 1112.2 | 1462.5 | 1926.8
[ 312.67 | 317.80 | 407.50 | 579.53 | 838.79 | 1180.7 | 1596.0 | 2093.7 | 27278
04 [Nl 381.82 | 346.73 | 403.41 | 541.23 | 757.30 | 1046.6 | 14615 | 1930.6 | 2490.8
1 527.18 | 420.54 | 394.10 | 451.06 | 576.66 | 772.73 | 1081.0 | 1434.4 | 1888.2
[ 249.86 | 254.63 | 326.43 | 463.84 | 663.01 | 940.42 | 1273.4 | 1670.7 | 2156.6
05 |1 317.68 | 285.88 | 334.87 | 448.36 | 627.38 | 871.77 | 1219.9 | 1589.4 | 2054.2
i 485.30 | 388.39 | 363.79 | 412.40 | 530.19 | 709.26 | 990.21 | 1314.4 | 1732.8
| 199.22 | 202.29 | 259.91 | 365.76 | 528.67 | 746.62 | 1001.8 | 1322.7 | 1709.6
06 |1l 258.73 | 234.80 | 273.28 | 365.36 | 510.39 | 710.26 | 985.07 | 1295.4 | 1654.2
" 42504 | 341.89 | 318.71 | 361.92 | 465.0 | 622.42 | 863.99 | 1149.0 | 15105
| 159.98 | 160.52 | 204.73 | 292.77 | 418.76 | 593.77 | 803.81 | 1050.3 | 1366.1
07 [N 206.90 | 191.63 | 218,51 | 297.20 | 416,59 | 577.01 | 798.46 | 1051.3 | 1353.4
1 355.08 | 291.67 | 267.62 | 306.67 | 392.04 | 532.08 | 733.74 | 974.43 | 1290.4
I 129.24 | 128.14 | 165.99 | 237.26 | 338.32 | 475.01 | 644.65 | 848.08 | 1103.6
08 [l 167.97 | 155.56 | 178.67 | 241.65 | 338.98 | 471.19 | 642.88 | 855.11 | 1095.0
1 299.61 | 244.69 | 227.33 | 255.76 | 329.85 | 444.27 | 610.04 | 811.62 | 1072.3
I 104.04 | 10434 | 135.79 | 193.67 | 277.07 | 389.17 | 528.32 | 695.07 | 895.60
09 [Nl 136.23 | 127.98 | 146.83 | 199.20 | 278.15 | 386.27 | 526.53 | 701.69 | 899.91
1 250.56 | 202.66 | 188.41 | 213.37 | 275.45 | 370.39 | 508.81 | 677.67 | 893.24
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7.Rendition of Results

7.1. Results from Generalized Empirical

a) The optimum values p©, u®,n9 and u® exist for almost each combination of

22

correlation coefficients. For increasing values of correlation of study and ancillary
information, the values p®, n, n© and p decrease, which in accordance with Sukhatme

et al (1984.)

b) As the correlation between study and ancillary information is increased, the percent

relative efficiencies increase and the proposed estimators perform better thany, and Y.

c) The proposed estimators provide a lesser fraction of fresh sample drawn afresh as

compared to the estimator ¥ for almost every considered choice of correlation

coefficients. The estimator 7', performs best in terms of percent relative efficiency and

the estimator 7,, performs best in terms of sample drawn afresh at current occasion.

d) The optimum total cost of the survey decreases for increasing correlation between study
and ancillary character. The estimator 7,, requires the least total cost for the survey at the

current occasion.

7.2 Simulation Results

a) From Table 4 to Table 8, it can be seen that the proposed estimators 7 (i, j=1, 2)are
efficient over y, and ¥ for all the considered sets.

b) Also in simulation study, it is observed that the estimator 7,, is most efficient over the

estimator ¥ for all considered set but when T,,1s compared to Yy, it is most efficient

among all proposed estimator only for set 111.

c) As the fraction of sample drawn afresh is increased, the performance of all four

estimators enhances.
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8. Ratiocination

The entire detailed generalized and simulation studies attest that accompanying a

motleying ancillary character with the study character certainly serves the purpose in long
lag of two successive waves. The proposed estimators 7;; (i, =1, 2) prove to be worthy in
terms of precision and cost since all the proposed estimators provide a lesser fraction of
freshly drawn sample at current occasion as compared to the estimators due to Jessen
(1942). The minute observation suggest that the estimators 7, and 7', are providing
approximately same fraction of sample to be drawn afresh at the current occasion but the
total cost of survey is least for the estimator 7, . Since both the estimators 7, and 7, are
better than the sample mean estimator and the estimator due to Jessen (1942) and 7, is

best in terms of precision but for little amount of precision, the cost of survey cannot be

put on stake. Hence according to the requirement of survey investigator, one is free to
choose any of the estimators out of 7, and 7,,. Hence the proposed estimators are

recommended to the survey statisticians for their practical use.

198



UNIT - 1l1

SEARCH OF GOOD ROTATION PATTERNS
UNDER NON-RESPONSE:

APPLICATION OF IMPUTATION ECHNIQUES
FOR
ESTIMATING POPULATION MEAN
AT CURRENT OCCASION
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CHAPTER -9

Intercession of Non-Response through
Imputation in Longitudinal Surveys for
Population Mean

* Following is the publication based on the work of this chapter:--

1. Priyanka, K. and Mittal, R. (2016): Intercession of Non-Response through
Imputation in Longitudinal Surveys for Population Mean. Journal of Modern
Applied Statistical Methods, (Accepted For Publication).
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Intercession of Non-Response through
Imputation in Longitudinal Surveys for
Population Mean

1. Introduction

However we assume to be ascertain that we can fetch complete response from the
respondents but still we come across the situations where a less or huge portion of sample
tends to be non-responding and hence sample provides incomplete information for
statistical treatment. We may choose to go with incomplete information but that would
entertain the false facts especially when the parameters to be estimated are affected with
slight change in observation. The problem of sampling on two successive occasions was
first considered by Jessen (1942) and latter this idea was extended by Patterson (1950),
Narain (1953), Eckler (1955), Gordon (1983), Arnab & Okafor (1992), Feng & Zou
(1997), Biradar & Singh(2001), Singh & Priyanka (2008a), Singh et al.(2013a) ,
Bandhopadhyay & Singh (2014) and many others.

Longitudinal surveys focus on studying and analyzing the trends and dynamics of
those real life scenarios which intend to be monitored multiple times since one time
canvassing of characteristics may not supply the very essential attributes of the character
under study. In recent times, usage of longitudinal surveys has heighten enough for
longitudinal analysis and in many cases; longitudinal surveys are carefully designed to
permit the derivation of sophisticated analysis of the long dynamics of social and
economic processes. The scenario of incompleteness becomes worst when one is
interested in collecting data for more than one occasion because, even though you have a
complete sample frame but may fail to obtain response in one or other ways (MCAR,
MAR, OAR, PD and DNR).For example, In a Survey of different mines one may be
interested in the total or mean yield from the mine. Now it may be possible that total or
mean yield cannot be recorded since it had been mined completely, it had been shut down
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due to governmental issues or a natural calamity ruined the entire mine. So the unavailable
sample units (mines) or the missing data for some mines could be imputed with more
suitable entities (compensating the unavailability of response), so to get rid over the

incompleteness of the data and to negotiate with the negative impact of non-response.

Immense efforts have been put together by Rubin (1976), Sande (1979), Kalton et
al. (1981), Kalton & Kasprzyk (1982) and Singh & Singh (1991) by considering complete
data set and discarding all those units for which information was not available for at least
one time. One may site Lee et al. (1994, 1995), Singh & Horn (2002), Ahmed et al. (2006),
Singh & Priyanka (2007b), Singh (2009) and Singh et al. (2013b) for various new
estimators for estimation of parameters by method of imputation using additional auxiliary

information.

Inspired by above motivating efforts we have implicitly assumed Missing
Completely at Random and aspired to develop more worthy estimator for population mean
while sampling over successive occasion using an additional auxiliary information, stable
in nature over the occasions, by imputing missing data in the presence of non-response.
For this an exponential ratio type estimator has been clubbed with a chain type ratio to
exponential ratio type estimator over successive occasion to estimate population mean.
The properties of the proposed estimator have been elaborated theoretically and
empirically considering that (i) non-response may arise on both occasions, (ii) it may
occur only at first occasion or (iii) it may occur only at second occasion while comparing
the proposed estimator with estimator having complete response for all sample units at
each occasion. A Simulation study has also been put through to substantiate the empirical
results considering all mentioned three cases for different possibilities of non-response in

the sample selected on different occasions.

2. Survey Design and Analysis
2.1. Notations

Let U= (U, U,,..,Uy) be the N- element finite population, which has been

sampled over two occasions. The characters under study is denoted by x(y) on the first
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(second) occasion, respectively. It is assumed that information on an almost stable
auxiliary variable z, with the known population mean is available on both the occasions.

We assume that there is non-response at both the occasions. A simple random sample
without replacement s of n units has been drawn on the first occasion. Let the number of
responding unit out of n sampled units, which are drawn at the first occasion, be denoted
by r,, the set of responding units in s, by R,and that of non-responding by R{. A random
sub-sample s of m=nXunit is retained (matched) for its use on the current (second)
occasion from the units which responded (r,) at the first occasion and it is assumed these
matched units are completely responding at the current (second) occasion as well. A fresh
simple random sample (without replacement),s, of u=n-m = npunits, is drawn on the

second occasion from the non-sampled units of the population so that the sample size on

the second occasion remains the same i.e. n. Let the number of responding units out of u

sampled units which are drawn afresh at current occasion, be denoted by r,, the set of
responding unit in s,by R,, and that of non-responding units by R5. Aandp
(0<p, A<1,1+p=l)are the fractions of matched and fresh sample, respectively, at the
current(second) occasion. For every uniti e R;(j =1, 2), the values x (y;) are observed,

but for the unitsi e R (j =1, 2)the values x, (y, ) are missing and instead imputed values

are derived. The following notations have been used hereafter:

X, Y, Z : Population means of the variables x, y and z respectively.

Yor 20 ¥e,0 Ze)s Xy Yo Zis Xo 0 Ve, Z5 X0 Z, - Sample mean of respective variate based

1

on the sample sizes shown in suffice.

Pyes Pres Py, - Correlation coefficient between the variables shown in suffices.

S;, S, S: : Population mean square of variables x, y and z respectively.

I r . . . .
f,= (—1) f,= (—zj : The fraction of respondents at first and second occasions respectively.
n u
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t,=(1-f,), t,=(1- f,): The fraction of non- respondents at first and second occasions

respectively.

2.2. Design

To estimate the population mean Y on the current (second) occasion, an estimator
T, has been proposed utilizing the concept of exponential ratio type estimators based on
sample of the size u= nu drawn afresh on the current (second) occasion. Considering that
non-response occurs at current occasion, the missing values occurring in the sample of

size u are replaced by imputed values. Hence, the following imputation method has been

proposed to cope up with the problem of non-response in sample s,

Y, if ieR,
o= 4 uy, exp 2-7, T,y if ieR° @)
u-r,| " Z+7, ) *" :
where y, = 1 >y and Z, = 1 z
r2 ieR, r2 ieR,

and hence the estimator for Y at current occasion is given by

1 1 Z- 7r
T==— W= = -i+ o :_r EXP| = : 2
. uéyl u{ézy ZR)y) y., p(ZﬁJ )
The second estimator T is based on sample size m=nk common to the both occasions

utilizing information retained from first occasion. Since non- response is assumed to be
occurring on first occasion as well so the missing values occurring in the sample of size n

are replaced by imputed values. The following imputation technique has been suggested

X. if ieR,

;=< 1 | _ Z-7, _ L 3)
nX, exp| =——= |- X, if ieR
n-r ' Z+7Z ' '
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where X, = 1 D> x and Z, = 1 >z,

r‘1 ieR, I"1 ieR;

Considering above proposed imputation method the estimator based on sample s is

altered to

—x 1 _ 1 . z_zrl
X, = H;snx.i_ (Z X+ z X-i]_xrl exp[z+_ ] (4)

Therefore, Estimator based on sample size m common to both occasions which utilizes

the missing values by above method of imputation is given by

Tmzv;(:::) (5)

2 Z ) . Z-7, Z-7,
where ¥ =V _ exp| = , X=X, eXp and X, =X, exp = .

+7Z,
Considering the convex combination of the two estimatorsT,and T, , we have the final
estimator of population mean Y on the current occasion as
T=aT,+ (1-0)T, (6)
wherea (0 <a<1)is a constant to be determined so as to minimize the mean squared
error of the proposed estimator T.
2.3. Analysis

The properties of the proposed estimators T are derived under the following large sample

approximations

V,=Y(1+e), Vo=Y(1+e), X, =X(1+e,), X, =X(1+e,),Z =Z(1+e,), Z,=Z(1 +e&,),

Z=Z(1+e),Y,=Y(1+e;),X,=X(1+e,) and Z,=Z(1 + e, )such that e <1V i=0,1,2,3,
6,7,8and 9.
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2.3.1. Bias and Mean Square Error of the Estimators T

The estimators T, and T are exponential ratio and chain type ratio to exponential ratio
type in nature respectively. Hence they are biased for population mean Y . Therefore, the

final estimator T defined in equation (6) is also biased estimator of Y . The bias B(.) and

mean square errorM(.)of the proposed estimator Tare obtained (ignoring finite

population corrections) up to first order of approximations and thus we have following

theorems:

Theorem 2.3.1.Bias of the estimator T to the first order of approximations is obtained as

B(T) =aB(T) + (1-) B(T) ()
where B(T,) = i\? (§ Cﬁ)gz - lﬂj (8)
r, 8 Z 2YZ
SRR ECEO T T
1

where C_ = E[(xi- X) (i -Y) (z -Z)t}; (r,st)=0.
Proof: The bias of the estimator T is given by

m

B(T) =E[T-Y]=aB(T,) + (1-a)B(T,)
where B(T,) =E[T,-VY]and B(T,) =E[T, - Y |

Using large sample approximations and retaining terms up-to the first order of

approximations, the expression for B(T,) and B(T,,)are obtained as in equation (8) and

(9) and hence the expression for bias of the estimator T is obtained as in equation (7).

Theorem 2.3.2.Mean square error of the estimator T to the first order of approximations

is obtained as

206



M(T)=a? M(T, )+(1- )" M(T,, )+ 2 a(1- @) Cov(T,,T,,) (10)

u y

M(T,) = %ASZ (11)
M(T,) =(%B+ %c) st (12)
where A= (5/4)-p,,,B=2-2p, and C=2p,,-p,,- (3/4).

Proof: The mean square error of the proposed estimator T is given by
M(T)=E[T-Y]" =E[o?(T,-¥) + (1-of (T,- V)|

=a? M(T,) + (1- )" M(T, )+ 2 a(1- ) Cov(T,, T,,)

u> -m

where M (T,) = E[T, - Y]"andM (T,) =E [T, - Y]

Since x and y denote the same study character over two occasions and z being auxiliary
variate positively correlated to x and y, therefore, looking at the stability nature (see Reddy
(1978)) of the coefficient of variation and following Cochran (1977) and Feng & Zou

(1997), the coefficient of variation of X, y and z are considered to be approximately same.

The estimators T, and T, are based on two independent samples of sizes u and m
respectively, hence Cov(T,, T,,) = 0. Considering population size is sufficiently large (i.e.

N — oo), therefore finite population corrections are ignored and using large sample
approximations and retaining terms upto the first order of approximations, the expression

for M(T,) and M(T,, )are obtained as given in equations (11) and (12) and hence the

expressions for mean squarde errors of estimators T are obtained as in equation (10).
2.3.2. Minimum Mean Square Error of the Proposed Estimator T

Since the mean squared error of the estimator T given in equation (10) is the
function of unknown constant o, therefore, it has been minimized with respect to a and
subsequently the optimum value of a is obtained as
O = M(T,)/(M(T,) +M(T,,)) (13)
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Now substituting the values of o, inequation (10), we obtain the optimum mean squared

opt.

error of the estimator T as
M(T),, = (M(T,) - M(T,))/(M(T,) +M(T,)) (14)

Further, substituting the value of the mean squared error of the estimators defined in

equations (2) and (5) in equation (13) and (14) respectively, the simplified values of a,

and M(T)om_ are obtained as
O = 1if, [0 C- (£B+C)]/[W’f, C-p(££,B+£,C-fA) - A] (15)

M(T), =[0G, -G]S /n[p* C, -nC, - G ] (16)

opt.
where C,=AC, C,=AC+fAB, C,=1,C, C,=ff,B+f,C-fA C,=fA A= %- Py

3 . .
B=2-2p,,C=2p,-p,- 2 and pis the fraction of the sample drawn afresh at the
current(second) occasion.

Remark 2.3.1: M(T)omlderived in equation (16) is a function of p. To estimate the

population mean on each occasion the better choice of p are 1(case of no matching);
however, to estimate the change in mean from one occasion to other, u should be O(case
of complete matching). But intuition suggests that the optimum choices of p are desired

to devise the amicable strategy for both the problems simultaneously.
2.4. Optimum Replacement Strategies for the Estimator T

The key design parameter affecting the estimates of change is the overlap between
successive samples. Maintaining high overlap between repeats of a survey is operationally
convenient, since many sampled units have been located and have some experience in the

survey. Hence to decide about the optimum value of p (fractions of samples to be drawn

afresh on current occasion) so that Y may be estimated with maximum precision and
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minimum cost, we minimize the mean square error |\/|(T)0pt in equation (16) with respect

top.

The optimum value of p so obtained is one of the two roots given by

U:(DziVDg'Dl DS)/Dl (17)

where D,=C, C,, D,=C, C,, D,=C, C, + C, C,.

The real value of p exist, iff D2-D, D,>0. For any situation, which satisfies these
conditions, two real values of | may be possible , hence to choose a value of i1, it should
be taken care of that 0<pu <1, all other values of p are inadmissible. If both the real

values of p are admissible, the lowest one will be the best choice as it reduces the total

cost of the survey. Substituting the admissible value of p say u, from equation (17) in

equation (16), we get the optimum value of the mean square error of the estimator T with

respect to a as well asuwhich is given as

M(T) [lvlo C - CZ]Si/n[ug Cy-1 G, - Cs:l (18)

3. Special Cases

3.1. Case I: When there is Non-Response only at the First Occasion (Previous

Occasion)

When there is a presence of non-response, the proposed estimator T for population mean

Y changes to

T =0T+ (1-9)T, (19)
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Z'z_u ] and T, is defined in equation (5) and @(0<¢<1)is a real
+ Z,

where T'=y, exp[

NI

constant to be determined so as to minimize the mean square error of the estimator T, .

In this case, the optimum value of fraction of sample drawn afresh is obtained as

= (Hz + H; - H, H3)/H1:H1(Sa}’)

and the minimum mean square error of the estimator T, at the admissible value of [iis

derived as

M(Tl) = [l’ll G, 'Gz] Si/n[uf C-u G, _GA] (20)

op!

where
H,=CG,, H,=CG,, H,=G,G,+G,G,, G,=AC, G,=AC+fAB, G,=fB+C-fA

G,=fAand f=r/n.
3.2. Case I1: When there is Non-Response only at the Second (Current) Occasion

The estimator for population mean Y at the current occasion in the presence of non-

response at current occasion is given by

T, =y T+ (I-y)T, (22)

NI
NI
NI

NI
N
NI
NI

Xm +m +m

where T::X:(in], T3, 00| 52|, %imx, x| 22 and

n —

X =X, exp[zz;z_” j T, is defined in equation (2) and (0 <y <1)is a real constant to
Zn

be determined so as to minimize the mean square error of the estimator T, .

In this case, the optimum value of fraction of sample drawn afresh is obtained as

p= (Hs + 4 H; -H, Hs)/HA,:Hz(SaY)
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and the minimum mean square error of the estimator T, at the admissible value of [iis

derived as
M(Tz ):m‘ = [Hz G - GB]Si/nl}tg G; -1, Gg 'A] (22)

where
H,=G.G,, H,=G,G,, H,=AG,+ G,G;, G,=AC, G,=AB+AC, G,=f,C,

G,=f,B+f,C-A and f,=r1,/u.
4. Efficiency Comparison

The percent relative loss in the efficiency of the proposed estimator T has been recorded
to infer about the effect of incompleteness in the data over the occasions with respect to

the estimator T.; under the same circumstances but for complete response over the

occasions.

Considering following estimator of population mean for complete response:
Tr=& Tl?+ (1' &)Trfw (23)

where £(0<&<1)is areal constant to be determined so as to minimize the mean square

error of the estimator T, .

The optimum mean squared error for the estimator T., with respect to & as well as pis

obtained as

M(Ter ), = [WBy- B, |S; /n[u™ C- W'By-A] (24)
where "= (B5 + /BB, B, )/134, B,=B,.C, B.=B,C, B,.=AB,+B,B,, B,=AC,
B,=AB+AC, B,=B+C-A A= (5/4)-p,,B=2-2p, and C=2p,-p,- (3/4).

The percent relative loss in precision of the estimators T, T, and T, with respect to the
estimator T.; under their respective optimality conditions are given by
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* *

-M (TCR )opt.

L= ot x100
M(T)

opt.

T). - M(Te),

- pt. .
M)~ M(Ter ) 10 (25)
1= *
M(Tl)opt.
L,= M(TZ)opl.- M*(TCR )opt. 100
M(T,)

opt.
5. Numerical Illustrations and Simulation

Empirical validation has been carried out by Monte Carlo Simulation. Real life

situation of completely known finite population has been considered.
Population Source: [Free access to the data by Statistical Abstracts of the United States]

The population comprise of N = 51 states of United States. Let y, be the total
energy consumption during 2008 in the i" state of U. S., x; be the total energy
consumption during 2003 in the i" state of U. S. and z denote the total energy

consumption during 2001 in the i" state of U. S.

For the considered population, the value of pdefined in equation (17) and the
percent relative loss in precision L,, L,and L,defined in equation (25) of the estimator
T, T, and T, respectively with respect to estimator T.; have been computed and are

presented in Table 1. To judge about the performance of the estimator in the presence of
different percentages of non-response, a more general illustration has been worked out by
considering choices of correlation coefficients of study and auxiliary variables on different

occasions. These results have been shown in Table 2 to Table 4.

To validate the above empirical results, Monte Carlo simulation has also been

performed for the considered population. For better analysis, the above simulation

experiments were repeated for different choices of t, and t,.
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5.1. Simulation Algorithm

(i) Choose 5000 samples of size n=25 using simple random sampling without replacement

on first occasion for both the study and auxiliary variable.

(if) For f,=0.88, choose r,=22 responding units out of n=25 samples units.
(iii) Calculate sample meanx, |, and z, , for k=1, 2, - - -, 5000.

(iv) Retain m=15 units out of each r,=22 sample units of the study and auxiliary variables

at the first occasion.

(v) Calculate sample meanX,, ,andZ,, for k=1, 2, - - -, 5000.

m|k

(vi) Select u=10 units using simple random sampling without replacement from N-n=26

units of the population for study and auxiliary variables at second (current) occasion.

(vii) For f,=0.90, choose r,=9 responding units out of u=10 samples units.
(viii) Calculate sample meany, |, ¥Yp and Z, |, fork=1, 2, - - -, 5000.

(ix) Iterate the parameter o from 0.1 to 0.9 with a step of 0.2.

(x) Iterate ¢ from 0.1 to 0.9 with a step of 0.1 within (ix).

(xi) Calculate the percent relative loss in efficiencies of the proposed estimator

T, T, and T, with respect to estimator to Ty as

5000

5000
_ ;[le-TCRIkJZ kZ:;'[le-TCleJZ

L(T) - 5000 ) x 100 , L(Tl): 5000 ) x 100
2T 2T ]
k=1 k=1
5000 )
I:T2|k_ TCR|k:|
and  L(T,)=*c x 100, k=1, 2, ..., 5000.
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Table 1: Empirical Comparison of the proposed estimators T, T, and T, with respect to

the estimator T1_,.

Percent Relative Loss in
Efficiency for estimator T

Percent Relative Loss in
Efficiency for estimator T,

Percent Relative Loss in
Efficiency for estimator T2

Lo

LO

My

L,

My

L2

0.3554

0.5562

3.3442

0.4521

-29.4932

0.4779

9.5745
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Table 2: Percent relative loss (L,) when estimator T is compared to the estimator
T.r in the presence of non-response on both the occasions.

Py, 0.1 0.3 0.5 0.7
| G [P | Mo | L, Ho | W L, Ko n L, Ko p L,
06 | 050|054 | 1143 0.40 | 0.52 -4.11 0.89 | 0.49 -17.49 0.54 | 045 | -35.58
0.05 0.7 | 0.56 | 0.58 5.51 0.52 | 0.55 -9.12 0.44 | 0.52 -24.43 0.79 | 0.48 | -38.66
) 0.8 | 0.62 | 0.62 -1.66 0.59 | 0.60 | -15.51 | 0.56 | 0.57 -29.79 0.48 | 0.53 | -44.78
09 [ 070 0.70 | -11.14 0.68 | 0.68 | -24.02 | 0.65| 0.65 -37.18 0.61 | 0.62 | -50.78
06 | 042|054 | 1599 0.24 | 0.52 -1.03 * 0.49 * 0.61 | 045 | -30.27
0.05 | 0.10 0.7 | 052 | 0.58 | 10.40 0.46 | 0.55 -4.82 0.32 | 0.52 -21.23 * 0.48 *
0.8 | 0.60 | 0.62 3.23 056 | 0.60 | -11.03 | 0.51 | 0.57 -25.80 0.40 | 0.53 | -41.59
09 | 068070 -12.99 0.65 | 0.68 | -26.35 | 0.61 | 0.65 -40.09 0.55 | 0.62 | -54.46
06 [ 034|054 | 19.89 0.07 | 0.52 1.53 * 0.49 * 0.69 | 045 | -24.10
0.15 0.7 | 0.48 | 0.58 15.02 0.40 | 0.55 -0.95 0.19 | 0.52 -9.34 0.76 | 0.48 | -36.60
' 0.8 | 0.57 | 0.62 8.04 0.53 | 0.60 -6.70 0.47 | 0.57 -22.06 0.31 | 0.53 | -38.98
09 | 0.67 | 0.70 -1.64 0.6 0.68 | -15.25 | 0.61 | 0.65 -29.19 0.56 | 0.62 | -43.65
06 | 055|054 | 13.68 0.46 | 0.52 -2.78 091 | 049 -17.50 0.59 | 045 | -36.80
0.05 0.7 | 0.61 | 0.58 8.79 0.57 | 0.55 -6.75 0.49 | 0.52 -2306 0.81 | 0.48 | -38.72
0.8 | 0.66 | 0.62 2.75 064 | 0.60 | -11.94 | 0.60 | 0.57 -27.17 0.53 | 0.53 | -43.28
09 | 0.73|0.70 -5.37 0.71 | 0.68 | -19.01 | 0.69 | 0.65 -33.02 0.65 | 0.62 | -47.60
06 | 048|054 | 18.86 0.32 | 0.52 1.00 * 0.49 * 0.65 | 045 | -31.11
0.15 | 0.10 0.7 | 0.57 | 0.58 | 14.20 0.52 | 0.55 -1.92 0.39 | 0.52 -19.29 * 0.48 *
0.8 | 0.64 | 0.62 8.10 0.61 | 0.60 -7.03 0.56 | 0.57 -22.76 0.46 | 0.53 | -39.64
09 | 0.72 | 0.70 -0.25 0.70 | 0.68 | -14.28 | 0.67 | 0.65 -28.68 0.63 | 0.62 | -43.68
06 | 041|054 | 2348 0.17 | 0.52 3.44 * 0.49 * 0.72 | 045 | -24.63
0.15 0.7 | 0.53 | 0.58 19.41 0.46 | 0.55 2.54 0.27 | 0.52 -16.42 * 0.48 *
0.8 | 0.62 | 0.62 | 13.42 0.58 | 0.60 -2.21 0.52 | 0.57 -18.54 0.38 | 0.53 | -36.51
09 | 071 0.70 491 0.69 | 0.68 -9.52 0.65 | 0.65 -24.36 0.61 | 0.62 | -39.83
0.6 | 0.57 | 0.54 14.81 0.49 | 0.52 -2.11 091 | 0.49 -17.51 0.61 | 045 | -37.40
0.05 0.7 | 063|058 | 10.44 0.60 | 0.55 -5.55 052 | 0.52 -22.37 0.83 | 0.48 | -38.75
' 0.8 | 0.68 | 0.62 5.00 0.66 | 0.60 | -10.13 | 0.62 | 0.57 -25.85 0.56 | 0.53 | -42.53
09 | 0.75 | 0.70 -2.41 0.73 | 0.68 | -16.46 | 0.71 | 0.65 -30.91 0.67 | 0.62 | -46.00
06 | 051054 | 2031 0.36 | 0.52 2.02 * 0.49 * 0.67 | 0.45 | -31.53
0.20 | 0.10 0.7 | 059 | 0.58 | 16.13 0.55 | 0.55 -0.45 0.42 | 0.52 -18.32 * 0.48 *
0.8 | 0.66 | 0.62 | 10.59 0.63 | 0.60 -4.99 0.59 | 0.57 -21.22 0.49 | 0.53 | -38.66
09 | 0.74 | 0.70 2.89 0.73 | 0.68 | -11.55 | 0.69 | 0.65 -26.40 0.65 | 0.62 | -41.92
06 | 045|054 | 2531 0.22 | 0.52 491 * 0.49 20.08 0.74 | 045 | -24.89
0.15 0.7 | 0.56 | 0.58 | 21.65 0.49 | 0.55 431 0.31 | 0.52 -15.08 * 0.48 *
' 0.8 | 0.64 | 0.62 | 16.17 0.60 | 0.60 0.06 0.55 | 0.57 -16.76 0.42 | 053 | -35.26
09 | 0.73|0.70 8.28 0.70 | 0.68 -6.59 0.67 | 0.65 -21.89 0.63 | 0.62 | -37.89

Note: (*) denotes that percent relative loss does not exist since value of optimum L, does not exist.
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Table 3: Percent relative loss (L,) when estimator T is compared to the estimator

T.r in the presence of non-response at first occasion.

Py, 0.1 0.3 0.5 0.7

| Py | W | L, TP VA o[ W L, Hy u L,
0.6 0.56 | 0.54 6.31 0.54 | 0.52 -8.51 051 | 049 | -23.91 0.48 0.45 -40.15
0.05 0.7 0.60 | 0.58 0.41 0.57 | 0.55 13.79 055 | 0.52 | -28.50 0.51 0.48 -43.95
' 0.8 0.64 | 0.62 -6.61 0.62 | 0.60 | -20.10 0.59 | 0.57 | -33.99 0.56 0.53 -48.49
0.9 0.72 | 0.70 | -15.85 | 0.70 | 0.68 | -28.40 0.67 | 0.65 | -41.23 0.64 0.62 -54.48
0.6 0.59 | 0.54 7.17 0.56 | 0.52 -8.12 054 | 049 | -24.05 0.50 0.45 -40.98
0.10 0.7 0.62 | 0.58 1.18 0.60 | 0.55 | -12.84 0.57 | 0.52 | -28.05 0.54 0.48 -44.12
' 0.8 0.66 | 0.62 -4.62 0.64 | 0.60 | -18.52 0.62 | 0.57 | -32.87 0.58 0.53 -47.93
0.9 0.73 | 0.70 | -13.15 | 0.71 | 0.68 | -26.07 0.69 | 0.65 | -39.30 0.66 0.62 -53.03
0.6 0.61 | 0.54 8.03 0.59 | 0.52 -1.72 0.56 | 0.49 | -24.20 0.53 0.45 -41.80
0.15 0.7 0.64 | 0.58 3.22 0.62 | 0.55 | -11.87 0.59 | 052 | -27.60 0.56 0.48 -44.29
' 0.8 0.68 | 0.62 -2.60 0.66 | 0.60 | -16.92 0.64 | 0.57 | -31.75 0.60 0.53 -47.37
0.9 0.74 | 0.70 | -10.42 | 0.73 | 0.68 | -23.71 0.71 | 0.65 | -37.36 0.68 0.62 -51.58

Table 4: Percent relative loss (L,) when estimator T is compared to the estimator

T.s In the presence of non-response at second occasion.

Py, 0.1 0.3 0.5 0.7

t, | Pyx 1 u L, Uy u L, Ky u L, Uy u L,
0.6 0.47 | 0.54 10.32 0.37 | 0.52 -4.77 0.89 | 0.49 -17.48 | 0.52 | 0.45 -34.97
0.05 0.7 0.54 | 0.58 3.90 0.50 | 0.55 -10.30 | 0.41 | 0.52 -25.11 | 0.78 | 0.48 -38.63
' 0.8 0.60 | 0.62 -3.83 0.57 | 0.60 -17.27 | 0.53 | 0.57 -31.09 | 045 | 0.53 -45.52
0.9 069 |0.70| -13.97 | 0.67 | 0.68 -26.47 | 0.64 | 0.65 -39.23 | 0.59 | 0.62 -52.35
0.6 0.39 | 0.54 14.57 0.20 | 0.52 -2.04 * 0.49 * 0.59 | 045 -29.84
0.10 0.7 0.49 | 0.58 8.52 0.44 | 0.55 -6.25 0.28 | 0.52 -22.20 * 0.48 -2.15
' 0.8 0.58 | 0.62 0.84 0.54 | 0.60 -13.00 | 0.49 | 0.57 -27.31 | 0.37 | 0.53 -42.55
0.9 0.67 | 0.70 -9.41 0.65 | 0.68 -22.25 | 0.62 | 0.65 -35.37 | 0.57 | 0.62 -48.89
0.6 0.31 | 0.54 18.12 0.02 | 0.52 -0.90 * 0.49 * 0.67 | 0.45 -23.84

0.15 0.7 0.45 | 0.58 12.86 | 0.37 | 0.55 -2.67 0.14 | 0.52 -20.36 * 0.48 *
' 0.8 0.55 | 0.62 5.42 0.51 | 0.60 -8.90 0.44 | 0.57 -23.79 | 0.27 | 0.53 -40.21
0.9 0.66 | 0.70 -4.83 0.63 | 0.68 -18.05 | 0.59 | 0.65 -31.56 | 0.54 | 0.62 -45.54

Note: () denotes that percent relative loss does not exist since value of optimum |1, does not exist.
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Table 5: Simulation result when the proposed estimator T is compared with the
estimator T.; when non-response occurs on both the occasion

5 SET 0.1 0.2 0.3 0.4 0.5 0.6 0.7

I -23.85 | 6.10 | 33.28 | 43.81 | 57.06 | 62.36 | 66.77
0.1 I -24.09 | 521 | 22.58 | 47.06 | 53.96 | 60.85 | 66.88
Il -13.18 | 16.70 | 33.33 | 43.50 | 59.94 | 66.85 | 68.68
I -46.87 | -19.46 | 10.19 | 29.28 | 43.39 | 54.65 | 60.04
0.3 I -54.92 | -25.77 | 2.14 | 30.79 | 41.07 | 50.64 | 60.43
Il -42.99 | -9.49 | 1251 | 33.32 | 51.20 | 58.26 | 59.94
I -80.12 | -47.12 | -9.73 | 12.33 | 31.92 | 45.49 | 51.44
0.5 I -90.55 | -56.39 | -16.28 | 14.25 | 28.86 | 41.93 | 51.74
Il -85.44 | -39.60 | -9.91 | 16.85 | 37.16 | 46.19 | 50.30
I -111.24 | -70.35 | -27.92 | -2.13 | 21.43 | 36.56 | 43.82
0.7 Il | -118.92 | -75.86 | -31.04 | 2.00 | 19.47 | 34.44 | 44.77
I | -123.06 | -68.43 | -33.23 | 0.2.37 | 24.28 | 34.80 | 40.76
I -125.68 | -82.26 | -37.31 | -8.64 | 16.15 | 32.29 | 40.13
0.9 Il | -127.09 | -81.47 | -35.76 | -3.02 | 17.91 | 32.01 | 42.22
Il ] -148.24 | -88.23 | -49.20 | -12.81 | 14.80 | 27.73 | 34.46

I: n=25, 1 = 0.40, t,=0.12, t,=0.10 , II: N=25, ;1 = 0.40, t,=0.16, t,=0.20

[11: =25, p=0.40, t,=0.28, t,=0.30

Table 6: Simulation result when the proposed estimator T, is compared with the
estimator T.; when non-response occurs only on first occasion

5 SET 0.1 0.2 0.3 0.4 0.5 0.6 0.7

I -20.98 -9.49 | 3043 | 39.38 | 53.20 | 65.04 | 67.24
0.1 I -20.86 | 18.17 | 34.12 | 49.80 | 64.98 | 67.15 | 71.37
Il -88.05 | -50.30 | -15.35 | 8.46 32.66 | 39.43 | 51.38
I -56.20 | -28.72 | 71.70 24.69 | 45.06 | 55.00 | 60.02
0.3 I -42.21 -4.87 | 1789 | 36.77 | 52.01 | 58.26 | 64.38
I | -126.69 | -82.31 | -44.79 | -133.22 | 15.23 | 31.43 | 38.67
I -88.42 | -53.78 | -15.51 | 9.19 31.80 | 44.73 | 50.29
05 I -75.35 | -35.25 | -4.74 | 19.44 | 40.41 | 49.53 | 55.66
I | -178.35 | -117.28 | -71.18 | -34.22 | -2.78 | 17.97 | 25.30
I -119.74 | -80.62 | -36.35 | -3.79 | 19.56 | 35.45 | 41.96
0.7 Il |-109.31 | -60.23 | -24.21 | 2.17 28.08 | 40.13 | 47.12
I | -211.19 | -144.73 | -92.32 | -52.77 | -14.78 | 7.84 | 16.30
I -138.83 | -92.46 | -47.51 | -1253 | 12.47 | 29.92 | 37.16
0.9 Il |-131.52 | -76.53 | -37.68 | -7.70 | 20.50 | 34.10 | 41.37
I | -218.85 | -149.08 | -95.39 | -53.67 | -15.79 | 5.98 | 14.28

I: n=25, 1 =0.40, t,=0.12 , I1: n=25, 1= 0.40, t,=0.16

[11: =25, p=0.40, t,=0.28
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Table 7: Simulation result when the proposed estimator T, is compared with the
estimator T.; when non-response occurs only on first occasion

5 SET 0.1 0.2 0.3 0.4 0.5 0.6 0.7

I 0.20 21.90 | 39.82 | 53.53 | 65.07 | 71.45 | 74.45
0.1 I 0.49 11.24 | 39.58 | 54.34 | 64.62 | 70.92 | 72.31
i 0.97 22.26 | 40.05 | 53.15 | 65.12 | 70.63 | 74.91
I -24.01 | 256 | 25.24 | 41.91 | 55.55 | 63.79 | 67.82
0.3 I -24.03 | 240 | 2451 | 42.73 | 55.57 | 63.87 | 66.25
11 -24.0 245 | 2541 | 42.42 | 55.88 | 63.72 | 67.49
I -51.48 | -19.09 | 7.28 | 29.29 | 45.59 | 55.71 | 60.37
0.5 I -53.87 | -22.26 | 6.66 | 29.17 | 44.95 | 55.14 | 58.55
i -38.49 | -20.32 | 7.25 | 28.09 | 44.54 | 54.64 | 59.88
I -76.61 | -40.99 | -8.27 | 17.96 | 36.49 | 48.50 | 53.69
0.7 I -84.57 | -48.72 | -12.11 | 15.02 | 33.79 | 46.31 | 50.53
Il -69.30 | -47.13 | -13.11 | 12.94 | 32.66 | 44.53 | 51.04
I -91.20 | -51.71 | -16.71 | 11.37 | 31.41 | 44.66 | 50.21
0.9 Il |-110.70 | -66.95 | -27.96 | 4.02 | 25.74 | 39.31 | 44.18
I | 102.42 | -73.68 | -36.88 | -1.03 | 21.95 | 35.42 | 42.77

I: n=25, n=0.40, t,=0.20, Il: n=25, u=0.40, t,=0.30

I11: n=25, u=0.40, t,=0.40

9. Rendition of Results

The performance of an estimator in successive sampling in the presence of non-
response is generally judged on the basis of percent relative loss in efficiency (lesser is
loss better is the estimator) and in terms of optimum value of fraction of fresh sample to
be drawn on current (second) occasion which in turns is directly associated to the cost of

survey. Following interpretation can be drawn from Tables 1- 7,

(1)From Table-1, it is observed that

(a) Optimum values p,, i, and p, for the estimators T, T, and T, respectively exist for
the considered Population and u'<p, <p,<p,, which justifies the applicability of the

proposed estimators T, T, and T, at optimum conditions. This also signifies that portion

consisting more non response requires a more number of units in the sample to be drawn

afresh on current occasion.
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(b) Lesser percent relative loss in efficiency is observed in terms of precision indicating
the proposed estimator T (at optimal conditions) to be considerable if non response
appears in the survey design. This result justifies the use of additional auxiliary
information which is stable over time embedding with exponential type structure at both

occasions in two occasion successive sampling.
(2) In Table-2, we see that

(a) For a fixed value of t,, as percentage of non-response on current occasion increases
the amount of loss increases which is natural and for a fixed t,as the value of p

increases the loss in efficiency decreases, in fact a little gain is observed when compared

to the estimator T, .

(b) For fixed amount of t, andt, as the value of p , increases, the loss in efficiency

decrease.

(c) As the percentage of non-response at first occasion increases for fixed value of t,, loss

in efficiency increases.
(3) From Table -3 and Table-4 we observe that

(a) For fixed values of t, and t,, increasing values of p, and p,, the percent relative loss

in efficiency decreases.
(b) As we keep on increasing the value of t, and t,, percent relative loss increases.

(4) From the simulation results presented in Table-5, 6 and 7, where the estimators

T, T, and T, are respectively compared to estimator T, , following results can be drawn

(a) The values for L(T), L(T,)and L(T,) increase as the value of &increase for fixed
choice of o. (b) As we increase the value of a, @ and y respectively for fixed choices of
&, the value of L(T), L(T,)and L(T,) decrease and gain is also observed over the
estimator T .
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10. Conclusion

The thorough analysis of proposed estimators utilizing information on an
additional auxiliary variable in the presence of non-response with variety of cases
depending upon the occurrence of non-response, seems to be interesting enough as an
amalgamation of exponential structure with ratio type estimator because even in the midst
of non- response, the proposed method of imputation not just provides lesser percent
relative loss in efficiency of the estimator but it also helps in reducing the cost of survey.
So the proposed estimator T can be considered for its practical use in the presence of non-
response by survey practitioners.
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CHAPTER - 10°

A fresh approach for Intercession of Non-
Response in Multivariate Longitudinal

Designs

* Following is the publication based on the work of this chapter:--

1. Priyanka, K. and Mittal, R. (2016): A fresh approach for Intercession of Non-
Response in Multivariate Longitudinal Designs. Communication in Statistics
(Theory and Methods), (Accepted For publication).
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A fresh approach for Intercession of Non-
Response in Multivariate Longitudinal
Designs

1. Introduction

Probably a most smartly designed sample survey may bout with incompleteness
of data due to completely stochastic nature of non-response and cannot ascertain the
complete response from the respondents due to many uncertainties lying in the conduction
of survey. However we always have a data to conclude with but in an incomplete form of
the true fact of the study. The severity of spoiling inference gets worse when the samples
are drawn on multiple waves. The research related to sampling on successive waves has
started in the international arena since early 1942. Some of the work in the last five
decades are summarized below: Jessen (1942) was pioneer to start the work and latter this
idea was extended by Patterson (1950), Narain (1953), Eckler (1955), Gordon (1983),
Arnab and Okafor (1992), Feng and Zou (1997), Biradar and Singh (2001), Singh and
Priyanka (2008a), Singh et al. (2013a), Bandyopadhyay and Singh(2014), Priyanka and
Mittal(2014), Priyanka and Mittal(2015a, 2015b)and many others. Longitudinal surveys
focus on studying and analyzing the trends and dynamics of those real life scenarios which
intend to be monitored multiple times since one time canvassing of characteristics may

not supply the very essential attributes of the character under study.

The scenario of incompleteness becomes awful when one is interested in collecting
data for more than one wave because, even though we have a complete sample frame but
may fail to obtain response in one or other ways (MCAR, MAR, OAR, PD and DNR).
For example, in a survey of different retail outlets of consumable commaodities, one may
be keen to estimate average daily sales of a specific product in a particular outlet. Now it
may not be possible to record the total or average daily sale of specific product from any
of the retail outlet since the outlet might be shut down, outlet might be closed that day, the

sale of product might be discontinued from that outlet; the product might be out of stock
222



in the outlet or the producing company might have discontinued the production of the
product due to any issue. So rather than discarding the unavailable sample units, suitable
values can be imputed in place of unavailable sample units so as to overcome

incompleteness of the data due to non-response.

Immense efforts have been put together by Rubin (1976), Sande (1979), Kalton et
al.(1981), Kalton and Kasprzyk (1982), Singh and Singh (1991) by considering complete
data set and discarding all those units for which information was not available for at least
one time. One may site Lee et al. (1994, 1995), Singh and Horn (2002), Ahmed et al.
(2006), Singh and Priyanka (2007b), Singh (2009),Singh et al. (2010), Diana and Perri
(2010) and Singh et al. (2013b) for various new estimators for estimation of parameters

in presence of non-response.

So many authors have effort fully commanded the literature by an exceptional use
of multi-auxiliary information while sampling over two or more waves for the estimation
of population mean when complete response of sample units is available but as far as our
knowledge is concerned, it is the very initial effort to use imputation technique in order to
handle non-response using multi-auxiliary information for the estimation of population
mean on successive waves. Motivated by above argument, MCAR have been assumed
implicitly and completely known multi-auxiliary information have been utilized to
estimate the population mean in the presence of non-response while sampling over two
successive waves. For this an exponential ratio type estimator has been clubbed with chain
type ratio to exponential ratio type estimator over successive waves to estimate population
mean. The problem of non-response (incompleteness in data) has been handled by
imputation technique. Fresh imputation technique has been devised. The possible cases in
which non-response may creep in two successive waves have been elaborated in details.
The properties have been discussed theoretically as well as empirically. The proposed
estimators under devised imputation techniques have been compared with a multivariate
weighted estimator due to Priyanka et al. (2015). A detailed simulation algorithm has been

designed and applied to substantiate the empirical and theoretical results.
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2. Survey Design and Analysis
2.1 Notations

Let U= (U, U,, .., U,) be the N- element finite population, which has been

sampled over two successive waves. The characters under study is denoted by x(y) on the
first (second) wave, respectively. It is assumed that information on almost stable auxiliary

variablesz,, z,, ..., z,, with the known population mean, are available on both successive

waves. It has been assumed that there is non-response on both successive waves
(occasions). A simple random sample without replacement s of n units has been drawn
on the first wave. Let the number of responding unit out of n sampled units, which are

drawn at the first wave, be denoted by r,, the set of responding units in s, by R,and that
of non-responding by R;. A random sub-sample s_of m = n unit is retained (matched)
for its use on the current (second) wave from the units which responded (r,) at the first
wave and it is assumed that these matched units are completely responding at the current
(second) wave as well. A fresh simple random sample (without replacement),s, of
U=n-m=npunits, is drawn on the second wave from the non-sampled units of the

population so that the sample size on the second wave remains the same. Let the number

of responding units out of u sampled units which are drawn afresh at current wave, be

denoted by r,, the set of responding unit in s, by R,, and that of non-responding units by
R3. Aandp (A + p=1)are the fractions of matched and fresh sample, respectively, at the
current (second) wave. For every unit je R, (k =1, 2), the values X; (yj) are observed, but
for the unitsj eR}(k=1,2) the valuesx;(y,) are missing and instead values are

imputed. The following notations have been used hereafter:

X, Y, Z, : Population means of the variables x, y and z,, z,, ..., z, respectively.

Yo Zo: Ve, Zi () X Yo Z(M), X, ¥,,, Z (1), X, Z,(N) = Sample mean of respective

variates based on the sample sizes shown in suffice.
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Pyx> Puc> Py, » P, - COrTelation coefficient between the variables shown in suffices for
1=J=12,..,p.

s, Sf,, Sfi : Population mean square of variables x, y and z,, z,, ..., z, respectively.
fl:(ij, fzz(r—zj : The fraction of respondents at first and second waves respectively.
n

u

t,=(1-f,), t,=(1- f,): The fraction of non- respondents at first and second waves

respectively.

2.2 Survey Design under Proposed Imputation Technique

To estimate the population mean Y on the current (second) wave, utilizing p-
additional auxiliary information which are stable over time and are readily available on
both successive waves. Considering the case of non-response at current wave, the missing
values in the sample of size u, are replaced by imputed values. A fresh imputation

technique have been proposed to manage non-response as under

y, if jeR,
= Z -7 1
yJ 1 {u yrz exp(zl;l(rz)J_ ) yrz} If JE Rz ( )

u-r,

where y, = EZyj and Z,(r,)= iZzij,izl, 2,..,p.

I iR, I iR,
and hence the estimator T (i, u){izl, 2, .., p} under above proposed imputation

technique becomes
Z
T(iu)=y, exp(z'—'(rrz)}izl, 2, .., P (2)

A multivariate weighted estimator T, based on sample of the size u= np drawn afresh on

the current (second) wave is proposed as

Ty = Wy Teyxp (W) 3
where W is a column vector of p-weights given by W, = [Wu;  Wu,e = -+ Wy

225



[T(l, u)]
T(2,u)
and Teyxp(w) = |

, such that 1'W,, = 1, where 1 is a column vector of order p.
lT(p, u)J
The second estimator T,,, based on sample of size m, is also proposed as weighted

multivariate chain type ratio to exponential ratio estimator and hence is given by
T = Wl;lTexp (m, n)

(4)
where W is a column vector of p-weights as Wy, = [Wm;  Wmps + - Wm,]'
T(1, m,n)
[T(Z, m, n) , )
and Teyp(m, n) = | _ | Such that 1 W,,, = 1, where 1 is a column vector of order
lT(p, m, n)J
p.

Since non- response is assumed to be occurring on first wave as well, so the missing values
occurring in the sample of size n are replaced by imputed values. For finding relevant
imputed values following imputation technique has been proposed

X; if jeR,
X,= Z -z ()
! ! nx, exp_;_'(rl)-rlir if jeR®
n-r Z, +7(r,) : :
where X, = —Zx and Z ( Zz )i=1,2, ..., p.
1JER1 jER1

In the light of above proposed imputation technique the estimator based on sample s
becomes

X.=X exp(mJ i=1 2 P (6)
T Z+z(r)) 0

Now the estimator based on sample size m common to both successive waves is proposed
as

T(i,m, n)= [%]m ) )
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NI NI
NI NI

.(m)] % (i, m) =%, ex'{__-

()

NI
N
—~
3
~

where ¥ (i, m)=y_ exp{

NI

+

NI
—
2

andX (i, n) =X, exp[ JfOI’I 1,23 ..,p.

The optimum weights W, and Wy, in T, and T, are chosen by minimizing their mean

squared errors respectively.

Now a convex linear combination of the two estimators T, and T, has been considered to

define the final estimator of population mean Y on the current wave in the presence of

non-response on both successive waves and is given as
T,(NR)=aT, + (1-a) T, (8)
wherea (0 <a<1)is a constant to be determined so as to minimize the mean squared

error of the proposed estimator T, (NR).

2.3. Analysis

The properties of the proposed estimator T | (NR) are derived under the following large
sample approximations

V,=Y(1+e), V.= Y(1+e), X,=X(1+e,), X, =X(1+e;),Z(r,)=2Z (1 +e,),
Z(m)=Z(1+ey),Z(r)=Z(1+ey),X,=X(L+e,;),Z(n)=Z (1 +ey) such that
le,/<1Vi=12, ..,pandk=0,1,2,34,56,7and8.

Under the above transformations, the estimators T, and T, take the following forms:

T(i,u) = —(8+8e,-4e,- dee, + 3¢} ) for i=1,2, .., p 9)

o | <l

o | <!

T(i,m,n) (8 +8e,- 8e,+ 8e,-de,;- 8ee, + Bee,- dee ;- 8e,e,

(10)
+4e,0,- deeg + 8e) + 3ep,) for i=1,2, ..., p
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2.3.1. Bias and Mean Squared Error of the Estimator T, (NR)

The estimators T, and T, are exponential ratio and chain type ratio to exponential
ratio type in nature respectively. Hence they are biased for population mean Y . Therefore,
the final estimator T, (NR)defined in equation (8) is also biased estimator of Y . The bias
B() and mean square error M(.)of the proposed estimator T (NR)are obtained

(ignoring finite population corrections) up to first order of approximations and thus we
have following theorems:

Theorem 2.3.1: The bias of the proposed estimator T (NR) to the first order of

approximation has been derived as

B(T, (NR)) =aB(T,) + (1-a) B(T,) (12)
B(T,) = —W,B, (12)
B(Tw) = Wi (% Bma + 7~ Bma) (13)
' V/ 3 COOZ 1 COll
where B, = (Bl(u), B,(u), ..., B (u)) , B.(u)=Y [éz_f - EWJ

fori=1,23,..p

_ !
Bml = Y[% - %j, Bmz = (Ble, Bmzz, ey Bmzp)

e, (35558 15 - S el R 01922

(r,s,t)>0for i=1,2,3,..,p.
Theorem 2.3.2: The mean squared error of the estimator T, | (NR) is obtained as
M(T,,(NR)) =a® M(T,) + (1-a)" M (T, )+2a(l -a)Cov (T,, T,)  (14)

M(T,) = W, Q W, (15)
M(Ty) = (BYW/, E Wy, + W/, Q Wi, (16)
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mz

where W, =[w, w, ...w, |, w, =[w, w,_...w, ], E is aunit matrix of order pxp,
(1
=

1 1 1
Qu_(r_z_N)QU* . Q (r—l—ﬁ)Qm*where
[Qu, Qu, . .. Qulp_ [Qm,, Qm, . . . lep_
Quy Quy oo 0 Quy, Qm, Qm, . . . Qmy
Q.= ' R and Q. =|
| Qu,; Qu, .o Qupp_pxp | Qmy; Qmg, . . . Qmg |

_ _ 1
where B =(=—2)By,B, =2Y"(1-p,)C:, Qu,=Y" (cg + ZCfi-pyZiCOCZJ,

- 1 1 1
Quij:Yz (Cs - EpyZ.COCz,_ EpyZ,COCZJ—’_ sz,zjczlczlj’

_ 1
om,=Y? (cg (2p,-1) -p,, C,C, + chl ) and

— 1 1 1 .
Qmij:Y2 (Cg (Zpyx- 1) - EpﬂiCOCZi- EpﬂjCOCzj+ sziszziCZj) vVi#j=1,2,3,.,p.

and COV(TU, Tm): 0 as they are based on two independent samples.

2.4. Choice of Optimal Weights
To find the optimization of the weight vector W, = [wul W, W, ] the mean squared

error M(T,) given in equation (15) is minimized subject to the condition 1'W,, = 1using
the method of Lagrange’s Multiplier explained as:
To find the extrema using Lagrange’s Multiplier Technique, we define L, as

L, = W, Q W, —21,(1'W, — 1), (17)
where 1 is a unit column vector of order p and A, is the Lagrangian multiplier.

Now, by differentiating equation (17) partially with respect to W,and equating it to zero
we have

oL,
ow,

0
W[W(l Qu Wu - Au(l’Wu - 1)] = O
u
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This implies that, 2 Q W, — 1,1 = 0, which yields

w,=20."1 (18)
Now pre- multiplying equation (18) by 1', we get
L (19)
1Q 1
Thus, using equation (19) in equation (18), we obtain the optimal weight vector as
Q -1
Uopt. = (20)
1 1

u

In similar manners, the optimal of the weight w, =[w_ w, ...w,_ |, is obtained by

minimizing M(T,,) subject to the constraint 1'Wy,, = 1 using the method of Lagrange’s
multiplier, for this we define

Lin = BYWy EWp, + W, @ Wy — A (T'W, — 1),
where A is the Lagrangian multiplier.

Now, differentiating L, with respect to Wy, and equating to 0, we get

= Zn (21)

Mopt. L~ 1

Then substituting the optimum values of W, and W,, in equations (15) and (16)

respectively, the optimum mean square errors of the estimators are obtained as:

M(Tu)opt. = (é - %) 1"Ql—11 (22)
M(Twdopt = (= 5)B1 + (%) — (23)

2.5. Minimum Mean Squared Error of the Proposed Estimator T, (NR)

Since the mean squared error of the estimator T, , (NR) given in equation (14) is a function

of unknown constanta,, therefore, it has been minimized with respect tooand

subsequently the optimum value of a is obtained as
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M (T )opt.

m

(10 =
8 M(T )opt.+ M(T )opt.

u m

(24)

Now substituting the values of a,, in equation (14), we obtain the optimum mean squared

opt.

error of the estimator T, (NR)) as

« M(Ty )y - M( T )t
M(TIp(NR))opt.: M((T )) + M((T )) (25)

u m

Further, substituting the optimum values of the mean squared error of the estimator given

in equations (22) and (23) in equation (24) and (25) respectively, the simplified values

0y, aNd M(TIP(NR))ZN are obtained as

opt.

uluf, C- (f, £,B, +£,C)]

) 26

" [WEC-u (£ £,B, +£,C-fA) -fA] (26)
- _ 1 [nG -G

M(Tlp(NR))om = H[“z . _1u C42_ o] (27)

where A = Tll B,=2Y*(1-p,)C.C= ?,Cl:AC, C,=fAB, +AC,
' ux* 1 m*l

c,=f,Cc, C,=f ,B, +f,C-fA, C.=fA and pis the fraction of the sample drawn

afresh at the current (second) wave.

2.6. Optimum Replacement Strategy for the Estimator T (NR)

The idea of longitudinal surveys is mainly concerned with obtaining efficient
estimates with minimal cost in carrying out the survey. So it is technically convenient to
maintain a high overlap between repeats of the survey which provides the advantage due
to many sampled units being located and have some experience in the survey. Hence the

decision of the optimum value of pshould be made (fractions of samples to be drawn

afresh on the current occasion) so that Y may be estimated with maximum precision and

minimum cost, we minimize the mean squared error M ('I'Ip (NR)) t in equation (27) with

op
respect tou and thus the optimum value of p so obtained is one of the two roots given by
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w= — (28)

where D,=CC,, D,=C,C, and D,=CC, + C,C,.
The real value of  exist, iff D2 - D,D, >0. For any situation, which satisfies this

condition, two real values of p may be possible, hence choose a value of psuch that

0<u<1 . All other values of p are inadmissible. If both the real values of u are

admissible, the lowest one will be the best choice as it reduces the total cost of the survey.

Substituting the admissible value of psay H%}:

from (28) in to the equation (27), we get
the optimum value of the mean squared error of the estimator T, (NR) with respect to o
as well as uwhich, is given as
NR
S| [unp C - Cz]
M(T“J(NR))opt. B E NR? NR '
|:l'l"|"p C-ug G, 'Cs}

(29)

3. Special Cases
3.1. Case I: When Non-Response occurs only at the First (Previous) wave

When there is a presence of non-response only at first wave, the proposed estimator

T, (NR) for population mean Y reduces to

T,(P) =0T+ (1-9)T, (30)

where T¢ = Wl'lTeXp (u),where Wy is a column vector of p-weights given by
W, = |:Wu1 Wy, oo Wy ]

T(1,u)

T(2,u)
and Texp (W) =| |

T(p,u)

NI
N|
~—~
c
N—

[ where T(i,u) =y, exp| =————%
where T(i, u) =y, D(Z_Jr 7. (0)

J fori =1,2,3,...,p
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such that 1'W, = 1, where 1 is a column vector of order p and T, is defined in equation
(4) and (p(() << 1) is a real constant to be determined so as to minimize the mean squared

error of the estimator T, (P).

In this case, the optimum value of fraction of sample drawn afresh is obtained as

i= (H2 + H2-H, Hs)/Hl=u%p(say)

and the minimum mean squared error of the estimator T, (P) at the admissible value of
(Lis derived as
M(T, (P)),, = [15, Gi-Ga]/n[K5] C-uf, Gs-G, ] &

where
H,=CG,, H,=CG,, H,=G,G,+G,G,, G,=AC, G,=AC+fAB,, G,=fB, +C-fA,

G4:f1A,A=;_1,Bl:2\72(1-pyx)C§,C= ~_—and f,=r/n.
1Q 1 1Q 1

u* mx

3.2. Case I1: When Non-Response occurs only at the Second (Current) wave

The estimator for population mean Y in the presence of non-response at current wave
only, is given by

Tp(C) = T+ (1I-v)T, (32)
where TY, = W,',,Texp (m, n), where W_is a column vector of p-weights
W, [W W, o W ]
T(1, m, n)]

T(2, m,n)

and Teyp(m, n =|l [, where T(i, m, n) = (y]i(l n)
X (i

T(p,mn)
Z2M) 5,y -5, o 2B
wherey (i, m) = Y., exp Z T2 , X (i, m) =X_ exp ﬁ

andX (i, n) =X_ exp[—

233



Such that 1'W,,, = 1, where 1 is a column vector of order p.

T, has been defined in equation (3) and \V(O <y< 1) is a real constant to be determined so

as to minimize the mean squared error of the estimator T, (C).

In this case, the optimum value of fraction of sample drawn afresh is obtained as

= (M = HE-H, H )/ H, =05, (say) (33)

and the minimum mean squared error of the estimator T, (C) at the admissible value of

(Lis derived as
M(T,(C)),, = [K5, Gs-Gs ]/n[ 5, Gr -5, Gy -4 (34)

where H, = G,G,, H,=G,G,, H,= AG,+ G,G,, G,=AC, G,=AB, +AC, G,=1,C,
1 v 1
Fl_l:l, Bl =2Y2(1-pyx)C(2), C :Hand f2: I’Z/u.

mx*

G,=f,B +f,C-AA=

4. Efficiency with Increased Number of Auxiliary Variables
As we know that increasing the number of auxiliary variables typically increases the
precision of the estimates. In this section here, we verify this property for the proposed

estimator as under: Let T_(NR)and T (NR)be two proposed estimators based on p and
g auxiliary variables respectively such thatp < g, thenM(T (NR))> M(T, (NR)), i.e.

M(T, (NR)) -M(T, (NR)) = 0 (35)

1 [BAG-A, B+C)] 1 [HAG A (BFCY]

N[p*C,-nB+C,+A)-A, | n[p’C-pB+C,+A)-A]

On simplification, we get
AA (C-C
(Ap-Aq)[(u- 1)z[u C,Cy+ %J -uB((Cp-Cy)(r-1) -B) |20
p q
This reduces to the condition
(A-A,) 20 (36)

So from Section 2.5 above, we get
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1 1
_ >0

-1
1 Qp 1 1 Qq 1
! -1 ! -1
1'Q q 1>1 Qp 1
Following Rao (2006), the matrix Q2 qcan be partitioned and can be written as
Q F
Q= o
F' G
where F,F"and G are matrices deduced from Q, such that their order never exceeds g-

p and always greater than or equal to 1.Then,

Q'+ HIH' —HJ
Qi=|"r" (37)
IH ]

whereJ =(G - F'Q;}F)‘l and H =Q,'F . (See Rao (2006) and Olkin (1958))

Now rewriting 1’(2;11 by putting the value of Q;ﬁfrom equation (37), we get

P ( QY+ HIH —HJ 1
10M=(1 1 P P
q (p q'p) ( _JHI J ][1 pj

-
= (U (Q+HIH')-1._JH ' HI+1,. ] b
_(p(p+ )'q-p T +q-p)1

q-p
= L (Q'+HIH)L, -1, JH'1 - 1L HI L, +1, 01,

=>1Q'1-1 (Q;l) L =1(HH)L -1, JH'L - 1 HIL  +1 31

o , (HIH -HD) (1
p

.
[ -1 ' -1 [ H
1QM1-1 (Qp)lpzl( jJ(H 1)1>0

The latter follows since J is positive definite so that R'J R > 0 for all R,

where R=(H -1)1.
Hence from equation (35), we have

(T, (NR) - (T, (NR)) > 0
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This leads to the result that utilizing more auxiliary variables provides more efficient

estimates in terms of mean squared error for the proposed estimator.

5. Complexity in compliance with multi-collinearity

Case 1: when the p-auxiliary variables are mutually uncorrelated i.e.pzizjz 0
Viz]=1,2, ..,p, the proposed multivariate estimators are applicable and in this case

optimum value for psay pd, po and pgand the mean squared error of the estimators

T,(NR), T (P) and T (C)with respect to ¢ and p are obtained as
e A R T
o= (2= i g ) e
e L e e

M(T, (NR)) = [ €7 - €7 )/n| ™ €5 - €5 - |

M(T, (P))

e
opt.

[ 67 -Gy ]/nful ¢ -ul 67 -a ]

M(T,(C))

o
opt.

(1S G2 -Gy /n[ug 67 -ng Gf A%

D;/=C/C;, D;=C,C;,D;=C/C, + C,C;, H;=C"G,, H;=C"G,, H,=G,G, +G,G;,

GP=A°C?, GI=A°C® +f,A°BY, GI=fB? +C*-f,A%, GI= A%, H = GG?, HY=GIGY,

H =A°G.+G.G,, G =A°C%, G =A"B; +A°C?, G/=f,C% G, =f,B] +f,C”-A",

1

® — ®_ 5 /2 2 o _— 1 - —
A® == Br=2Y (1-p,)CiC® = oy §F r,/n and f,= r,/u.
[Au, Au, . . . Auy ] [Am, am, . . . Am, |
where Au,  Auy, . Auy, Am,  Am,, . . . Am,
A= . o and A_.=|
| AU, Au, o Auppgpxp |Am,  Am, . . . Am, |
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_ 1 — 1 1
Au;, :YZ(Cﬁ + ZCZ- pyziCOCZ‘ j, Au,= Y? (Cé - EpﬂiCOCZi— EpyszOCZJ,

_ 1
Am, = Y? (Cé (2pyx-1) - pyz.Cocz, + Zci ) and

_ 1 1 .
Am, = Y? (Cg (2pyx— 1) - EpyZ.COCZ. - EpﬂJCOCZJj Vizj=1,2,3,.,p.

Case 2: When the p-auxiliary variables are mutually correlated ie. p,, # 0

Vi#]j=12,..p.Inthis case if there is high correlation between p-auxiliary variates,

then such a problem can be addressed as a problem of multi-collinearity in survey
sampling.

6. Efficiency Comparison
In order to examine the performance of the proposed estimators under non-

response, the estimators T_(NR), T_(P) and T (C)have been compared to the estimator

T, , due to Priyanka et al. (2015).

Hence, following Olkin (1958), Raj (1965), Artes and Garcia (2005) and Singh et al.
(2011) we consider C,=C, ;v i=1,2,3, .., p approximately and hence, the optimum

value of ufor the case (i) when non-response occurs on both the occasion, (ii) non-

response occurs only at first occasion (iii) non-response occurs only at second occasion,
say p:pR ﬁi’lpand ﬁip and optimum value of mean squared errorsM(T, (NR)):;_,
M(T,(P))., andM(T, (C)) of the proposed estimatorsT,(NR), T, (P)andT,(C)
reduce to
The optimum value of pis given by

= (07« 5001

(38)
W= (e ) (40)
i = TR <42>
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and the optimum mean squared error of the estimators given as

M(T, (NR)), = [ €= € ]/l € -u - 39)
M(T, (P) "= [ G;-G; |/n[w” ¢ - G -q ] (41)
M(Fp(c)):= [ ° G, -GZ}/n[uf‘: G; -1 G, -A*] (43)

whereD;=C,C;, D,=C,C,,D,=C,C, + C,C,, C.=A'C, C,;=fA'B +A C,C,=fC,
Cc,=f f,B, +f,C-fA", C.=fA", H=CG], H,=CG,, H,=G.G,+G,G,, G=AC,

* K * ok

G =AC+fAB,G =fB +C-fA", G,=fA" H,=G.G;, H,;=GG,, H;=A'G,+ GG,

57 67" 68!
G.=A'C,G,=AB, +AC,G.=f,C,G,=f,B, +f,C -A", f=r/n, A" = ——,
b 1
* % 1
B,=2(1-p,)S. C'=—=F
1l 1
(Lu, ku, . . . Luy,] [Em;, Em, . . . Em, |
bu, tu, . . . Luy tm, Em, . . . km,
L.=| ' S and L..=|
| tu, tu, . . . Lupp_pxp |Em,, Em, . . . mep_pxp
" 5 1 1 1
_ 2 _ 2 _ 2
B, =2(1-p,,)S:, Lu“—(z-pﬂij S, ku,= (1- P 5Pt Zp%j sz,

3 1 1 1
Em, = (Zpyx-pyzi- Zj S, andtm,= (2%- P Epyzi-i- o 1 j S, Vi=j=1,23,..,p.

6.1 Comparison of the proposed estimators T, (NR), T, (P) and T, (C)with

respect to estimator T, (PR)due to Priyanka et al. (2015)
The estimator T, | (PR) proposed by Priyanka et al. (2015) is given as

T,(PR)=E T+ (1-§) T, (44)
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where T! and T? are discussed in equation (30) and (32) respectively and &(O <EL 1) isa
real constant to be determined so as to minimize the mean squared error of the estimator

Tio (PR).

The optimum value of fraction of sample to be drawn afresh say u?f: and optimum value

of mean squared error M(T‘p (PR)) t of the estimator T, | (PR)is given by

N
op

*2 * ok

AR NI N

e = 7 (45)
1
PR 1*  1*
1 [uﬂp I - Iz]
M(T,(PR)), . = (46)
n[MT‘p C-pr L -A :|
where J=C° I, 5=C° I, J=A’L + I [}, A? =T1—11 o =#;11*1 L=A"C,

I,=A° B, +A° C°, I;=B; +C° -A’, B, =2(1-p,,)S:,

(huy, hu, ... huy, | [hmy, hm, . . . hmy |
huy, huy, . . . hu, hm,, hm, . . . hm,
H,.= and H,.=
| huy, hug, . hupp_p ) hm,, hmg, . .. hmpp_pxp

" 5 1 1 1
- 2 _ 2 _
B, _2(1_py><)sy’ huii_(z'pﬂi) Sy, huy= (1' Epyzi' Epw,+ szizjj Si’

3 1 1 1
hm, = (Zpyx— Py - Z) Si and hm, = (Zpyx— Epyz'_ Epyz’+ ZPZ.Z.' 1 j Si Viz j=1,23,..,p.

The percent relative loss in precision of the proposed estimators T, (NR), T,_(P)
and T,_(C)have been recorded to infer about the effect of incompleteness in the data over
the successive waves with respect to the estimator T_(PR)and are given under their

respective optimal conditions as
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Lj,= (T, (VR)), - M(T, (R), x100,
M(T, (NR))Opt

L= Mo (P, M TP Qs x100, “)
M(T, ()L

L= (T (CV)e - M(Ty (PRI x100.
M(T, (),

7. Numerical llustrations and Monte Carlo Simulation

Empirical validation has been carried out by Monte Carlo Simulation. Real life situation

of completely known finite population has been considered.
Population Source: [Free access to the data by Statistical Abstracts of the United States]

For carrying out numerical illustration we have considered the case of three auxiliary
information (i.e. p=3) which are stable over time and are available at both the occasions.
The population comprise of N = 51 states of the United States. Let

y, The total energy consumption during 2007 in the j™ state of U. S.

x, The total energy consumption during 2002 in the j" state of U. S.

z,,: The total energy consumption during 2001 in the j" state of U. S.

Z,;: The total energy consumption during 2000 in the j" state of U.S.

z,;: The total energy consumption during 1999 in the j" state of U.S.

For the considered population, the values of p defined in equations (38), (40) and
(42) and the percent relative loss in efficiencies LS, L), L), L, L, L, L%, L, and L, defined
in equation (47) of the estimatorsT (NR), T (P)andT_ (C)for p=1, 2 and 3,
respectively with respect to estimator T, (PR)have been computed and are presented in

Table 1.

To judge about the performance of the estimator in the presence of different
percentages of non-response, a more general illustration has been worked out by
considering choices of correlation coefficients of study and auxiliary variables on different

waves. These results have been shown in Table-2 to Table-6.
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To validate the above empirical results, Monte Carlo simulation has also been
performed for the considered population. For convenience the choices of t, andt,are

considered 0.20 and 0.30 respectively. The simulation results are shown in Table-7 to
Table-9.

7.1 Simulation Algorithm

(i) Choose 5000 samples of size n=25 using simple random sampling without replacement

on first wave for both the study and auxiliary variables.

(i) For f,=0.80, chooser,=20 responding units out of n=25 samples units.

(iii) Calculate sample meanX, |, , Z, (1), Z,, (r)and Z; (r,)fork =1, 2, - - -, 5000.
(iv) Retain m=15 units out of each r,=20 sample units of the study and auxiliary variables
at the first wave.

(v) Calculate sample mean X, L 7 and Z fork=1, 2, - - -, 5000.

(vi) Select u=10 units using simple random sampling without replacement from N-n=26
units of the population for study and auxiliary variables at second (current) wave.

(vii) For f,=0.70, choose r,=7 responding units out of u=10 samples units.

(viii) Calculate sample meany, ., Vu.. Z,(r,). 7, (r)andZ, (r)fork=1,2,---
5000.

(ix) Iterate the parameter o from 0.1 to 0.9 with a step of 0.1.

(x) Iterate & from 0.1 to 0.9 with a step of 0.1 within (ix).

(xi) Calculate the percent relative loss in efficiencies of the proposed estimator T (NR),

T, (P) and T (C) with respect to estimator respect to T_(PR)for p=1, 2 and 3 as

ST (NR)-T,,, (PR)T’ ST (P)- T (PR)T'
LO (p) = = 5000 x 100 1 Ll(p): = 5000 X 100 '
S [T (WR)] S [T ()]
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and L, (p)-=

§|[Tp|k(c)'Tp|k(PR)]z

5000

2T (O]

Similarly, the algorithm has been modified for the case when non-response occurs only at
previous wave or only at current wave.

x 100,

k=1, 2, ..., 5000.

Table 1: Empirical Comparison of the proposed estimatorsT‘p (NR), T (P) and T, (c)with respect

Table 2: Percent relative loss when estimators T, (NR), T, (P) and T, (C) are compared to the

to the estimator T, (PR) .

Ip

PR
M,

NR
My,

=]

Hy

Ip

c

My

Ip

LO

Ip

Ll

Ip

LZ

Ip

p=1 | 0.5355

0.5555

0.6284

0.4444

4.0912

1.3253

2.2902

p=2 | 0.5196

0.4831

0.6157

0.3539

3.4008

0.7533

2.1065

p=3 | 0.5137

0.4212

0.6109

0.2765

3.0501

0.5326

1.9302

estimator'ﬂp (PR)for p=1.

( ‘ Pyx 0.6 0.8
R I T O I T T R I T T T T T
0.05 0.6 0.61 | 050|059 | 047 | 267 | -0.27 | 282 | 053 | 058|050 | 056 | 3.02| 053 | 2.38
10 0.7 054 | 048 | 052 | 045 | 231 | -051 | 268 | 048 | 056|045 | 053 | 279 | 0.36 | 2.31
o 0.10 0.6 0.74 | 050 | 0.73 | 047 | 6.27 | -0.27 | 6.33 | 047 | 058 | 045 | 056 | 5.27 | 053 | 452
0.7 061 | 048|059 | 045 | 551 | -051 | 577 | 040 | 056|037 | 053 485 | 0.36 | 4.23
0.05 0.6 063 | 052|059 | 047 | 252 | -054 | 282 | 055 | 060 |050| 056 | 366 | 0.77 | 2.38
= 0.7 0.57 | 050|052 | 045 [ 194 | -1.03 | 268 | 051 | 058|045 | 053 [ 328 0.73 | 2.31
o 0.10 0.6 0.76 | 052 | 0.73 | 047 | 6.20| -054 [ 6.33 | 050 | 0.60 | 045 | 056 | 6.03 | 0.77 | 452
0.7 0.63 | 050|059 | 045 | 526 | -1.03 | 577 | 043 | 058|037 | 053 |547 | 0.73 | 4.23
0.05 0.6 065 | 055|059 | 047 | 237 | -082 | 282 | 058 | 062 |050| 056 [431| 1.61 | 2.38
1 0.7 059 | 053|052 | 045 | 156 | -1.54 | 268 | 053 | 060|045 | 053 |3.76 | 1.10 | 2.31
o 0.10 0.6 0.77 | 055|073 | 047 |6.14| -0.82 [ 6.33| 053 | 062|045 | 056 | 6.79 | 1.61 | 452
0.7 0.65 | 053|059 | 045 | 501 | -154 | 577 | 046 | 0.60 | 037 | 053 |6.09| 1.10 | 4.23

242




Table 3: Percent relative loss when estimators T _(NR), T, (P) and T, (C) are compared to the

estimator T,_(PR)for p=2andp,, =0

Py 0.6 0.8
o R T I P I A I T T I T e B I TR T T
0.3 0.48 | 057|042 | 053 |3.08|058|225| 058 |062|054|058]|400]|139]| 241
0.4 0.4 0.44 | 057|038 | 052|288 |045| 217 | 057 | 061|053 | 057 |388]|1.28 | 2.40
el 0.5 0.35 | 056|027 | 051|249 |0.26 | 193 | 056 | 060 |051|056 373|113 2.39
o 0.3 042 | 056 |035| 052 |277038|211| 057|061 052|057 (383|123 240
0.5 04 0.35 | 056|027 | 051|249 |0.26 | 193 | 056 | 060 |051|056 |373|113| 2.39
= 0.5 * 0.55 * 0.50 * 0.10 * 0.54 | 0.60 | 0.49 | 0.55 | 3.58 | 1.00 | 2.37
o 0.3 0.38 | 057|031 | 053 |5.13|058|4.00]| 055 |062|050| 0581 645|139 | 4.66
0.4 0.4 0.31 | 057|023 | 052 |471|045|3.67| 053|061 |048 | 057 |631|1.28 | 4.61
= 0.5 0.12 | 0.56 * 0.51 | 3.65 | 0.26 * 0.51 | 0.60 | 0.46 | 056 | 6.12 | 1.13 | 455
o 0.3 0.26 | 0.56 * 0.52 | 4.48 | 0.38 * 052 | 0.61 | 0.47 | 0.57 | 6.24 | 1.23 | 4.59
0.5 0.4 0.12 | 0.56 * 0.51 | 3.65 | 0.26 * 0.51 | 0.60 | 0.46 | 0.56 | 6.12 | 1.13 | 4.55
0.5 * 0.55 * 0.55 * 0.10 * 0.49 | 0.60 | 0.43 | 0.55 | 5.92 | 1.00 | 4.47
0.3 0.51 | 0.60|0.42 | 053 |350|0.87|225| 061|064 054|058 479|209 | 241
0.4 0.4 047 | 059|038 | 052|324 |0.67|217| 060 | 063 | 053|057 | 462|192 | 2.40
e 0.5 0.38 | 058 | 0.27 | 051 | 277|040 | 193 | 058 | 062 | 0.51 | 056 | 440 | 1.70 | 2.39
o 0.3 045 | 059|035| 052 |3.10|058|211| 059 |063|052| 057 |455|1.85]| 2.40
0.5 0.4 0.38 | 058 | 0.27 | 051 | 2.77|10.40| 193 | 058 | 0.62 | 0.51 | 056 | 440 | 1.70 | 2.39
w0 0.5 * 0.57 * 0.50 * 0.15 * 0.57 | 0.62 | 0.49 | 055 | 419 | 1.50 | 2.37
o 0.3 041 | 0.60|0.31| 053 |569|087|4.00]| 057|064 |050|058]|734| 209 | 4.66
0.4 0.4 0.35 | 059 | 0.23| 052 |5.23|0.67|367| 056 |063|048 | 057|716 192 | 4.61
= 0.5 * 0.58 * 0.51 * 0.40 * 0.54 | 0.62 | 0.46 | 0.56 | 6.90 | 1.70 | 4.55
o 0.3 0.30 | 0.59 * 0.52 | 4.94 | 0.58 * 055 | 0.63|0.47 | 057 | 707 | 1.85 | 459
0.5 0.4 0.17 | 0.58 * 0.51 | 4.13 | 0.40 * 0.54 | 0.62 | 0.46 | 0.56 | 6.90 | 1.70 | 4.55
0.5 * 0.57 * 0.50 * 0.15 * 0.52 | 0.62 | 0.43 | 0.55 | 6.65 | 1.50 | 4.47

Note:“ *” denotes that percent relative loss cannot be obtained since |,L2N R HZ and ug do not exist.
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Table 4: Percent relative loss when estimators T, (NR), T, (P) and T, (C) are compared to the

estimator TIP (PR)for p=2 and pzlzz >0

Pyx 0.7 0.8

L B T T T T S I S I S T T T I I O I O
0.3 1051058 |045|054|328|074|231|059|063| 055 ]| 058|413 | 152 | 2.42

0.4 0.4 1049 | 058|043 053 (315|063 |227|059|062| 054 | 058 | 404 | 143 | 2.42

0 0.5 |1 045|057 1038 |052|290|045| 218 | 057|061 | 053 | 057 | 3.89 | 1.29 | 2.40

o 0.3 | 046 | 057|040 |052 (299 |052|222|058|061| 053 | 057|394 | 134 | 241

05| 04 | 045|057 (038|052|290|045|218 | 057|061 | 053 | 057 | 3.89 | 1.29 | 2.40

= 05 (039056032051 (265|032|204|056|061| 051 | 056|378 | 1.18 | 2.39
o 0.3 1043|058 |0.37|054 548|074 |4.24 | 056|063 | 051 | 058 | 6.60 | 1.52 | 4.69
0.4 0.4 1040|058 033|053 [525|063|409|055|062| 050 | 058 | 6.49 | 143 | 4.67

= 05 (031057024 |052|474|045|369|053|(061| 048 | 057 | 6.32 | 1.29 | 4.62

o 0.3 [035|057|028 052|494 |052|386|054|061| 049 | 057 | 6.38 | 1.34 | 464

0.5 04 (0310571024 |052|474|045|3.69|053|(061| 048 | 057 | 6.32 | 1.29 | 4.62

05 1020056012 0514111032 |3.13|052|061| 046 | 056 | 6.18 | 1.18 | 457

0.3 1054060045054 |3.771111|231|062|065| 055 | 058 | 498 | 2.28 | 2.42

0.4 0.4 1052 |060|043 {053 [359|095|227|061|064| 054 | 058|485 | 215 | 2.42

10 05 (048 | 059|038 |052 (326 |068|218|0.60|063| 053 | 057 | 463 | 1.93 | 240

o 0.3 (049 |059|040| 052|338 |0.78]|222|060|064| 053 | 057|471 | 201 | 241

05| 04 [ 048|059 (038|052 |3.26|068|218| 060|063 | 053|057 | 463 | 1.93 | 2.40

0 05 |1 042 | 058032051295/ 049|204 059|063 | 051 | 056|447 | 1.77 | 2.39
o 0.3 1046 | 060037054 |6.11 1111|424 |058|065| 051 | 058 | 755 | 2.28 | 4.69
0.4 04 |043|1060|033({053(583|095|409|057|064| 050 | 058 | 741 | 2.15 | 4.67

= 05 |035]|059|024(052|526|068|369|056|063| 048 | 057 | 717 | 1.93 | 462

o 03 |038|059|028|052|548|0.78|3.86|056|064| 049 | 057 | 725 | 201 | 4.64

0.5 0.4 1035059024052 |526|068|369|056|063| 048 | 057 | 7.17 | 193 | 4.62

05 1025|058 (012051460049 |3.13|054|063| 046 | 056 | 6.99 | 1.77 | 457
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Table 5: Percent relative loss when estimators T _(NR), T, (P) and T, (C) are compared to the

estimator T (PR)for p=3andp,, =0, i+ j=1,2 and 3

t, t, | Pyx | Pysy | Pyz, | Py H?R ug Hg HSR I—Os I—13 L23
0.6 | 05 0.6 0.7 0.53 | 048 | 047 | 043 | 1.37 | -1.57 | 2.63
005 0.7 | 05 0.6 0.7 0.61 | 052|056 | 0.46 | 2.33 | -0.68 | 2.76
0.10 0.7 | 04 0.6 0.5 091 | 054|090 | 0.49 | 3.52 | -0.16 | 3.53
06 | 05 0.6 0.7 | 057 | 048 | 053 | 043 | 458 | -1.57 | 5.55
0.10| 0.7 | 05 0.6 0.7 | 070 | 0.52 | 0.67 | 0.46 | 5.85 | -0.68 | 6.08
07 | 04 0.6 05 * 054 * 0.49 * -0.16 | *
0.6 | 05 0.6 0.7 055 | 051|047 | 043 | 0.75| -2.35 | 2.63
005| 0.7 | 05 0.6 0.7 0.63 | 054 | 056 | 046 | 2.11 | -1.03 | 2.76
015 0.7 | 04 0.6 0.5 091 | 056|090 | 049 | 3.52 | -0.24 | 3.53
06 | 05 0.6 0.7 | 060 | 051|053 | 043 | 4.09 | -2.35 | 5.55
0.10| 0.7 | 05 0.6 0.7 | 072 | 054 | 0.67 | 0.46 | 5.74 | -1.03 | 6.08
0.7 | 04 0.6 0.5 * 0.56 * 0.49 * -0.24 *

Note:“ *” denotes that percent relative loss cannot be obtained since M;\l R and ug do not exist.

Table 6: Percent relative loss when estimators T, (NR), T, (P) and T, (C) are compared to the

estimator T (PR)for p=3andp,, >0, i+ j=I, 2 and 3

ol ot | Py | Py | Py | Puz | Pay | Pry | Prey | AT | RS | s [ R | LS LY | L

0.6 0.2 0.5 0.3 0.5 0.5 0.4 0.78 [ 053 0.76 | 0.48 | 3.13 | -0.24 | 3.18

0.05| 0.7 0.4 0.7 0.6 0.3 0.3 0.4 0.68 [ 053064 | 048 | 2.75 | -0.40 | 2.93

0.10 0.7 0.3 0.7 0.5 0.3 0.4 0.2 0.65 | 0.52 | 0.61 | 0.47 | 258 | -0.50 | 2.85
0.6 0.2 0.5 0.3 0.5 0.5 0.4 * 0.53 * 0.48 * -0.24 *

0.10 | 0.7 0.4 0.7 0.6 0.3 0.3 0.4 0.84 [ 053083 | 048 | 6.73 | -0.40 | 6.77

0.7 0.3 0.7 0.5 0.3 0.4 0.2 0.78 [ 052 | 0.75| 0.47 | 6.34 | -050 | 6.44

0.6 0.2 0.5 0.3 0.5 0.5 0.4 0.79 [ 056 | 0.76 | 0.48 | 3.11 | -0.36 | 3.18

0.05| 0.7 0.4 0.7 0.6 0.3 0.3 0.4 0.70 | 0.55 | 0.64 | 0.48 | 2.67 | -0.60 | 2.93

0.15 0.7 0.3 0.7 0.5 0.3 0.4 0.2 0.66 | 0.55| 0.61 | 0.47 | 245 | -0.75 | 2.85
0.6 0.2 0.5 0.3 0.5 0.5 0.4 * 0.56 * 0.48 * -0.36 *

0.10 | 0.7 0.4 0.7 0.6 0.3 0.3 0.4 0.85 [ 055|083 | 048 | 6.72 | -0.60 | 6.77

0.7 0.3 0.7 0.5 0.3 0.4 0.2 0.79 [ 055 (075 | 047 | 6.29 | -0.75 | 6.44

Note:“ *” denotes that percent relative loss cannot be obtained since
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Table 7: Simulation result when the proposed estimatorS'ﬁp(NR), T (P) and T, (C) are compared

with the estimatorTIp (pR)for p=1.

3 0.1 02 | 03 | 04 | 05 | 06 0.7 0.8
a
Lo(1) | 4.69 | 2585 |39.22 | 42.75 | 35.11 | 21.05 | -3.15 | -38.59
01| L(Y) | 090 |24.37 | 38.66 | 43.07 | 37.62 | 18.89 | -0.75 | -35.43
L,(1) | 1.37 |23.89 | 37.14 | 40.14 | 33.76 | 20.21 | -4.67 | -44.45
Ly(1) | -5.40 | 18.02 | 32.87 | 36.19 | 28.29 | 11.87 | -15.82 | -53.04
0.2 | L(1) | -11.75 | 14.60 | 31.12 | 35.49 | 27.73 | 10.08 | -14.42 | -54.92
L,(1) | -9.06 | 15.91 | 30.94 | 34.16 | 27.34 | 11.71 | -16.95 | -55.56
Lo(1) | -12.92 | 13.30 | 28.21 | 32.15 | 23.77 | 6.90 | -22.95 | -62.45
0.3 | L(1) | -24.09 | 5.72 | 23.99 | 28.33 | 19.73 | 1.35 | -26.10 | -71.40
L,(1) | -15.88 | 10.62 | 26.39 | 30.32 | 23.21 | 6.20 | -23.77 | -66.00
Lo(1) | -15.69 | 11.10 | 26.75 | 3.46 | 22,51 | 5.16 | -24.35 | -64.80
04| L(1) | -33.76 | -0.23 | 18.17 | 22.29 | 14.24 | -5.97 | -35.43 | -84.45
L,(1) | -17.57 | 9.26 | 25.01 | 29.10 | 22.02 | 4.51 | -25.51 | -68.47
Ly(1) | -12.78 | 13.65 | 28.57 | 32.70 | 24.59 | 7.90 | -20.67 | -60.31
05 L(1) |-36.59 | -2.44 | 15.71 | 19.71 | 12.28 | -8.83 | -39.94 | -90.22
L,(1) | -14.00 | 12.23 | 27.18 | 31.49 | 2451 | 7.40 | -22.14 | -63.46
Lo(1) | -5.17 | 19.70 | 33.68 | 37.35 | 30.23 | 14.65 | -12.06 | -49.41
0.6 | L(1) | -3457 | -0.71 | 16.64 | 21.06 | 13.75 | -7.25 | -38.24 | -87.08
L,(1) | -5.76 | 18.22 | 32.40 | 36.48 | 30.07 | 14.18 | -13.05 | -51.25
Lo(1) | 5.83 | 28.04 | 40.16 | 43.61 | 37.56 | 23.33 | -0.43 | -34.37
0.7 | L(Y) | -27.38 | 4.60 | 20.89 | 25.80 | 18.71 | -1.02 | -31.38 | -76.74
L,(1) | 5.42 |26.94 |39.52 |43.82|37.28|22.85| -1.43 | -35.29
Loy(1) | 17.30 | 37.15 | 47.39 | 50.65 | 45.16 | 32.86 | 11.74 | -17.69
0.8 | L(1) |-16.36 | 13.69 | 27.39 | 31.64 | 25.31 | 7.78 | -20.21 | -61.48
L,(1) | 17.50 | 36.13 | 47.02 | 50.10 | 45.13 | 32.54 | 11.38 | -18.25
Lo(1) | 28.57 | 45.51 | 54.08 | 57.30 | 52.75 | 41.73 | 23.51 | -1.34
09| L(1) | -3.40 | 23.42 | 35.85 | 39.00 | 33.86 | 18.01 | -7.06 | -43.40
L,(1) | 26.87 | 45.02 | 54.26 | 56.88 | 52.69 | 41.83 | 23.11 | -1.29
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Table 8: Simulation result when the proposed estimatorS'ﬁp(NR), T» (P) and T, (c) are compared
with the estimator'rIp (pR)for p=2

& 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
o
Lo(2) | 3.24 |24.82|38.69 | 42.08 | 35.69 | 21.83 | -1.95 | -36.46
0.1 | L(2) | -1.59 | 22.49 | 37.08 | 43.83 | 39.29 | 20.32 | -0.75 | -34.47
L,(2) | 1.38 |23.81|37.82| 4141 | 3536 | 22.41 | -0.19 | -38.59
Lo(2) | -7.60 | 17.11 | 31.87 | 35.82 | 28.84 | 12.59 | -13.83 | -49.94
0.2 | L(2) |-13.68 | 12.97 | 30.11 | 35.17 | 28.76 | 10.84 | -14.24 | -53.05
L,(2) | -9.37 | 15.88 | 31.40 | 35.26 | 28.87 | 14.26 | -12.41 | -49.97
Lo(2) | -15.10 | 11.60 | 27.23 | 31.73 | 24.14 | 7.60 | -21.35 | -59.74
0.3 | L(2) |-26.02 | 352 | 22.67 | 27.85 | 20.82 | 1.92 | -25.45 | -69.23
L,(2) | -16.43 | 10.28 | 26.64 | 31.020 | 24.79 | 8.49 | -19.25 | -60.42
Lo(2) | -17.88 | 9.23 | 25.61 | 29.89 | 22.75 | 5.74 | -23.06 | -62.48
0.4 | L(2) |-36.76 | -2.83 | 16.62 | 21.80 | 15.04 | -4.95 | -34.53 | -82.91
L,(2) | -18.66 | 8.56 | 24.92 | 29.37 | 23.34 | 6.60 | -21.84 | -63.60
Lo(2) | -15.12 | 11.83 | 27.05 | 32.06 | 24.67 | 8.19 | -19.67 | -58.42
0.5 | L(2) |-39.90 | -5.36 | 13.95 | 19.09 | 12.82 | -8.08 | -39.02 | -88.85
L,(2) | -15.49 | 11.05 | 26.74 | 31.71 | 25.38 | 9.06 | -19.14 | -59.58
Lo(2) | -7.84 | 17.69 | 32.61 | 36.60 | 30.14 | 14.78 | -11.44 | -48.09
0.6 | L(2) |-38.71 | -3.76 | 14.68 | 20.25 | 14.09 | -6.85 | -37.53 | -85.90
L,(2) | -7.93 | 16.69 | 31.76 | 36.45 | 30.63 | 15.33 | -10.88 | -48.29
Lo(2) | 3.20 |26.17 | 38.64 | 42.80 | 37.39 | 23.38 | 0.60 | -33.38
0.7 | L(2) |-31.54 | 1.65 | 19.08 | 24.97 | 18.34 | -0.74 | -30.85 | -75.83
L,(2) | 3.15 |25.11 | 3855 | 42.82 | 37.59 | 2357 | 0.13 | -33.45
Lo(2) | 14.97 | 35.38 | 46.39 | 49.91 | 44.92 | 32.73 | 12.04 | -17.13
0.8 | L(2) |-20.15 | 10.42 | 25.66 | 30.94 | 25.35 | 7.99 | -19.99 | -61.94
L,(2) | 15.34 | 34.31 | 45.93 | 49.66 | 45.32 | 32.88 | 12.32 | -16.99
Lo(2) | 26.39 | 43.96 | 53.49 | 56.63 | 52.54 | 41.62 | 23.70 | -1.10
09 | L(2) | -6.90 | 20.34 | 34.31 | 38.47 | 33.12|18.02 | -7.06 | -42.84
L,(2) | 26.88 | 43.21 | 53.19 | 56.38 | 52.74 | 41.89 | 24.11 | -2.25
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Table 9: Simulation result when the proposed estimatorS'ﬁp(NR), T (P) and T, (C) are compared

with the estimatorTIp (pR)for p=3.

& 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
o
L,(3) | 251 | 2250 | 36.19 | 39.97 | 33.42 | 21.13 | -0.29 | -34.02
0.1 | L(3) | -3.89 | 19.77 | 33.48 | 41.28 | 36.68 | 19.54 | -0.66 | -30.84
L,(3) | 1.29 |22.31 3572 |39.85|34.12 | 22.20 | 2.02 | -33.06
L,(3) | -7.60 | 15.29 | 29.35 | 33.48 | 26.93 | 12.23 | -11.64 | -45.36
0.2 | L(3) | -14.96 | 10.96 | 26.74 | 32.38 | 26.77 | 10.64 | -13.30 | -49.21

L,(3) | -8.82 | 14.76 | 29.46 | 33.64 | 27.96 | 14.62 | -9.17 | -43.45
L,(3) | -14.95 | 10.05 | 25.14 | 29.50 | 22.44 | 7.32 | -18.53 | -54.15
0.3 | Li(3) | -26.38 | 1.93 | 19.67 | 25.42 | 19.20 | 2.58 | -23.37 | -63.34
L,(3) | -15.36 | 9.48 | 24.92 | 29.77 | 24.11 | 9.18 | -15.49 | -53.02
Ly(3) | -17.73 | 7.84 | 23.46 | 27.72 | 21.21 | 5.72 | -20.17 | -56.53
0.4 | Li(3) | -35.88 | -3.83 | 14.06 | 19.73 | 13.92 | -3.76 | -31.18 | -75.58
L,(3) | 17.66 | 7.84 | 23.24 | 28.27 | 22.74 | 7.30 | -17.95 | -55.93
L,(3) | -14.93 | 10.50 | 24.84 | 29.87 | 23.13 | 8.13 | -17.18 | -52.58
0.5 | L(3) | -39.43 | -6.53 | 11.55 | 17.07 | 11.92 | -6.71 | -35.23 | -80.90

L.(3) | -14.63 | 10.03 | 24.82 | 30.09 | 24.54 | 9.46 | -15.76 | -52.64
L,(3) | -8.17 | 16.06 | 29.66 | 34.30 | 28.42 | 14.39 | -9.57 | -43.11
0.6 | Li(3) | -38.44 | -4.96 | 12.25 | 17.93 | 12.99 | -5.75 | -34.12 | -78.27
L,(3) | -7.84 | 15.26 | 29.66 | 34.56 | 29.42 | 15.31 | -8.25 | -42.64
L,(3) | 2.48 | 24.18 | 36.07 | 40.36 | 35.54 | 22.60 | 1.15 | -29.81
0.7 | L(3) | -31.86 | -0.07 | 16.25 | 22.35 | 16.98 | -0.31 | -28.18 | -69.46
L,(3) | 257 |23.25] 36.19 | 40.61 | 36.02 | 22.97 | 1.70 | -29.37
L,(3) | 13.67 | 33.16 | 43.42 | 47.33 | 42.91 | 31.63 | 12.41 | -14.81
0.8 | L(3) | -21.40 | 8.02 | 22.58 | 28.10 | 23.38 | 7.59 | -18.46 | -56.30

L,(3) | 14.12 | 32.13 | 43.36 | 47.34 | 43.49 | 31.89 | 12.95 | -14.44
L,(3) | 24.71 | 41.54 | 50.92 | 54.06 | 50.49 | 40.24 | 23.47 | 0.12
09 | L(3 | -8.81 |17.42 | 31.13 | 35.43 | 30.86 | 16.97 | -6.53 | -39.93
L,(3) | 25.31 | 40.84 | 50.66 | 54.03 | 50.82 | 40.58 | 24.07 | 0.20
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8. Rendition of Results

The performance of an estimator in successive sampling in the presence of non-
response is generally judged on the basis of percent relative loss in efficiency (lesser is
loss better is the estimator) and in terms of optimum value of fraction of fresh sample to
be drawn on current (second) wave which in turns is directly associated to the cost of

survey. Following interpretation can be drawn from Tables 1- 9,

8.1 Results based on empirical study for the considered population

1) From Table-1, it is observed that the Optimum values M-Tf u;p and uﬁw for the estimators
T,(NR), T, (P) and T (C)respectively exist for the considered Population also
W< )t <R, pE<pd<pfandpg < ps<ps, which justifies the applicability of the
proposed estimators T_(NR), T_(P) and T_(C)at optimum conditions. This indicates

that a smaller fresh sample is required when more number of auxiliary variables is used.

2) We also observe that u;f < u;p for p=1, 2 and 3. This is probably because in successive

sampling we try to reduce the fraction of sample to be drawn afresh and make most use of
the information available from previous occasion but in the case when non-response
occurs only at previous occasion then for compensating the absence of response at first

occasion, more fraction of fresh sample is required.

3)We also see that L,< L, <L), L,<L,<L andL<L’<L:, which supports the fact that

utilization of more number of auxiliary variables decreases the percent relative loss in

precision when compared to the estimator due to Priyanka et al. (2015).

8.2 Results extracted from general scenario i.e. by considering different choices of
correlation coefficients

1) From Table 2 to Table 6, we see that, even for low correlation coefficients of study and
auxiliary variables, the proposed estimators work efficiently and provide lesser loss
although as the correlation between the study and auxiliary increases (whether the

auxiliary variables are mutually correlated or uncorrelated), the amount of percent relative
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loss decreases for the estimatorsT (NR), T (P)and T_(C) when compared with the

estimator T_(PR).

2) From Table 2 to Table 6, we observe that for fixed fraction t, if we increase the fraction

0

t,, the percent relative lossL,,, p=1, 2 3, decreases and if t, is kept fixed and we keep

on increasing the fraction t, , the percent relative loss L?p’ p=1, 2, 3, increases.

3) From Table 2 to Table 6, we see that for increasing correlation between study and

auxiliary variables if t, is kept fixed the percent relative loss L

ipr P=1, 2, 3, decreases but

if we even increasest, , the percent relative loss Lt

s P=1, 2, 3, also increases.

4)From Table 2 to Table 6, we can infer that if t, is kept fixed then increasing the amount
of correlation between study and auxiliary variable results in lower percent relative loss

pr for p=1, 2, 3 but if we increases t, then the percent relative loss also increases.

8.3 Results based on simulation study

1) From simulation results in Table 7 to Table 9 we observe that for fixed choices of a,

the percent relative lossL,(p), L,(p) and L, (p)(p=1, 2 and 3) increases initially and start
to decrease as & is increased when the proposed estimators are compared to the estimator

due to Priyanka et al. (2015).
2) Also it is observed that for fixed choices of &, the value of L, (p), L, (p)and L, (p)
(pzl, 2 and 3) decreases initially and start to increase as o is increased when the proposed

estimators are compared to the estimator due to Priyanka et al. (2015).

3) Itis also observed that when the proposed estimators T, (NR), T (P) and T, (C)utilize

more number of auxiliary variable, the percent relative loss L,(p),L,(p) and L, (p)p=1,

2, 3 are observed to have decreasing trend which signifies the use of more number of

auxiliary variables.
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9. Conclusion

The thorough analysis of proposed multivariate weighted estimators utilizing information
on multi-auxiliary variables in the presence of non-response with variety of cases
depending upon the occurrence of non-response, seems to be interesting enough as an
amalgamation of exponential structure with ratio type estimator because even in the midst
of non- response, the proposed method of imputation not just provides lesser percent
relative loss in efficiency of the estimator but it also helps in reducing the cost of survey
as far as possible when a comparative study is carried out with respect to estimator

T,(PR). Therefore, the proposed estimators T _(NR), T (P) andT (C)can be

considered for their practical use in the presence of non-response, if any, on successive

waves by survey practitioners.
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CHAPTER - 117

Cogitation of Incompleteness in the midst of
Imputation in Longitudinal Surveys for
Population Mean

* Following is the publication based on the work of this chapter:--

1. Priyanka, K. and Mittal, R. (2016): Cogitation of Incompleteness in the midst of

Imputation in Longitudinal Surveys for Population Mean. Proceedings of National
Conference on RSCTA, held in Ramanujan College, University of Delhi on 11-12"
Mach, 2016. (Accepted)
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Cogitation of Incompleteness in the midst of
Imputation in Longitudinal Surveys for
Population Mean

1. Introduction

Sophisticated sample surveys are being designed to prevent the non-response of
sample units but it is hard to prevent completely due to the pure stochastic nature of
incompleteness. Missing data makes the analysis more miserable when the data has to be
collected and analysed on more than one occasion. The problem of sampling on two
successive occasions was initiated by Jessen (1942), and latter this idea was explored by
Patterson (1950), Narain (1953), Eckler (1955), Gordon (1983), Arnab and Okafor (1992),
Feng and Zou (1997), Singh and Singh (2001), Singh and Priyanka (2008a), Singh et al.
(2013a), Bandyopadhyay and Singh (2014), Priyanka and Mittal (2014, 2015a, 2015b),
Priyanka et al. (2015) and many others.

Longitudinal surveys are mainly about observing characteristics on more than one
chance (occasion) so that the dynamics of the characteristic could be understood over a
period so as to infer about the behaviors and patterns. In this process a variety of literature
has been put on using many explanative twists, definitely enriching the field of study and
a vast literature is available for dealing with non-response while sampling over successive
occasion.One may cite Rubin (1976), Sande (1979), Kalton et al. (1981), Kalton and
Kasprzyk (1982), Singh and Singh (1991) by considering complete data set and discarding
all those units for which information was not available for at least one time. Also Lee et
al. (1994, 1995), Singh and Horn (2002), Ahmed et al. (2006), Singh and Priyanka
(2007b), Singh (2009) and Singh et al. (2013b) can be seen for various new estimators for
estimation of parameters by method of imputation using additional auxiliary information

in successive sampling.
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Various ideas have been dug into conceiving that auxiliary information utilized
remains stable in nature while sampling over successive occasions but when difference
(gap) between two occasions is sufficiently large, the nature of auxiliary variable may not
sustain to be stable. In such a case the nature of auxiliary characteristic turns to be dynamic
over the period of observation. Soa completely fresh approach has been made using
imputation technique while sampling over two successive occasions to negotiate with the
ill effects of non-response. MCAR has been assumed implicitly and a more worthy
estimator for population mean while sampling over successive occasion using additional
auxiliary information which is changing (dynamic) over the period of observation, by
imputing missing data in the presence of non-response. The properties of the proposed
estimator have been elaborated theoretically considering that (i) non-response may arise
on both occasions, (ii) it may occur only at first occasion or (iii) it may occur only at
second occasion while comparing the proposed estimator with estimator having complete
response, proposed by Priyanka and Mittal (2016). A Simulation study has also been put
through to substantiate the practicability of the proposed estimator.

2. Survey Design and Analysis
2.1 Notations

Let U= (U, U,,..,Uy) be the N- element finite population, which has been

sampled over two occasions. The characters under study is denoted by x(y) on the first
(second) occasion, respectively. It is assumed that information on a dynamic (varying)

auxiliary variable zl(zz) , with the known population mean, is available on first (second)
occasion. We assume that there is non-response at both the occasions. A simple random
sample without replacement s, of n units has been drawn on the first occasion. Let the
number of responding unit out of n sampled units, which are drawn at the first occasion,
be denoted by r,, the set of responding units in s, by R,and that of non-responding by R}
. A random sub-sample s of m=nXunit is retained (matched) for its use on the current
(second) occasion from the units which responded (r;) at the first occasion and it is

intuitive that these matched units will be completely responding at the current (second)
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occasion as well. A fresh simple random sample (without replacement),s, of
U =n-m=npunits, is drawn on the second occasion from the non-sampled units of the

population so that the sample size on the second occasion remains the same i.e. n. Let the

number of responding units out of u sampled units which are drawn afresh at current

occasion, be denoted by r,, the set of responding unit in s, by R,, and that of non-
responding units by R3. A andp (A + p=1)are the fractions of matched and fresh sample,
respectively, at the current(second) occasion. For every uniti e R, (i=1,2), the values

X; (y;) are observed, but for the unitsi R} (j =1, 2)the valuesx; (y;)are missing and

instead imputed values are derived. The following notations have been used hereafter:

X

.Y, Z,, Z, : Population means of the variables x, y, z, and z, respectively.

Yor Zur Vr,0 Zo(12)s Xy Vs Z(M), Z,(M), X, , Z,(r, ) : Sample mean of respective variate
based on the sample sizes shown in suffice.

Pyxs Preys Prz,» Pyzys Pyz,» Pay, - COrTelation coefficient between the variables shown in

suffices.

S, S;,S; . S: : Population mean squared of variables x, y, z, and z, respectively.

f= (i) f,= (f_zj : The fraction of respondents at first and second occasions respectively.
n u
t,=(1-f,), t,=(1- f,): The fraction of non- respondents at first and second occasions

respectively.

2.2. Formulation of the Proposed Estimator T

To estimate the population mean Y on the current (second) occasion, an estimator T, has

been proposed considering that non-response occurs at current occasion andthe missing
values occurring in the sample of size u are replaced by imputed values. Hence, the
following imputation method has been proposed to cope up with the problem of non-

response in samples, :
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—————}gn} if ieR° @

2 +72(r2)J @

The second estimator T, is based on sample size m=n\ common to the both occasions

utilizing information retained from first occasion. Since non- response is assumed to be
occurring on first occasion as well so the missing values occurring in the sample of size n

are replaced by imputed values. The following imputation technique has been suggested

X, if ieR,
3
_____}qn} if ieR )

where X, ——Zx and Z,(r,)= lZzll.

I icR, I iR,

Considering above proposed imputation method the estimator based on sample s, is

altered to

I
X, = nZX-‘ X Xp(zl +71(r1)J (4)

ies,

Therefore, the estimator based on sample size m common to both occasions which utilizes

the missing values by above method of imputation is given by
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Tmzv;(iﬁ ] 5)

Considering the convex combination of the two estimatorsT,and T, , we have the final

estimator of population mean Y on the current occasion as
T=aT,+ (1-a)T, (6)

wherea (0 <a<1)is a constant to be determined so as to minimize the mean squared

error of the proposed estimators T.

2.3. Properties of the Proposed Estimators T

The properties of the proposed estimators T are derived under the following large sample

approximations

e,), X, =X(1+e,),Z,(r,)=2Z,(1+e,),
1+

2.4. Bias and Mean Squared Error of the Estimators T

The estimators T, and T_ are exponential ratio and chain type ratio to exponential ratio
type in nature respectively. Hence they are biased for population mean Y . Therefore, the

final estimator T defined in equation (6) is also biased estimator of Y . The bias B(.) and

mean squared errorM(.)of the proposed estimator Tare obtained (ignoring finite

population corrections) and thus we have following theorems:
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Theorem 2.4.1.Bias of the estimator T to the first order of approximations is obtained as

B(T) =aB(T,) + (1 -a) B(T,) (7)
where B(T,) = %\7 Lg CZOOZOZ - %S{Olzolj (8)

B(T ): Y i Coo _l Coozo 3 C ooz _ Ciino _l ClOlO 1 C1001 1 Couo _ 1 Cypy _l Coons
X 8 Z s Z: XY 2XZ, 2xz 2YZ 2YZ, 472,

1 COOZO CZOOO + CllOO 1 ClOlO l ClOOl _E C:0110 1 COOll
rl8 22 X XY 2xz 2XZ, 2YZ, 4zz

(9)

where C,,= [(xi-)_()r(yi -\7)5(2]1 -Zl)t(z2i -Zz)q}; (r,stq)>

Theorem 2.4.2.Mean squared error of the estimator T to the first order of approximations
is obtained as

M(T)=a? M(T,)+(1- o)’ M(T, )+ 2 a(1- &) Cov(T,,T,) (10)
M(T,) = %Al s (11)
M(T,) = (%Az ¥ %ASJ 52 (12)

where A, = (5/4)-p,, . A= (5/2) -2 Pyt Py~ Pus,~ Pr, T P, (1/2) P,

A =2P,- Pyt Prgy Pra, T (1/2)pzlzz- (5/4) and Cov(T,, T, ) =0.

2.5. Minimum Mean Squared Error of the Proposed Estimator T

Since the mean squared error of the estimator T given in equation (10) is a function of

unknown constant o, therefore, it has been minimized with respect to o.and subsequently
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the optimum value of o and hence optimum mean squared error of the estimator T are

given respectively as
O = M(T,)/(M(T,) +M(T,)) (13)

M(T), = (M(T,) - M(T,,))/(M(T,) + M(T,.)) (14)

Further, substituting the value of the mean squared error of the estimators defined in

equations (2) and (5) in equation (13) and (14) respectively, the simplified values of o,

and M(T)_, are obtained as
Olgp, = M I:H A; - (flAz+ A, ):'/I:Hzfz A; - H(flszer f,A, - flAl) - f1A1] (15)

M(T), = [0 C, -G]S /n[p® C-nC, -G (16)

where C,=AA,, C,=fAA,+AA, C,=fA, C=fA+ff, A, -f A, C,=fA, and pnis

the fraction of the sample drawn afresh at the current (second) occasion.

Remark 2.5.1: M(T)Omlderived in equation (16) is a function of p. To estimate the

population mean on each occasion the better choice of pn are 1(case of no matching);
however, to estimate the change in mean from one occasion to other, p should be O(case
of complete matching). But intuition suggests that the optimum choices of p are desired

to devise the amicable strategy for both the problems simultaneously.
2.6. Optimum Replacement Strategies for the Estimator T

The key design parameter affecting the estimates of change is the overlap between
successive samples. Maintaining high overlap between repeats of a survey is operationally
convenient, since many sampled units have been located and have some experience in the

survey. Hence to decide about the optimum value of p (fractions of samples to be drawn

afresh on current occasion) so that Y may be estimated with maximum precision and
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minimum cost, we minimize the mean squared error M (T)opt in equation (16) with respect

top.

The optimum value of p so obtained is one of the two roots given by

H:(Dzi\/ D; - D, DS)/Dl (17)
where D,=C, C,, D,=C, C,, D,=C, C, + C, C,.

The real value of p exist, iff D?-D, D,>0. For any situation, which satisfies these
conditions, two real values of p may be possible , hence to choose a value of i, it should
be taken care of that 0 <p <1 , all other values of p are inadmissible. If both the real
values of p are admissible, the lowest one will be the best choice as it reduces the total

cost of the survey. Substituting the admissible value of p say p, from equation (17) in

equation (16), we get the optimum value of the mean squared error of the estimator T with

respect to a as well aspwhich is given as

M(T)* =1 G 'Cz]si/n[ug Cs -1, Cy 'C5] (18)

3. Special Cases

3.1. Case I: When there is Non-Response only at the First Occasion (Previous

Occasion)

When there is a presence of non-response, the proposed estimator T for population mean

Y changes to

T, =0T+ (1-9)T, (19)

NI

where T'=y, exp({;_z((u))J and T, is defined in equation (5) and @(0<¢<1)isareal
, +Z,(u

constant to be determined so as to minimize the mean squared error of the estimator T, .
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In this case, the optimum value of fraction of sample drawn afreshand the minimum mean

squared error of the estimator T, at the admissible value of [iare derived respectively as

n= (Ds + 4 Dé -D, De)/D4:H1(SaY)

M(Tl)* = [Hl Cs 'C7] Si/n[lﬁ Ay -y G 'C9] (20)

opt.

where D,= A,C,, D;=A,C,, D;=C,C, + C,C;, C,=AA,, C,=FAA,+AA,
Ce=A+TA,-TA , C=fA and f=r/n.

3.2. Case I1: When there is Non-Response only at the Second (Current) Occasion

The estimator for population mean Y at the current occasion in the presence of non-

response at current occasion is given by

T, =y T+ (I-y)T, (21)
whereTo= %, | In |,y 2y exp| 22 M) | =X, exp _21-7_1(m)
X, Z, +7Z,(m) Z, +7,(m)

—
=
~

constant to be determined so as to minimize the mean squared error of the estimator T,.

In this case, the optimum value of fraction of sample drawn afresh and the minimum mean

squared error of the estimator T, at the admissible value of [iare derived respectively as

o= (Ds + 4 D; - D, Dg)/D7:H2(SaY)

*

M(T,) = [Hz Cy - Cll]s)z//nl:ug Cpp -1, Cp 'A1] (22)

opt.

Where D7 = C10C127 DS: C11C12’ D9: AlClO + C11C13’ ClO :A1A37 CllelAZ + A1A3

Cp=f,A;, Cu=f,A+f,A, -A and f,=r1,/u.
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4. Efficiency Comparison

The percent relative loss in the efficiency of the proposed estimators T has been recorded
to infer about the affect of incompleteness in the data over the occasions with respect to

the estimator T.; (Priyanka and Mittal (2016)) under the same circumstances but for

complete response over the occasions which is described as

T=ET+ (1-§)T, (23)

u

where T? and T have been defined in equation (19) and (21) and &(Ogaﬂ) is a real

constant to be determined so as to minimize the mean squared error of the estimator T .

The optimum mean squared error for the estimator T., with respect to & as well as pis

obtained as
M (TCR );pt, = [M*Gl' Gz]s;z/ /n [“*2 B, - M*Ga' Bl:l (24)
where "= (H2 +/ H? - H, H, )/H1
H,=B,G,, H,=B,G,, H;=B,G,+G,G;, G,=BB,,
G,=BB, +BB;, G;=B;+B,-B,, B, = (5/4)' Pyz, >
BZ =(5/2) -2 pyx+ pyzl_ pyzz_ ple+ pxzz_ (l/z)pzlz2
and B3: 2 pyx' pyzl+ ple' pxzz+ (l/z)pzlzz_ (5/4) :

The percent relative loss in precision of the estimators T, T, and T, with respect to the

estimator T, under their respective optimality conditions are given by
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* *

_ opt. -M (TCR )opt.

L,= _ x100
M(T)

opt.

L1= opt. Ivi(TCR )opt. %100 (25)
M(T,)

opt.

*

L= M(TZ);pl.- M(TCR )opt. 100
? M(T,).

opt.

5. Numerical Illustrations and Simulation
5.1. Empirical Study

Population Source: [Free access to the data by Statistical Abstracts of the United States]
Empirical validation of theoretical results has been elaborated by means of a natural
population. The population | consist of N=51 states of United States. Let y, be net summer
capacity during 2008 in the i"state of U. S., X; denote the net summer capacity during
2000 in the i"state of U. S., z, denote the residential consumption of electric power
during 2000 and z, denote the residential consumption of electric power during 2008.
The empirical analysis of the proposed estimators has been shown in Table 1 for various

choices for fraction of non-response over the successive occasions.

Table 1: Empirical results when the proposed estimators T, T, and T, have been compared

to the estimator T, .

t,=0.30, t,=0.30

W Ko Ky K, L, L, L,
0.6773 | 0.6018 | 0.7347 | 0.4312 | 19.80 | 3.03 | 10.31
t,=0.20, t,=0.20
IJ‘* l‘lO K K, LO L1 Lz
0.6773 | 0.6050 | 0.6968 | 0.5062 | 11.86 | 1.03 | 6.41
t,=0.25, t,=0.15
IJ’* l'lO Hl uz LO L1 Lz
0.6773 | 0.6540 | 0.7158 | 0.5387 | 10.56 | 2.03 | 4.25
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5.2. Generalization of empirical study

A more generalized study has also been done to show the impact of the proposed

estimators under different fractions of non-response and choices of correlation coefficients

of study and auxiliary variables. The results obtained are shown in Table 2. Here for the

sake of convenience, we have considered p =p_ =p,and p_=p_=p,.

Table 2: Generalized empirical results while the proposed estimators T, T, and T, have
been compared to the estimator T, .

t,=0.10 and t,=0.10

Py P 05 0.6
Pa | P | M Ho | Wy | B, | Lo L, L, | u Mo | 1y [ B, | Lo | L] Ly
04/081)063|050]059|1149| 562 |11.99|091|083|0.81|0.81| 9.85 | 3.03| 9.89
04/105]078 058|049 |054|1254| 6.88 | 13.34 | 0.87 | 0.68 | 0.65 | 0.65 | 1.93 | 4.83 | 11.21
0.6 | 0.75] 055|047 | 0501371 | 820 | 14.87 | 0.83 | 0.61 | 0.57 | 0.57 | 12.35 | 6.60 | 12.95
0.4 10.84)063|050]059|1190| 6.07 |12.40|0.93|0.83|0.81|0.81] 9.95 | 3.14 | 9.99
05(05]/081]058|049|054|1314| 751 |13.93|0.89|0.68 | 0.65| 0.65| 11.18 | 5.09 | 11.46
0.6 | 0.78 ] 055|047 | 050 | 1451 | 9.05 | 15.66 | 0.85 | 0.61 | 0.57 | 0.57 | 12.79 | 7.07 | 13.38
0.410.83]063|050]0.59|1221 ]| 640 |12.71]0.94|0.83|0.81 | 0.81 | 10.02 | 3.21 | 10.07
06(05]/083]058 049|054 |1359| 7.99 | 1437 | 0.90 | 0.68 | 0.65 | 0.65 | 11.36 | 5.28 | 11.63
0.6 | 0.80 | 055|047 | 050 | 1512 | 9.70 | 16.26 | 0.87 | 0.61 | 0.57 | 0.57 | 13.11 | 7.41 | 13.70
0.4 10.87]063|050]|059|1245| 6.65 | 1295]|0.94 |0.83 |0.81 | 0.81 | 10.07 | 3.27 | 10.12
0.7105]/085]058|049|054|1394| 836 | 14.72 | 0.91 | 0.68 | 0.65 | 0.65 | 11.49 | 5.43 | 11.77
0.6 | 0.82 | 0.55| 0.47 | 0.50 | 15.60 | 10.21 | 16.74 | 0.88 | 0.61 | 0.57 | 0.57 | 13.35 | 7.67 | 13.95
t,=0.25 and t,=0.20
Py P 05 0.6
P | Pr | M Ho | 1y | M, L, L, L, | n Ho | Wy | M, Lo | L | L,
0.4/081]081|058|075|1883| 413 | 1892|091 | ** |0.60 | ** - 241 -
0405|078 |0.74|057|0.66| 1872 | 4.87 | 19.66 | 0.87 | 0.90 | 0.59 | 0.87 | 18.85 | 3.73 | 18.93
0.6 | 0.75]0.69 | 0.56 | 0.59 | 19.07 | 5.59 | 20.75| 0.83 | 0.78 | 0.58 | 0.71 | 1902 | 4.94 | 19.59
0.4 /084]081|058|075|1891| 458 |19.30|0.93| ** |0.60 | ** - 2.52 -
05(05]/081]0.74|057|0.66|19.27 | 552 | 20.21|0.89 | 0.90 | 0.59 | 0.87 | 19.08 | 4.00 | 19.16
0.6 |0.78 | 0.69 | 056|059 |19.82| 646 | 21.48 | 0.85|0.78 | 0.58 | 0.71 | 19.42 | 5.41 | 19.99
0.4]083]0.81|058|0.75|19.20| 492 | 1959|094 | ** |0.60 | ** - 2.60 -
0.6 {05]/083|0.74|057|0.66|19.69| 6.01 |20.62 | 0.90 | 0.90 | 0.59 | 0.87 | 19.24 | 4.19 | 19.32
0.6 | 0.80]|0.69| 056|059 2039 | 7.13 | 22.04 | 0.87 | 0.78 | 0.58 | 0.71 | 19.72 | 5.76 | 20.29
0.4 (087]081|058|075|1942| 518 |19.81|094 | ** |0.60 | ** - 2.66 -
0.7(05]/085|0.74|057|0.66|2001| 639 | 20.94 | 091 | 0.90 | 0.59 | 0.87 | 19.36 | 4.34 | 19.44
0.6 |0.82]0.69| 056|059 2084 | 766 | 2249 |0.88|0.78 | 0.58 | 0.71 | 19.94 | 6.02 | 20.51

Note: The values for ', K. i, and p, have been rounded off up to two places of decimal for presentation.
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5.3. Monte Carlo Simulation

The population Il comprise of N = 51 states of United States. Let y, be the net electric
power generation during 2008 in the i" state of U. S., x; be the net electric power

generationduring 2000 in the i state of U. S., z, denote the net summer capacity during
2000 in the i"state of U.S. and z, denote the net summer capacity during 2008 in the

i" state of U. S.

Monte Carlo simulation has been performed on population II, for better analysis

considering different choices of t, and t, .

5.3.1. Simulation Algorithm

(1) Choose 5000 samples of size n=25 using simple random sampling without replacement

on first occasion for both the study and auxiliary variable.

(if) For f,=0.88, chooser,=22 responding units out of n=25 samples units.
(iii) Calculate sample meanX, |, and Z, (r,) fork =1, 2, - - -, 5000.

(iv) Retain m=15 units out of each r,=22 sample units of the study and auxiliary variables

at the first occasion.
(v) Calculate sample meanX,, , and Z, , (m)for k=1, 2, - - -, 5000.

(vi) Select u=10 units using simple random sampling without replacement from N-n=26

units of the population for study and auxiliary variables at second (current) occasion.
(vii) For f,=0.90, choose r,=9 responding units out of u=10 samples units.
(viii) Calculate sample meany, |,, Y x» Z2« (M) and Z,,, (r,)fork=1,2, - - -, 5000.

(ix) Iterate the parameter o from 0.1 to 0.9 with a step of 0.2.

(x) Iterate & from 0.1 to 0.9 with a step of 0.1 within (ix).
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(xi) Calculate the percent relative loss in efficiencies of the proposed estimator

T, T, and T, with respect to estimator T as

5000 5 5000 )
;Hk'Tcm] ;[Tllk_TCle}

) = 5000 X 100 ! L(Tl): 5000 X 100

S’ Y]’
S:Zj[-rzu(' TCR|k]2

5000

Sm.)

and  L(T,)= x100, k=1,2, ..., 5000,

Table 3: Simulation result when the proposed estimator T is compared with the estimator TCR when

non-response occurs on both the occasion

S

o

SET | 01 0.2 0.3 0.4 0.5 0.6 0.7

I 46.05 | 60.81 | 66.92 | 59.37 | 39.65 | 16.81 | -20.54
0.1 Il | 31.76 | 49.12 | 55.63 | 47.74 | 21.70 | -8.40 | -59.24
Il | 25.14 | 43.67 | 49.85 | 41.75 | 22.09 | -25.97 | -75.52
[ 41.00 | 57.08 | 62.83 | 55.13 | 34.92 | 6.12 | -35.84
0.2 Il | 22.79 | 43.01 | 50.56 | 4.20 | 14.35 | -24.41 | -79.91
I | 1444 | 36.58 | 42.69 | 33.62 | 7.15 | -43.63 | -82.36
[ 38.96 | 54.47 | 60.92 | 52.37 | 31.50 | 1.25 | -40.43
0.3 Il | 17.24 | 40.30 | 47.62 | 36.94 | 9.23 | -32.24 | -91.28
I | 794 | 31.92 | 38.42 | 27.87 | 0.211 | -54.25 | -100.57
[ 38.93 | 55.18 | 60.81 | 52.50 | 32.26 | 1.46 | -41.78
0.4 Il | 1838 | 472 | 47.74 | 36.94 | 10.57 | -30.64 | -89.35
I | 779 | 31.61 | 38.07 | 27.43 | -1.01 | -54.23 | -114.80
[ 43.25 | 58.25 | 62.87 | 55.46 | 36.25 | 6.35 | -33.20
0.5 Il | 2481 | 44.96 | 51.11 | 40.89 | 16.44 | -22.26 | -76.86
I | 1157 | 35.99 | 42.22 | 31.33 | 4.43 | -45.92 | -106.78
[ 49.73 | 62.25 | 66.09 | 59.91 | 42.63 | 15.98 | -19.59
0.6 Il | 33.26 | 51.74 | 56.74 | 47.77 | 2591 | -7.99 | -57.18
111 | 21.53 | 43.08 | 48.56 | 38.85 | 14.57 | -29.38 | -83.80
[ 56.23 | 67.33 | 70.48 | 65.19 | 49.70 | 26.75 | -4.89
0.7 Il | 4293 | 58.71 | 63.18 | 55.27 | 36.78 | 7.32 | -34.08
111 | 32.87 | 51.25 | 55.59 | 47.57 | 26.18 | -10.55 | -56.75
[ 62.35 | 72.22 | 75.10 | 70.49 | 57.24 | 37.69 | 10.94
0.8 Il | 5218 | 65.42 | 69.19 | 62.50 | 46.56 | 22.27 | -12.58
I | 43.92 | 59.27 | 62.51 | 56.31 | 38.34 | 8.08 | -31.46
[ 68.17 | 76.43 | 78.73 | 75.08 | 64.14 | 46.73 | 24.08
0.9 Il | 60.26 | 71.02 | 74.18 | 68.56 | 55.75 | 35.10 6.61
111 | 53.71 | 65.97 | 68.74 | 63.54 | 48.86 | 23.89 9.51

I: n=25, 1= 0.40, t,=0.28, t,=0.30, 1I: n=25, 1 = 0.40, t,=0.16, t,=0.20
11 n=25, = 0.40, £,=0.12, t,=0.10
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Table 4: Simulation result when the proposed estimator T, is compared with the estimator TCR

when non-response occurs only on first occasion

S
®

SET | 01 0.2 0.3 0.4 0.5 0.6 0.7

I 50.48 | 62.74 | 66.33 | 60.63 | 42.76 | 22.14 | -12.67
0.1 Il | 39.01 5259 |58.29 | 50.28 | 3293 | 5.16 | -42.17
Il | 1555 | 38.43 | 46.11 | 35.20 | 13.02 | -27.07 | -78.92
| 42.35 | 57.49 | 62.20 | 55.69 | 38.16 | 12.18 | -25.80
0.2 Il | 2735 | 47.05 | 51.74 | 45.44 | 23.25 | -9.66 | -63.11
I | 3.85 | 30.21 | 38.69 | 26.61 | 142 | -46.30 | -105.64
| 36.84 | 53.21 | 58.90 | 51.89 | 32.90 | 3.79 | -39.54
0.3 Il | 18.80 | 42.12 | 47.64 | 40.46 | 16.23 | -21.37 | -78.27
I | -481 | 23.70 | 33.18 | 19.94 | -8.18 | -57.58 | -125.97
[ 33.01 | 51.10 | 56.58 | 49.03 | 29.03 | -1.88 | -47.21
0.4 Il | 15.93 | 39.76 | 44.81 | 37.29 | 12.45 | -28.47 | -86.36
I | -7.52 | 21.62 | 31.00 | 18.34 | -11.53 | -61.03 | -132.10
[ 31.89 | 50.84 | 55.96 | 48.63 | 28.12 | -2.83 | -48.72
0.5 Il |16.13 | 39.89 | 45.46 | 37.69 | 13.17 | -27.62 | -84.67
I | -3.76 | 24.78 | 33.62 | 21.69 | -6.90 | -55.47 | -123.98
[ 33.77 | 52.42 | 57.31 | 50.32 | 30.42 | 0.322 | -43.88
0.6 Il | 2125 | 43.15 | 49.17 | 41.38 | 18.03 | -20.40 | -72.92
I | 563 | 3218 |39.17 | 29.47 | 271 | -41.13 | -102.72
[ 38.97 | 56.08 | 60.54 | 54.01 | 35.32 | 7.75 | -33.70
0.7 Il | 2943 | 49.05 | 54.49 | 4750 | 26.19 | -8.31 | -55.78
111 | 18.00 | 41.42 | 47.01 | 38.46 | 15.71 | -23.19 | -75.88
[ 45.31 | 60.59 | 64.55 | 58.66 | 42.39 | 17.01 | -19.92
0.8 Il | 38.56 | 55.46 | 60.40 | 54.26 | 35.62 | 6.25 | -35.71
111 | 30.99 | 50.40 | 55.73 | 48.25 | 28.19 | -3.87 | -49.95
[ 52.39 | 65.24 | 68.83 | 63.44 | 49.50 | 26.71 | -5.54

0.9 Il | 47.67 | 61.64 | 66.10 | 60.73 | 45.13 | 19.88 | -15.94
111 | 42.67 | 58.49 | 63.03 | 56.84 | 39.97 | 13.00 | -24.82

I: n=25, 1= 0.40, t,=0.28
II: n=25, 1 = 0.40, t,=0.16
I:n=25,p=0.40, t,=0.12
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Table 5: Simulation result when the proposed estimator T, is compared with the estimator T, when

non-response occurs only on second occasion

SET | 01 0.2 0.3 0.4 0.5 0.6 0.7

I | 3823|5422 |59.08 5101|3101 | -2.48 | -45.26
0.1 Il | 37.14 | 55.19 | 57.99 | 50.39 | 28.97 | -4.50 | -48.73
11 | 35.67 | 52.66 | 59.41 | 49.95 | 27.97 | -9.61 | -49.80
I | 39.89 | 54.99 | 59.63 | 51.74 | 30.71 | -2.04 | -45.18
0.2 Il | 36.79 | 53.49 | 57.84 | 50.60 | 27.28 | -3.92 | -52.52
Il | 33.84 | 51.31 | 58.05 | 49.13 | 24.82 | -11.68 | -54.67
| | 4286 | 57.14 | 61.30 | 53.45 | 34.87 | 5.06 |-37.21
0.3 Il | 38.89 | 54.70 | 59.65 | 53.00 | 30.58 | -1.79 | -46.86
11 | 35.46 | 52.08 | 58.75 | 49.42 | 27.50 | -8.13 | -50.78
| | 47.48 | 61.68 | 65.36 | 58.22 | 41.25 | 14.06 | -24.02
04 Il | 4337 |58.28 | 62.44 | 55.83 | 35.71 | 6.75 | -33.67
Il | 38.81 | 55.31 | 60.30 | 52.09 | 31.41 | -1.52 | -42.55
| | 5424 | 66.44 | 69.72 | 63.64 | 48.85 | 25.30 | -7.38
0.5 Il | 49.43 | 62.50 | 66.35 | 60.47 | 42.67 | 17.82 | -19.20
11 | 44,53 | 58.89 | 63.44 | 56.26 | 36.95 | 7.02 | -30.51
I |6024 | 71.03 | 74.16 | 68.86 | 55.69 | 35.86 | 6.91
0.6 Il | 56.03 | 66.98 | 70.84 | 65.15 | 50.14 | 27.81 | -3.87
I | 50.54 | 63.22 | 67.35 | 61.33 | 43.65 | 17.16 | -16.55
I | 66.19 | 75.94 | 77.92 | 73.60 | 62.46 | 45.13 | 21.03
0.7 Il | 61.97 | 71.64 | 74.79 | 70.09 | 56.88 | 37.70 | 9.71
Il | 56.78 | 67.76 | 71.62 | 66.20 | 51.09 | 27.81 | -2.07
I | 7142|7894 |81.29 | 77.52 | 68.36 | 53.28 | 32.87
0.8 Il | 67.38 | 75.91 | 78.11 | 74.32 | 63.25 | 46.35 | 22.38
11 | 62,51 | 72.01 | 75.22 | 70.49 | 57.45 | 37.23 | 11.42
I | 7587|8218 | 83.97 | 80.90 | 73.02 | 60.05 | 42.92
0.9 Il | 71.87 | 79.38 | 81.26 | 78.08 | 68.50 | 53.63 | 33.36
11 | 67.34 | 75.86 | 78.70 | 74.25 | 63.38 | 45.71 | 23.12
I: n=25, 1= 0.40, t,=0.40
II: n=25, n=0.40, t,=0.30

I1: n=25, u = 0.40, t,=0.20

268



9. Rendition of Results

The performance of an estimator in successive sampling in the presence of non-response
is generally judged on the basis of percent relative loss in efficiency (lesser is the loss
better is the estimator) and in terms of optimum value of fraction of fresh sample to be
drawn afresh on current(second) occasion which directly related to the cost of survey.

Following interpretation can be drawn from Tables 1- 5,
1) Results based on empirical study

a) From Table 1 we can see that the values of p, u,, and p,exist for various choices of

fraction of non-response over two successive occasions which completely signifies the

utility of a dynamic natured auxiliary character.

b) Also from Table 1, we identify that percent relative loss L,, L, and L, exist each

combination of t andt, and when non response occurs at both occasion the percent

relative loss is more as compared to non-response on first or second occasion only.

c) We can also conclude from the Table 1 that, the percent relative loss in efficiency is

not very much significant when the proposed estimators T, T, and T,are compared to

estimator T, .

2) Results extracted from the generalized study for various combinations of

correlation coefficients

a) In Table 2, we see that the values of p,, n,u,,L,, L, and L,exist for almost every

combination of coefficient of correlation of study and auxiliary characteristics considering
various possibilities of non-response that can creep in a sample survey over successive

occasions.

b) We also see that the proposed estimators work efficiently when auxiliary character
which is dynamic in nature conceives a moderate or low correlation with the study

character over the successive occasions.
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c) We also identify that as the amount of correlation between study and auxiliary character
is increased, the proposed estimators intend to provide a lesser fraction of sample to be

drawn afresh at current occasion.
3) Results based on simulation study in Table 3, Table 4 and Table 5

a) We can see that for fixed choice of &, percent relative loss first decreases and then
increases with increasing value of « and ¢ respectively while for all fixed choices of &,

percent relative loss L (T, )increases as y increases.

b) The percent relative loss L(T),L(T,)andL(T,), for fixed choice of a, ¢andy

respectively, first increase as & increases and then decreases with increasing value of .

(c) As we decrease the fraction of non-response in the sample on first and second occasion,

the percent relative loss L(T),L(T,)andL(T,) decrease for all combinations of

a, ¢ and y with & respectively.
10. Conclusion

The proposed estimators have been analysed considering a detailed study in the presence
of non-response utilizing additional auxiliary information which is dynamic in nature over
the successive occasions. Loss in efficiency is very much plebeian when non-response is
encountered in the sample survey. Although percent relative loss is encountered for
various fractions of non-response on two occasions using the proposed method of
imputation while utilizing dynamic auxiliary character but a negative loss is also available
for various choices of parameters. This signifies that the proposed estimators emerge to
be better than the estimator due to Priyanka and Mittal (2016) for such combinations of
parameters and hence the proposed method of imputation is fruitful to cope with the non-
response. The proposed imputation techniques prove to be worthy from the point of cost
as well when correlation between study and auxiliary character is considered moderate or
even low. Hence, it is observed that the proposed imputation methods deal the sour effect
of non-response excellently, therefore, the proposed estimators may be recommended for
encouraging their practical use by survey practitioners.
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UNIT - IV

SEARCH OF GOOD ROTATION PATTERNS
ADDRESSING SENSITIVE ISSUES
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CHAPTER -12°

Scrambled Response Techniques in Two
Wave Rotation Sampling for Estimating
Population Mean of Sensitive Characteristics
and its Applications

* Following is the publication based on the work of this chapter:--

1. Priyanka, K. and Mittal, R. (2016): Scrambled Response Techniques in Two Wave
Rotation Sampling for Estimating Population Mean of Sensitive Characteristics and
its Applications. Metrika. (Communicated).
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Scrambled Response Techniques in Two Wave
Rotation Sampling for Estimating Population
Mean of Sensitive Characteristics and its
Applications

1. Introduction

Analysis of sensitive issues like negligence of governmental rules, number of
abortion before marriage, bribing for some entrance exam, sexual indulgence during
teenage, status of extramarital relationship, employing child labourers, child-sexual abuse,
voluntary prostitution, commencement of crime, honour killing, drug intake etc., usually
lead to over or under reporting of the true facts due to social or moral inclinations and
stigma. Thus a significant deviation occurs in the results owing to socially desirable

answers which do not comply to real scenario subsisting in the society.

There are two approaches to estimate population proportion or population mean
of a quantitative sensitive character. First approach is to reduce the stigma involved in
answering such sensitive questions by providing certain privacy through a randomized
response device following certain randomized response rule (Randomized Response
Model). Warner (1965) was the first to provide such a randomizing model and later on
extensive literature have been added by Horvitz et al. (1967), Greenberg et al. (1971),
Gupta et al. (2002), Christofides (2003, 2005), Gupta and Shabbir (2004), Kim and Elam
(2007), Wu et al. (2008), Yan et al. (2009), Arnab (2011), Dianna and Perri (2011), Arnab
et al. (2012), Singh and Sedory (2012) and Sihm and Gupta (2015) etc.

All these authors have focused on estimation of population mean or proportion of sensitive

characters using some randomised response models.

This approach becomes practically next to impossible when it comes to observe a
very large sample since lifestyle has drastically changed and people are living a very fast

life with certain time constraints so complete refusal to response is also encountered due
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to time consuming procedure. In such situations, second approach known as Scrambled
Response Technique (SRT) which was introduced by Warner (1971) but was left for
exploration and very first attempts were made by Pollock and Bek (1976) and Eichhorn
and Hayre (1983), works as saviour. This technique reduces the impossibility of
conducting a survey having large sample size with a sensitive issue to be addressed. In
this technique to estimate the population mean of sensitive character the respondent is
asked to answer freely about the stigmatizing character by adding or multiplying a
corrective scrambling factor to his/her response hiding real response from the interviewer.
In this line a rich literature is available from Saha (2007), Gupta et al. (2006), Gupta et al.
(2010, 2012), Koyuncu et al. (2014) and Hussain and Al-Zhrani (201) etc.

Moreover, these above said issues have been addressed through a single time
survey in the literature available on sensitive character analysis; instead these issues are
required to be monitored continuously over time, since doing so will reflect the change of
social scenario related to the sensitive issues as well as changed level of sensitivity of
issue with respect to time. For example, any government of a county may be interested to
record the mean number of rape cases in the country at starting of their ruling period. After
recording them one time the government may interest to decrease these for ensuring the
better society. For this government can make stricter laws against the rapist, more
awareness of such laws can be spread amongst the females, it may also increase the level
of security for females at work place and so on. After such precautious measures
government may wish to see the changed level of the society by recoding the mean number

of rape cases at the end of their ruling tenure.

In order to monitor such a variable more than once, statistical tool generally
recommended in literature is successive or rotation sampling. Jessen (1942) started the
theory of rotation sampling by utilising all the information collected from previous
occasion. His pioneer work in this line has been followed by Patterson (1950), Sen (1973),
Feng and Zou (1997), Singh and Priyanka (2008a), Bandyopadhyay and Singh (2014),
Priyanka and Mittal (2014, 2015a, 2015b), Priyanka et al. (2015) and many others.
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None of the above works in successive sampling analyses sensitive issues which
change over time. Very few attempts namely Arnab and Singh (2013) and Yu et al. (2014)
are found which dealt with sensitive issues on successive waves while using randomized
response technique. As per our knowledge is concerned no attempt has been made to utilise
a non-sensitive auxiliary variable to estimate a sensitive study variable on successive
waves using scrambled response technique. Hence, motivated with this scope of study, the
present article endeavours to propose two kinds of estimators to estimate population mean
of a sensitive character, first is a modified Jessen’s estimator under scrambled response
using all information from previous wave without any auxiliary information and second
are four exponential ratio type estimators accompanying a non-sensitive stable auxiliary
character correlated to the sensitive-study character over two successive waves. All the
above said estimators are studied under additive scrambled response model (ASRM) as
well as multiplicative scrambled response model (MSRM) and properties of proposed
estimators including the optimum rotation rates have been derived upto first order of
approximations. Discussion has been made regarding the distribution of scrambling
variable. A numerical illustration has been made to compare both the scrambled response
models. Also an empirical study has been worked out for the best suited scrambled
response model on two successive waves by the means of a case study of drug usage by
undergraduate students in a college for the real life application of the proposed estimators.
Simulation studies are rationalized to show the feasibility of proposed estimators. Mutual
comparisons of the proposed estimators have also been illustrated. The model for optimum

total cost of the survey has also been designed and discussed.

2. Survey Design and Analysis

2.1. Sample Structure and Notations

Let © = (0,,0,, ..., ©,) be the finite population of N units, which has been sampled over

two successive waves. It is assumed that size of the population remains unchanged but
values of units change over two successive waves. The sensitive character under study be
denoted by x (y) on the first (second) waves respectively. It is assumed that information

on non-sensitive auxiliary variable z stable in nature over the successive waves with
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completely known population mean Z, is readily available on both the successive waves
and positively correlated to x and y respectively. Simple random sample (without
replacement) of n units is taken at the first wave. A random subsample of m = nA units is
retained for use at the second wave. Now at the current wave, a simple random sample
(without replacement) of u= (n-m) = npu units is drawn afresh from the remaining (N-n)
units of the population so that the sample size on the second wave remains the same. Let

pand A(p+2=1) are the fractions of fresh and matched samples respectively at the second

(current) successive wave. The following notations are considered here after:

X, Y, Z : Population means of the variables x, y and z respectively.

h,, @, h,, T, and h, @, h., @,: Sample mean of sensitive variate based on sample sizes

shown in suffice under additive scrambled response model and multiplicative scrambled

response model respectively.

Z,, Z,,, Z,. Sample mean of the auxiliary variate based on sample sizes shown in suffice.
Py P> Py, - Correlation coefficient between the variables shown in suffices.

C,. C,, C,: Coefficient of variance of variables shown in suffices.

S;. S, S., S.: Population mean squared of variables x, y, z and s respectively.

2.2. Additive Scrambled Response Model (ASRM)

Pollock and Bek (1976) were the first to discuss scrambling through additive model. In
this model the respondent is asked to add his/her sensitive response X () into a random
(scrambling) variable S (independent of X(Y)) from a completely known distribution.

Hence the observed response is given by
G=X+S on the first wave ,

and H =Y + Son the second wave,
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The scrambling variable S may follow any distribution and which has been discussed in

detail in further sections. If E(S)=S, V(S)=S! then G=X+S, H=Y+5,
S;=S;+S; and S;=S+S;, Also under ASRM p, =p,,. pr,= Py, and p,=p,, -
2. 3. Multiplicative Scrambling Response Model (MSRM)

Multiplicative scrambling was also first studied by Pollock and Bek (1976) but a deep
discussion was made by Eichhorn and Hayre (1983). In this model respondent is asked to

multiply his/her sensitive response X(Y) by a scrambling variable S’ (independent of

X(Y)) from a completely known distribution. So the observed response is given by
G™ = XS on the first wave,
H" =YS’ on the second wave,

s

where E(S)=S", V(S7)=S?, G" =X S, H =Y §, 57=S]S? + S’X*+ S;S”
and S;”= S2S”+ SY?+ SIS such that (°=(S;/ §*)2 should be as small as possible.
Also under MSRM

* (P.C,C.(SI+57)+s7) - (pCS) (p.C,5" )

and p;Z =

ph = p— » n — B s = » — = ~ . ~
o JCisT+C s CIsT+CIS ST [Cis T4 Ci e ST JCis7+CI5 4 s”

2.4. Design of the Proposed Estimators

Two kinds of estimators have been proposed to estimate population mean of sensitive
characteristic on current wave under ASRM and MSRM. First is the modified Jessen’s
estimator under scrambled response which utilizes information from previous wave but

doesn’t accompany any auxiliary information on any non-sensitive character.
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Table 1: The modified Jessen’s estimators for scrambled response on two successive
waves under ASRM and MSRM are proposed as

Estimator based on sample size u, drawn afresh at current wave
Estimator Structure Under ASRM Structure Under MSRM
¥, (7) h, h,
Estimator based on sample size m, retained from previous wave
Estimator Structure Under ASRM

¥ () Pt K(9,-Tn)

Structure Under MSRM
hy,+ k(3,-3)

The second kind of estimators are various exponential ratio type estimators which utilize

information from previous wave as well as information on a non-sensitive auxiliary
character which is stable over both the waves.

Table 2: The exponential ratio type estimators on two successive waves

Estimator based on sample size u, drawn afresh at current wave
Estimator Structure Under ASRM

Structure Under MSRM
o | R[] w(Z)

, - Z-7Z, = Z-7,
T (7) h, exp(z_Irz ] h, exp[_ J

Estimator based on sample size m, retained from previous wave
Structure Under ASRM Structure Under MSRM

, = (3, Z-7, — (T Z-7,
wo | ng)e(EE) | nE)e (5

Estimator

m Z+

_ 7Z-7
Z+7, where h! =h_ exp (Z+Z_mj
Tom (7) 5 - B m
2 Grf:_m eXp (zz__mj g'f'_g* exp[z_fmj
+Z m~ Im S | =
m Z+7,
7-7 -
0°=0 ex — n o Z- N
oo p(Zﬂj = o £2+—j
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M for Multiplicative Scrambled Response Model
where 7 =

A for Additive Scrambled Response Model
Hence, considering the convex combination of the estimators based on sample size u and
sample size m, we have the final estimators of the population mean at the current wave

from Table 1 and Table 2 as:

Table 3: Final estimators of population mean of sensitive character at the current

wave
Estimator Structure Under ASRM Structure Under MSRM
¥(r) E(A) ¥,(A) +[1-6(A) ¥, (A) | E(M) ¥, (M) +[1-§(M) ¥, (M)

Ty (7) (1. =1, 2)| @(A) Ty (A)+ [L-ay(A)] T (A) | @ (M) T, (M)+ [1-a (M) | T3, (M)

where £(7);[0<¢(z)<1], and @, (r);[ 0<a,;(z)<1] are suitably chosen weights so
as to minimize the wvariance and mean squared errors of the estimators

i(r) and 7;;(7);(i, j=1, 2) respectively.

2.5. Analysis of the proposed estimators
2.5.1. Bias and Mean Squared Errors of the Proposed Estimators
The properties of the proposed estimators are derived under the following large sample

approximations

=
Tl

u: (1+e0)’ Em:F'(l-'-el)’ gm:é(l-'-ez)’gn:é(l+e3)’7u:2(1+e4)’7m:2(1+eS)
nd Z,=Z(1+e,) suchthatle|<1Vi=0,..56.

h.=H (1+g,), H:ﬂ:ﬁ*(l +e,), 2.=G (1+s,),2=G (1+¢,), suchthatg,|<1Vi=0,..3.

QO

S

*

Here E(e;)=0 and E(g;)=0; V i=lL,...,6.
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E(e;)= oCy, E(el )= BCT. E(e; )= BCS, E(<F)=7CP, (<] )= o€, E(e5)=BC7, E(ef) = vCl,
E(eoe4): ap,,C,C,, E(elez): Bphgchcg’ E(elea): VPthth! E(eleS): Bp.CiC,,
E(eleﬁ): thZChCZ’ E(ezes): YCS’ E(GZeS): Bpgzcgcz’ E(eZeG): ngngCz’ E(GBCS): ngzcgcz’

E(e,8)= 1,C,Co Bleses)=1CE,

E(e)=aC’, E(&])=pC., E(&})= BCZ., E(g})= ¥C: B (852, )= 0p,C,C,, E(£8,)=Bp,,C,-C,.
E(8183): Yp;gch*cg*’ E(Sles): Bphzch*cz’ E(glee): Yp;zch*cz’E(8283): YCS*’ E(Szes ): BP;ZCQ*CZ,

E(&.€,)=71p,,C-C,. E(&:8,)=1p,,C.C,, E(&:e;)=1p,C-C,,

11 11 11 - _
Wherea—(—-—j, Bz[—-—), Y= (—-—j, c§:c§+sj/xz, Cjzcj+sj/Y2,
m N n N

u N

C.=Ci+CC.+C.andC.=C+C/C.+C..

Table 4: Bias of the proposed estimators under ASRM

Estimator Expression of Bias
¥,(A) |0
¥,(A) |0

G2 827 GH 2HzZ 20GzZ n\GH G? Vi

(j"lm(A) |:| (i((zzoo + §C002 _ (Cno _ l(con + E(Clmj + E(Cuo _ (Czoo _ %((él; j
i %_h +1 §(Cooz_ (C_200+(Cllo _l(cou
m{G* GH) n\82Z G* GH 2HZ

Al
3
—~
>
N—"
TI
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Table 5: Bias of the estimators under MSRM

Estimator Expression of Bias
¥,(M) |0
¥.(M) |0
( ) EH* C202 _ (C;n
u ZZ HZ
, 1_.(3C; 1C
T, (M) | =H [ D2 =
w (M) u (8 Z¢ 2H z}

101
Tim (M) G? 872 GH 2HZ 2672

H* i (C;OO + E(Czoz _ C;o _ E(Ctm + E(CIOl + l (czlo _ C;oo _ 1 (C*
G nNGH G° 2672

1)

(IVJ M H* i (C;(Jo _ (C:m + 1 § C;OZ _ (CZOO + C:m l (Con
2m ( ) — —— =5 — p———
m\ G GH n\8 z G GH 2 HZ

where C,,=E|(9-G) (n, -F)'(z,-2)" | and (.= E[ (g} &) (1 - ) (=, - 2)' |

(r,t,q)>0.

Since ¥ (7) and im(r) are unbiased for population mean hence the estimator i(r) is

also unbiased for population mean. The bias of the estimators 7;;(7);(i, j=1, 2) to the

first order of approximations are obtained as

B[7,(7)] = @(7) B (Tu (7)) + [L- @,(7)] B(7n(7)): (71, 2), ®
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Table 6: Variance and mean squared errors of the estimators ¥(r) and

Tij(2)i(1,1=1,2)

Estimator Expression of variance/ mean Expression of variance/ mean squared
squared errors under ASRM errors under MSRM
Eal 1 —9 l * %)
¥ —A H —A
u (T) u 1 u 1
s 1 1 —2 1 * 1 * —*2
(flu (T) l Bl F|2 l I —*)
u u
Tzu (T) 1 B, H?2 1 B; =2
u u
Tlm(r) 1 B, + 1 B, | H? 1 B, + 1 B, | H®
m n m n
Tw(c) | (L, + Lg,|m (1 B + 156) A?
m n m n

Hence final expression of the variance and mean squared errors of the estimators éfé(r)

and 7;;(7);(i, j=1, 2) are obtained as

V[¥(0)]- e @) V% ()]« - V(¥ @) r2e(0) [-g(0)]con (¥, (). %)) @)

M |:T.J (r)] =a, (1) M [T.u (‘r)] +|:1 -, (T):r M I:ffjm (T):I +2 o, (r)l:l -, (T):' cov (7, (7), T, (2))
©)

where A,=C;, A,=(1-p})Ci. A=piCi, A=Cl, A=(1-py)C., Aj=pioCP,

B,=C:+C;-2p,,C,C,,B,=C;+ %Ci' P ChC,

BS: Ci + C§+%C§_ thgchcg' pthhCz+ pgzcgcz’

1
B,=2p,,C,C,- C:- p,,C,C,, Bs=C;+C;-2p, C,C,, B6=ZC5— Ci+ 2p,, G, Cy- pp,C,C, and
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. . . 1 . . 1 . . .
B,=C.+C.-2p,C.C, B,=C.+-C-p,C.C, B,=C.+C.+-C.-2p,C.C.-p C.C,+p C.C,
h z Z h 4 z 1z h g 4 z h g Z h gz g
*_ o * 2 * *_ 2 2 * *_ 1 o 2 * *
B, = 2p,,C,.C.-C.-p,C.C,, B;=Cl.+C’.-2p, C .C_., Ba—ZCZ— C.+2p,,C,.C.-p,,C..C,,

Cov(¥ (). ¥ (v))=0and Cov(7,(z), 7,,(r))=0.
2.5.2. Minimum Variance and Mean Squared Errors of the Proposed Estimators

Since the variance and mean squared errors of the estimators obtained in equation (2) and
equation (3) are the functions of unknown constants&(7) and @ (7);(i,j=1,2),

therefore, they are minimized with respect to &(z) and @;;(z) respectively and

subsequently the optimum values of &(z) , @;;(7);(i,j =1, 2) so obtained are given as

Table 7: Optimum values of &(z) and a;;(7);(i,j=1,2)

& (2’)/(0ij (T) Optimum value under ASRM Optimum value under MSRM
(0) x[xA - (A*A)] x [ A= (A A))]
opt. (XA, -1 (A+A, -A) -A,] [°A; -2 (As+ A, - A7) - A

w. (T) My [Hn B4 - (B3+B4)] “Zl :ML B: ) (B;+BZ):

" opt [Hfl B, - “11(B3+ B, - Bl) - Bl:l [Hﬁ BZ - HL(B;* Bz - BI) - BI}
o (7) b [, B, - (B B,)] b [ 1L, B; - (Bl B

? opt I:Hfz Be - My, (B5+Be _Bl) _Bl:l [HI: B; - “:2 (B;+B; _BI) _B::I
o (T) _ ”21[“21 B4 - (B3+B4)] _ “;1 :“;1 BZ - (B;—'_BZ):

“ Pt _Hil B, - “21(B3+B4 'Bz) B BZ_ [“Z Bz - l“lgl(]':‘;;—’_]sj‘ -B;) -B;]
w. (T) _ My [“22 Be - (B5+B6 )] _ HZZ [“;2 BG B (B5+BZ):|

“ oP _sz B, -1y (Bs+ B, - Bz) i} BZ_ I:MZ B; B “;2 (B;+ Bg ) B;) ) BZ:'
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Table 8: Optimum values of V[i(r)} and M| 7,;(7) [for (i,j=1,2)

Optimum value under ASRM

Optimum value under MSRM

1 [xA-A]
n I:XZ A3 'XAG 'A1]

1 [ AL A
n[x* A% A; A

E [Hn C, - Cz]
n [lel B, -y, G - Bl:'

l I:l"l'Il CI - C;]
0 [ B -1, C, - B,

E [le C, - Cs]
n [lvllzz Bs -y, G - Bl:l

1 [ GG
n|ug; Bg -1y, Co - By |

1 [Hzl G - Ca]

] 1 [0 G -G
M| 7. — —_ _
I: Zl(r):lom' n I:Mgl B, -y G - BZ:I n _H?‘i B, -5 C; - B;_
g 1 [sz Cy - Cll] 1 [HZz Cy -Cyy
M| 7. = -
[ ? (T):'om' n [ng Bg -1y, Cp - Bz] n [PZ B:s -y Cp, - BZ]
Where

AFAA;, A=A (A A), A=A+ A-A, AEAA;, A=A (A+AY),

As=A,+ A, -A;, C=BB,, C,=B,(B, +A,), C,=B, +B, -B, C,=B,B,, C,=B, (B, +B),
C,=B, +B, -B, C,=B,B,, C,=B, (B, +B,), C,=B, +B, -B,, C,=B,B,, C,=B, (B, +B;),
C,=B, +B, -B,, C,=B,B;, C,=B;(B; +A;), C;=B, +B; - B, C;=B;B;, C;=B; (B; +B;),
C,=B, +B, -B;, C,=B;B;, C,=B;(B; +B}), C,=B; +B, -B,, C,=B;B;, C,=B;(B; +B,),

C,=B;+B;-B;, u;(i,j=1,2) and p;(i,j=1,2) arethe fractions of the sample drawn

2041

afresh at the current(second) wave under ASRM and MSRM respectively.

2.5.3. Optimum Rotation Rate for the Proposed Estimators

Since the mean squared errors of the proposed estimatorsi(r) and T (r);(i, =1, 2) are
the functions of thep;; and p;;;(i,j =1, 2) which are nothing but the rotation rates or the

fractions of sample to be drawn afresh at current wave. Since less the sample need to be
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drawn afresh, less is the total cost of survey, hence to estimate population mean with

maximum precision and minimum cost, the variance and mean squared errors of the
estimators i(r) and 7;;(z);(i, Jj=1, 2) respectively obtained in Table 8 have been
optimized with respect toy;; and ui*j; (i,j =1, 2) respectively. Hence optimum rotation

rates have been obtained for each of the estimators ¥(z) and 7:(7);(i,j=1,2) andare

given as:

Table 9: Optimum Rotation Rate for the Proposed Estimators

¥(z) and 7, (7);(i, j=1, 2)

Optimum Rotation Rates Optimum Rotation Rates
under ASRM under MSRM

. A t\AL-A A - A, £\ AT-AT A,
X X -
A, A,

. D, +4/ D’ -D, D, o D, +/ D? - D, D,
Mll l’l11 -
Dl Dl

. D5¢4/D§-D4 D, - D;iayD:-Dz D,
P o "
D, D,

. D, +/ D -D, D, o D, +/ D? -D; D,
Moy Moy :
D, D,

~ D11 s \l Dfl - Dlo D1z ~* Dll s \] Dz - D10 D12
157 Moo "
D1o 10

where

A=AAF AA,, Ag=AA, AEAA,, ASAA+AA, ASAA;, AFAA,

Dl: B4Cl' D2: B4C2’ D3: BlCl+ CZCS’ D4: BGCA’ D5: BBCS’ D6: BlCA+ CSCG

D7: B4C77 D8: B4CB’ D9: BZC7+ C8C9’ DlO: BGCIO’ D11: BGCM and D12 = BZC10+ C11C12'

D =B.C,, D;=B.C,, D.=B.C.+C.C,, D;=B.C,, D.=B.C,, D.,=B.C,+C.C,
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D:=B,C;, D;=B,C;, Dy=B,C;+ C,C;, D= BiCy, Di;=B;C;; and Dy, = B,Cyo+ C;,C,.

Substituting the optimum values %, %", fi;; and fij;;(i,j =1, 2) in the minimum variance

and mean squared errors of the estimators i(r) and 7;;(z) obtained in Table 8, the

optimum values of the variance and mean squared errors of the estimators

i(z) and 7;,(7);(i,j =1, 2) respectively with respect to &(z) and @;;(r)as well as

w; and p;;;(i, j=1, 2) have been obtained and are given as

Table 10: The optimum variance and mean squared errors of the estimators i(r)

and 7;(7);(i,j=1,2)

Optimum variance/mean squared
errors under ASRM

Optimum variance/mean squared
errors under MSRM

v ¥()]

*
opt.

E [X(O) A4 'A5:|
n I:X(O)Z A3 _X(O) AG _Al:l

O ¢ -
1 [ AL -A¢

*| 2 * *0 * *
n|:x<0> AB_X()AG_AI]

*

M I:(fll (T):Iopt.

[”ﬁ) C - Cz]
a0 B, C, 5]

[HEO) C - Cz}
n _MI&O) B, -y’ C; - B1_

*

M I:(flz (T)]opt.

[P'g) C, - Cs}
nl:ufz))z B - 13 Cq _Bl:l

[HI;O) C, - Cs]
n _HIgO) Bs - ”Ig)) Cs - Bl_

*

M [(fﬂ (T):Iom.

[H(zol) G, _CBJ
n[u(zol)z B, ‘”(201) G, 'Bz}

I:Hz(f) G - Cs]
n _H;(l()) B, - H;(lo) G, - Bz_

*

M [TZZ (T):Iopt.

I:H(zoz) Cy - C11]
n[“(zoz)z B, - i) Cp 'Bz}

[lvlz(z()) C - Cll:|
n|:lvl;(20) B; - H;(zo) Cyp, - B2:|

3. Modelling the Total Cost for the Survey

When a survey, constituting sensitive issues, is deigned, the focus is centred to the total

cost of the survey. Hence the model for total cost including design and analysis over two

successive waves is proposed as:

C;(z)=nc,(z)+mc, (r)+uc,(r),
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M  for Multiplicative Scrambled Response Model

where 7=
A for Additive Scrambled Response Model

C; (r) : The total cost of sample survey at current (second) wave;

C, (z): The average per unit cost of investigating and processing data at previous (first)

wave,

¢, (7): The average per unit cost of investigating and processing retained data at current

wave,

cy(7): The average per unit cost of investigating and processing freshly drawn data at

current wave.

Remark 3.1: ¢, (7)< ¢, (7)< c4(z), When a survey is conducted on successive waves, the

cost of investigating a single unit involved in the survey sample should be greater than
before (at previous wave) since as time passes by different commodities (software) and
services (human resources, daily wages and conveyance) become expensive so the cost
incurring at second wave increases in a considerable amount. Also the average cost of
investigating a retained unit from previous wave should be lesser than investigating a
freshly drawn sample unit since survey investigator has some experiences from the
previous wave and hence the investigator can trace the retained sample units easily as
compared to freshly drawn sample units which reduces the cost in investigating but on the
other hand due to time lag between the successive waves, cost of investigating a retained

sample unit rises as compared to the previous wave.

Theorem 3.1: The optimum total cost for the proposed estimators i(r) and 7;,(7);

(i, j=1, 2) are obtained as
C, [Q(A)} =n[(c, (A)+c, (A)* (1-2°)(c, (A)-c, (A))] (5)

CT [Q(M)Jz n [(Cp (M)+ C, (|\/|))+ (1- X*(O))(Cf (M)- Cs (M))] (6)
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C,[7;(A)]=n[(c, (A)*+c,(A)+ (1-1)(c, (A)-c,(A)] Vi.j=1.2 (7)

C,[F,;(M)]=n [(c,(M)+c,(M))+ (1- 15 ) (c, (M)-¢c,(M)) | Vi.j=1.2 (8)

Remark 3.2: The optimum total costs obtained in equation (5) to (8) are dependent on the
value of sample size (n). Therefore, if a suitable guess of sample size is available, it can
be used for obtaining optimum total cost of the survey by above equation. However, in

the absence of suitable guess, sample size may be estimated by following Cochran (1977).

4. Efficiency Comparison

4.1. Estimator ¥(r) and 7, () versus Estimator  (7)

To evaluate the performance of the proposed estimators, the estimators é_é(r) and 7, i (2')
at optimum conditions, they are compared with the scrambled sample mean estimator

h, (r) , When there is no matching from previous wave. Since the scrambled sample mean

estimator h, (7)is unbiased for population mean, so variance of the estimator h, (7)is

given by
VIR, (A)] = {5+ 7). ©)
V[h,(M)] = %(s§s;2+ S7Y*+8i57) (10)

The percent relative efficiencies E,(7)and Ej;(7)of the estimator ¥(r) and 7;,(7)

(under optimum conditions) with respect to ﬁn (r) are given by

E,(r)= M x 100 (11)
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1 V[Hn (T)] e i =
EL(r)= — L % 100; (i, =1, 2). (12)
M [Tij (T)lm_

4.2. Estimator 7.

;(7) versus Estimator ¥(z)

The percent relative efficiencies EZ(z)of the estimator 7;;(z) (under optimum
conditions) with respect to é_é(r) are obtained as

v[¥e)]

M[T.(r)]

y opt.

E(7)= x 100 (13)

5: Choice of the Distribution of Scrambling Variable
5.1. Scrambling variable under ASRM

Pollock and Bek (1976) did not lay down certain assumption for choosing the distribution
of the scrambling variable S, since S has to be generated before conducting the survey for
collecting the response to ensure the privacy of the respondents. Additive scrambled
response model still provides us certain freedom to apply it practically. For a quantitative
sensitive character, response may either be positive or zero. If response is some positive
quantity then adding a scrambling variable would not alter the response when the
scrambling variable follows some certain prior known distribution. Even if the response
is zero then also additive scrambled response model would be good to go as mean and
variance of the scrambling variable is known and should have been chosen in such a way
that the mean value of scrambling variable would not make a huge impact on mean value
of sensitive character. So for applying an additive scrambled response model it should be
kept in consideration that mean and variance of distribution of scrambling variable should
not alter the mean value of sensitive character provided that the respondents agree to
answer truthfully. So while conducting a survey related to the drug usage of undergraduate
students of a college, we have assumed that scrambling variable S follows normal

distribution with mean zero and variance 1. Here considering mean value of scrambling
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variable zero makes least impact on the mean value of the sensitive variable as mentioned

above.
5.2. Scrambling variable under MSRM

When the multiplicative scrambled response model was first studied by Pollock and Bek
(1976), no assumptions were set for generating distribution of scrambling variable but
when Eichhorn and Hayre (1983) studied this model in depth they provided certain
specifications to be followed for the generating the scrambling variable. They suggested

that, to estimate the population mean of the sensitive character X(Y) >0 the scrambling
variable S">0 with E(S")=S", V(S")=S?* should be chosen such that =S/ S"is as
small as possible. Also it has been shown reasonable that median (S) =1. The numerical

illustration done in the next section assumes the scrambling variable S”a normal variate

with mean one and variance 0.36 this makes ¢ =0.6 which a small value. Various

methods have also been suggested when the scrambling variable assumes negative and

zero values, Eichhorn and Hayre (1983) may be cited for detailed procedures.
6. Numerical Illustrations and Monte Carlo Simulation
6.1. Empirical study

For practicing the use of the proposed estimators under two different scrambled response
model namely ASRM and MSRM over two successive waves, numerical illustration has
been worked out for a completely known population with following population

parameters:

N=51, n=20, S} =4.3451x10°, S?=4.1604x10°, S?=4.2152x10°, X=1923.3, Y=1947.8, Z=1923.3,
pyX:O.7, pXZ:0.7, pyZ:0.7.

And also hypothetical input costs were considered to get an idea about the optimum total

cost of the survey.

290



For using the ASRM it has been assumed that the scrambling variable S~ N(O,l) and

using MSRM, it has been considered that scrambling S™ ~ N(l, 0.6). Hence the results

obtained have been represented in Table 11, Table 12 and Table 13.

Table 11: Variance of estimators h_ and ¥ under ASRM and MSRM.

Table

Estimator | Variance under ASRM | Variance under MSRM
h, (7) 4.1604x10° 1.2115%10’
(7) 3.5658x10° 9.7583x10°
12: Empirical results  when the proposed

estimators

i(r) and 7;;(7);(i, j=1, 2) have been compared to the scrambled sample mean

estimator.
Under ASRM Under MSRM
Optimum Percent . Optimum Percent .
Estimators rotation relative Optimum Estimators rotation relative Optimum
i Total cost . Total cost
rate efficiency rate efficiency

Q(A) 0.5834 116.67 ¥2258.30 Q(M) 0.6207 124.14 %2262.10
r(A) 0.5511 150.30 | %2255.10 | 7, (M) 0.5313 130.76 | ¥2253.10
[ (A) # - - F, (M) 0.5651 136.65 %2256.50
F(A) 0.4370 159.99 ¥2243.70 (M) 0.5591 132.45 £2255.90
T,(A) 0.4837 177.11 2224840 | 1, (M) 0.5843 138.42 | ¥2258.40

Note: “ # ” represents that the optimum rotation rate does not exist.

Table 13: Empirical results when the proposed estimators 7;;(7);(i, j=1, 2) have

been compared to the Estimator i(r)

Under ASRM Under MSRM
Estimators Optimum Percent relative Estimators Optimum Percent relative
rotation rate efficiency rotation rate efficiency
T.(A) 0.5511 128.81 7. (M) 0.5313 105.33
T.,(A) # - F (M) 0.5651 110.07
F(A) 0.4370 137.12 . (M) 0.5591 106.68
T,(A) 0.4837 151.80 T,(M) 0.5843 111.50

Note: “ # ” represents that the optimum rotation rate does not exist.
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From the results obtained in Table 11, it is observed that scrambles sample mean estimator
under ASRM is better than the scrambled sample mean estimator under MSRM. Also the
modified Jessen’s estimator under scrambled response under ASRM is better than the

same estimator under MSRM. Also in Table 12 and Table 13, the proposed estimators

7:;(7);(i,J=1, 2) have an enhanced performance in terms of optimum rotation rate,

optimum total cost of the survey and percent relative efficiency with respect to scrambled
sample mean estimator and modified Jessen’s estimator under scrambled response. It has
also been seen in section 5 that applying ASRM is easier as compared to MSRM on
successive waves due to less complication and restrictions involved in the selection of
scrambling variable for ASRM. Also the above empirical results suggest that beside the
conveniences in the application of ASRM, it is reasonably better in terms of cost and
precision. Also any quantitative sensitive character may assume a zero value at any time,
in such a situation MSRM involves many complexities which again turns time consuming.
So to make a survey involving large size and zero valued sensitive responses, less time
consuming for the respondents, Application of additive scrambled response is suggested.
Therefore, to validate the theoretical results, a case study has been carried out to deal with
a sufficiently sensitive issue where fake response is quit prone, hence, an attempt has been

made to apply additive scrambled response approach to handle that.

6.2. Case Study: Usage of Drugs (Cigarette, Alcohol, Gutkha, Paan Masala etc.)

For practicing the literal feasibility of the proposed estimators 7, (A);(i, j=1, 2), a case

study has been designed for two waves and real data have been collected from 315 under
graduate students of a College (University of Delhi), India through a survey conducted on
two successive waves. For convenience 315 random numbers (S) have been generated
assumingS-N(0,1) to retain the mean value of population mean unaffected from mean
value of scrambling variable while ensuring the privacy of the respondents. The
respondents were presented a bag, full of ball with random number written on them, the
respondent had to pick a ball and then he/she had to add his/her answer to that random

number which was completely unknown to the interviewer. In this way the interviewer
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received scrambled response from each respondent. Followings are the sensitive and non-

sensitive variables of the interest:

X, : Average monthly expenditure on drug usage in July, 2015, by the i"" student.
y, : Average monthly expenditure on drug usage in April, 2016, by the i student.
z.: Average monthly pocket money from all sources in July, 2015 of the i student.

And hence the scrambled response was collected from the respondents in the form of

G=X+S and H=Y + S with S=0whichmakes G=X and H=Y.

Therefore, the optimum rotation rate, percent relative efficiencies of the proposed

estimators ;,(A);(i, j=1,2) with respect to scrambled sample mean estimator and

modified Jessen’s estimator under scrambled response under ASRM and optimum total
costs of the survey have been obtained and shown in Table 14. The optimum bias of each

proposed estimator has also been calculated and shown in Table 15. Following are the

different costs incurred in conducting the survey at two different waves: ¢, =X 50.00, c,

=%60.00 and ¢, =X 65.00.

Table 14: Empirical results when the proposed estimators fz‘ij (A) have been

compared to estimators h, (A)and fé(A) .

Estimator | w” (i,j=1,2) | Ej(A) Ei(A) | C(75(A)
T,,(A) |0.7236 182.11 131.90 ¥5112.8
T,(A) |0.7269 184.16 133.39 ¥5113.5
T, (A) | 0.6487 162.42 117.64 ¥5096.0
T,,(A) |0.6563 164.32 119.02 ¥5097.7
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Table 15: Optimum absolute bias of the estimators 7;;(A);(i, j=1, 2).

B(T;;(A)) n=35 n=45 n=50
|B(7, (A)) 22.36 17.39 15.65
|B(7, (A))| 21.14 16.44 14.80
|B(7, (A))| 18.59 14.46 13.01
|B(7,, (A))| 17.21 13.38 12.05

6.2.1. Monte Carlo Simulation Study
For the above said survey data, detailed simulation study has been carried out and thus the

simulation results obtained are shown in Table 16.

6.2.1.1. Simulation Algorithm

(i) Choose 5000 samples of size n=45 using simple random sampling without replacement
on first wave for both the study (sensitive character) and auxiliary variable (non-sensitive)
out of 315.

(ii) Calculate sample meang,,, and Z,,, fork=1, 2, - - -, 5000.

(iii) Retain m=33 units out of each n=45 sample units of the study and auxiliary variables
at the first wave.

(iv) Calculate sample meang,, , and Z,,, for k=1, 2, - - -, 5000.

(v) Select u=12 units using simple random sampling without replacement from N-n=270

units of the population for study and auxiliary variables at second (current) wave.

(vi) Calculate sample meanh, ., h,, and Z,,, fork=1,2, - - -, 5000.
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(vii) lterate the parameter @, (A);(i, j=1, 2) from 0.1 to 0.9 with a step of 0.1.

(viii) Calculate the percent relative -efficiencies of the proposed estimators

fz‘ij (A);(i, =1, 2) with respect to the scrambled sample mean estimator ﬁn (A) as
5000 _ R
Z[h (A)n|k B H:I

E(ij) = x 100 ; (i,j=1, 2); k=1, 2, ..., 5000.

To exhibit the performance of the proposed estimators 7;;(A);(i, j=1, 2), Monte Carlo

simulation has been performed for three different sets which are quoted below:

SET I: n=45, u=12, m=33, SET Il: n=45, u=18, m=27, SET Ill: n=45, u=27, m=18.

Following above simulation algorithm, simulations results have been obtained for all the

above three mentioned sets.

Table 16: Monte Carlo simulation results when the proposed estimators

7.;(A);(i, j=1, 2)are compared to the scrambled sample mean estimator.
(a) | 01 [ 02 [ 03 [ 04 [ 05 [ 06 [ 07 [ 08 [ 09
SET
E(11) | 125.27 | 129.99 | 130.44 | 12634 | 119.26 | 110.00 | ** o o
E(12) | 131.73 | 136.41 | 136.98 | 132.36 | 124.22 | 113.89 | 101.91 | ** *x
! E(21) | 12564 | 130.66 | 13159 | 128.01 | 121.04 | 111.71 | 100.82 | ** o
E(22) |132.09 | 137.08 | 138.20 | 134.11 | 126.07 | 115.66 | 103.76 | ** o

E(11) | 101.71 | 113.80 | 125.54 | 136.03 | 144.43 | 149.49 | 150.06 | 145.89 | 137.01
E(12) | 118.73 | 132.03 | 144.56 | 154.92 | 162.21 | 165.38 | 163.42 | 156.57 | 145.11
E(21) | 101.88 | 113.89 | 125.27 | 135.06 | 142.30 | 146.01 | 144.97 | 139.41 | 129.54
E(22) | 118.89 | 132.01 | 144.00 | 153.40 | 159.24 | 160.80 | 157.10 | 148.87 | 136.55
E(11) | 139.02 | 149.37 | 160.47 | 170.54 | 176.95 | 179.21 | 177.40 | 170.11 | 159.56
E(12) | 148.96 | 159.35 | 170.32 | 180.44 | 186.42 | 187.49 | 184.41 | 175.71 | 163.89
E(21) | 139.41 | 149.51 | 159.63 | 168.04 | 171.98 | 171.31 | 166.29 | 156.21 | 143.94

E(22) | 149.37 | 159.45 | 169.31 | 177.54 | 180.83 | 178.76 | 172.35 | 160.86 | 147.40
Note: “**” represents no gain in the percent relative efficiency.
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7. Mutual Comparison of the estimators 7;;(A);(i, j=1, 2)

The performances of the proposed estimators 7;;

(A);(i, j=1,2) have been elaborated

empirically as well as through simulation studies in above section 6 and the results
obtained are presented in Table 14 to Table 16. In this section the mutual comparison of

the four proposed estimators has been elaborated pictorially given in Figure 7.1.

Figure 7.1: Mutual comparison of the proposed estimators 7;; (A);(i, j=1, 2) for set
1.
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8. Rendition of Results

1) From the numerical illustration of completely known population in Section 6.1, it has
been observed that ASRM is better than MSRM under the standard supposition for the
distribution of scrambling variables. ASRM is better than MSRM for scrambled sample

mean estimator and also for the proposed estimators ¥(A) and 7,(A);(i,j=1,2) interms

of total cost of the survey and precisions of estimates.

2) It has also been noted that the proposed estimators 77;(A); (i, j=1, 2) under ASRM are

the best suited estimators over the scrambled mean estimator and the modified Jessen’s

estimator under scrambled response in terms of cost and precision. The proposed estimator

T, (A);(i, j=1, 2) is the best performing estimator over the estimators f, (A)and ¥(A)
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3) Results from the Empirical Study based on Case Study

a) From Table 14, we see that ijo) (A);(i, =1, 2) exist for each proposed estimators and

u® is the least.

b) All the four proposed estimators 7;;(A);(i, j=1, 2) are efficient over the estimators
h, (A) and i(A) and the estimator 7,(A) is most efficient over the estimators

h (A) and Q(A) . This justifies that using a positively correlated non-sensitive auxiliary

character is highly rewarding in terms of efficiency.

c) The optimum total cost of the survey conducted on two successive waves has also been

calculated while using all four proposed estimators ffij (A); (i, =1, 2) . The optimum total

cost of survey is least for the estimator 7, (A). The estimators 7,,(A) and 7, (A)

provide approximately same optimum total cost for the survey.

d) From Table 15, it is clear that the estimator 7,,(A) is least biased amongst all other

proposed estimators and also it is vindicated that for increasing size of sample (n), the bias
of all proposed estimators decreases.

2) Results extracted from Monte Carlo simulation Study

a) In Table 16, it can be seen that all the proposed estimators 7;(A);(i, j=1, 2) are
efficient over the estimator h (A). All though for first set, for some choices of @ (A),

all proposed estimators are not efficient.

b) While choosing the different sets for simulation study the empirical results have been
taken care of, since empirically the optimum rotation rates have been suggested more than
50% for freshly drawn fraction of sample which has been clearly demonstrated by the
simulation results. As the fraction of sample drawn afresh is increased gradually up to

60%, the performance of the proposed estimators has been enhanced.
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c) There is no fixed pattern to choose that which one of the four estimators is best in terms

of the efficiency but with a minute observation it can be understood that when the choice

of p, (A)is stretched near to their empirically optimum u{’ (A);(i, j=1, 2), the estimator

T, (A) is most consistent amongst all the others.

3) Results from graphical mutual comparison

a) In Figure 7.1 it is clear that the estimator 7, (A) is most consistent and efficient over

all other proposed estimators.

8. Ratiocination

The rendition of results leads the authors to conclude by assuring from section 5 and 6.1
that over two successive waves, use and application of additive scrambled response model
is more feasible and beneficial in terms of cost and precision over the multiplicative
scrambled response model. From Section 6 it is quite clear that two types of estimators;
one which utilize a non-sensitive auxiliary information and second which doesn’t utilize
any non-sensitive auxiliary information, both are tremendously better than the scrambled
sample mean estimator under ASRM as well as MSRM but since ASRM techniques
prevails over MSRM hence further case study has been designed using ASRM approach.

The all four proposed estimators (Z‘ij(A);(i,j:L 2) are good enough to be practiced

practically over the estimators h (A) and §(A) while observing a sensitive character.

From empirical results of the case study the estimator 77, (A) is best in terms of efficiency

over h (A) and ¥(A) and the estimator 7, (A) provides the least fraction of sample to be

drawn afresh at current wave. This signifies that use of a non-sensitive auxiliary
information is appreciable in enhancing the precision of estimates and cost of the survey
while estimating population mean of sensitive character while using the ASRM. Here the

estimators 7, (A) and 7,, (A) provide approximately same optimum total cost of the

298



survey and also p$) (A) and pf) (A) do not share a big difference in optimum values. The
optimum bias of the estimators Tij(A);(i,jzl, 2) has also been computed and the

estimator 7,, (A) comes out be the least biased estimator amongst the others that is may
be due to the more utilization of non-sensitive auxiliary information and exponential
structure as well, but 7,, (A) is approximately equally biased as estimator 7, (A). In
simulation study at closer values of optimum p,(A), estimator T,,(A) is consistent
enough to be considered over other proposed estimators in terms of efficiency. So looking
at the overall performance of the estimators, the estimators 7,,(A) and 7,,(A) seems to

outperform all other estimators in terms of bias, freshly drawn fraction sample of sample
and optimum total cost, since for minimal advantage in precision, the cost of the survey
cannot be put on stake in successive sampling while dealing with a sensitive issue. Hence
the proposed estimators 7;; (A); (i, j=1, 2), especially the estimators 75 (A) and T, (A)
while accompanying a non-sensitive auxiliary variable, are recommended to survey
statisticians for their practical use in surveys indulging sensitive issues pertaining large

sample sizes.
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UNIT-Y

CONCLUSIONS AND FUTURE
SCOPE
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Conclusions and Future Scope

1. Conclusions

Entire work is stretched over four units on basis of population parameter to be
estimated under different circumstances over two occasion successive sampling. The first
unit deals with the estimation of population median. The second unit deals with estimation
of population mean. Third unit proposes estimators to estimate population mean under
non-response of respondents. Forth unit focuses on estimating population mean of
sensitive characters where false response is plebeian due to sensitivity of the character to

be addressed.

In the first unit an attempt has been made to propose new and different estimators
to estimate population median of the study character in two occasion successive sampling
since there is not large literature available for the estimation of population median of the

study character in two occasion successive sampling.

In Chapter-1, MVLU estimator of population median has been suggested with the
aid of completely known auxiliary information available over both occasions. It has been
seen that the proposed estimator comes to be better with respect sample median estimator
as well as the estimator utilizing no additional auxiliary information. The role of using an
extra information has certainly been signified in enhancing the performance of proposed

estimator in estimating the population median.
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Chapter-2, makes an attempt to work out a factor type estimators to estimate
population median without using any extra information on an auxiliary variable. It has
been seen that the proposed factor type estimator with input parameter “d” becomes ratio
type, product type and dual to ratio type in nature for different values of input parameter
d. It has bias and mean squared error asymptotically equal to ratio type estimator for lager
value of “d” over two successive waves. Also, it is better than the sample median
estimator, ratio type estimator, product type estimator and dual to ratio type estimator at

the optimum value of “d” in terms of efficiency and cost.

Bahl and Tuteja (1991) have shown that exponential ratio type estimators are better
than the ratio type estimators and regression estimator at certain assumptions, hence an
attempt has been made to work out exponential ratio type estimator in two occasion
successive sampling. Therefore, four exponential ratio type estimators have been proposed
utilizing information on a completely known stable auxiliary information, readily
available over both the occasions. Also the proposed estimators turns better in terms of
cost and efficiency with respect to the estimator due to Singh et al. (2007) for second
quantile and the sample median estimator. Also a mutual comparison of the four proposed
exponential ratio type estimators has also been done and it has been found out that the

estimator T,, is best in terms of cost and efficiency while estimating population median.

In chapter-4, a multivariate generalization of the best performing estimator T,, has

been done and in the availability of several auxiliary information. The increased level of

precision has been shown by comparing the proposed estimator with respect to sample
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median estimator and estimator due to Singh et al (2007). Also it has been shown
theoretically that increasing the number of auxiliary information lead to increased level of
efficiency and it reduces the cost of survey as well.

In chapter-5, a possibility has been explored when the auxiliary information may
not sustain to be stable and in such a case the four proposed exponential type estimators
have been compared to sample median estimator and estimator due to Singh et al (2007)

for second quantile and found to be dominant over the above said.

Further, by studying the increased level of precision of the four proposed
exponential ratio type estimator in Unit —I, Unit-11 has been devoted to the estimation of
population mean. For this, four exponential ratio type estimator have been suggested while
utilizing a stable and completely known auxiliary information available on both the
occasions, to estimate population mean in chapter 6. It has been found out the proposed
estimators also behave enormously better while estimating population mean. Their
dominance has been shown by comparing them with respect to sample mean estimator

and general successive sampling estimator due to Jessen (1942).

A multivariate generalization has been illustrated in chapter-7 for the estimator
T,, while utilizing p- auxiliary information which are stable over two successive
occasions and easily available on both the occasions. The multivariate weighted estimator
has been shown dominant over two well-known recent estimators, Singh (2005) and Singh
and Priyanka (2008a). It has been vindicated that the precision gradually increases as the

number of auxiliary information is increased.
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In chapter-8, the four exponential ratio type estimators for estimating population
mean have been proposed while accompanying a dynamic auxiliary over two successive
waves. The proposed estimators have been compared and shown to be better with respect

to sample mean estimator and estimator due to Jessen (1942).

The Unit-111 has been devoted to the estimation of population mean in the presence
of non-response. An attempt has been made for the treatment of non-response in sampling
over two successive occasions while using the technique of imputation. In chapter-9,

methods of imputations have been proposed while using the above said estimator T,,

utilizing stable auxiliary information over two successive occasions. The proposed
estimator has been classified according to the presence of non-response at only first
occasion, presence of non-response at only second and presence of non-response at both
the occasions. Percent relative loss has been computed for above three possibilities of
nonresponse as compared to the estimators proposed in chapter 6. It has been seen that the
amount of loos is not significant in the presence of non-response. Hence the utilization of
proposed estimators has been recommended to the survey statisticians under non-response

while estimating population mean.

Chapter 10 crusades a multivariate weighted exponential ratio type estimator
accompanying several auxiliary information in the presence of non-response for
estimating population mean. Percent relative loss has been computed with respect to

estimator proposed in chapter 7 when there is no non-response at any occasion and the
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amount of percent relative loss is found to be minimal in the presence of non-response.
Also it is observed that more loss is observed when the non-response occurs at both the

occasions.

In chapter 11, the estimator has been proposed under non-response while
estimating the population mean of the study character and the auxiliary information tends
to be dynamic due a large gap between the two successive occasions. The estimator has
been compared to the estimator proposed in chapter 8 when there is no non-response at

any occasion and the percent loss turns to be non-significant.

There is less literature available in the field of successive sampling while
estimating any population parameter of a sensitive study character on successive
occasions. In the available literature, the population parameter of sensitive character has
been estimated using certain randomized response technique whose application turns next
to impossible in large sample surveys since they may be time consuming and the new age
fast life put constraints to the respondents of time. This leads to complete refusal also. So
in Unit-1V an alternative approach known as scrambled response technique for estimating
population mean of the sensitive character while utilizing a non-sensitive auxiliary
information has been illustrated.

The scrambled response technique has been illustrated under two scrambled
response models namely additive scrambled response model (ASRM) and multiplicative
scrambled response model (MSRM). Various estimators have been proposed under

ASRM and MSRM and they are compared with scrambled sample mean estimator under
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ASRM and MSRM respectively. A comparison of two scrambled response models
suggests that ASRM is plausibly better than MSRM in application over two successive
occasions as well as increased precision and total cost of survey dealing a sensitive issue.
Also it has been found that the estimators utilizing a non-sensitive auxiliary information
(exponential ratio type estimators) out performs Jessen’s estimator for scrambled response

and scrambled sample mean estimator.

Hence looking at the consistent application of exponential type estimators under
diverse situations as surveys troubling non-response, surveys having chances of false
response and surveys having different population parameters to be estimated, the proposed
exponential ratio type estimators are recommended to the survey statisticians for their

practical applications in real time scenario.

2. Future Scope of Study

Survey sampling is vast area to be indulged in to. More and more possibilities are
always hidden in the issue to be handled. The present work concerns sampling over two
successive occasions using simple random sampling without replacement and considering
all assumptions of SRSWOR. These work may be explored under many other sampling
schemes like Stratified random sampling, Varying probability sampling, Double
sampling, Cluster Sampling, Two stage sampling, or a ramification of any of them. The
proposed estimators may also be tested under multiple other imputation techniques when

the non-response occurs either considering successive sampling or any of the above said.
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A wider range of experimentation includes the estimation of other population parameters

using the same estimators and that too may include any sampling scheme.

Another field of possibility includes the testing of proposed estimators using
various randomized response technique already available in literature. These estimators
may also be worked out with different scrambled response models with a variety of

assumption on the distribution of the scrambling variable.
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